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Abstract

The concept of unbounded operators provides an abstract framework for

dealing with differential operators and unbounded observable such as in

quantum mechanics. The theory of unbounded operators was developed

by John Von Neumann in the late 1920s and early 1930s in an effort

to solve problems related to quantum mechanics and other physical ob-

servables. This has provided the background on which other scholars

have developed their work in differential operators. Higher order differen-

tial operators as defined on Hilbert spaces have received much attention

though there still lies the problem of computing the eigenvalues of these

higher order operators when the coefficients are unbounded. In this the-

sis,using asymptotic integration, we have investigated the asymptotics of

the eigensolutions and the deficiency indices of fourth order differential

operators with unbounded coefficients as well as the location of absolutely

continuous spectrum of self-adjoint extension operators. We have mainly

endeavuored to compute eigenvalues of fourth order differential operators

when the coefficients are unbounded, determine the deficiency indices of

such differential operator and the location of the absolutely continuous

spectrum of the self-adjoint extension operator together with their spec-

tral multiplicity. Results obtained for deficiency indices was in the range

(2, 2) ≤ defT ≤ (4, 4) under different growth and decay conditions of co-

efficients. In addition, the absolutely continuous spectrum is either half

or full line of spectral multiplicity 1 or 2 depending on the integrability

of p
− 1

2
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Chapter 1

Introduction

1.1 Background of the study

Let

τy = w−1{yiv − (p1y
′)′ + p0y − i[(q2y′)′′ + (q2y

′′)′ − (q1y)′ − q1y′]} (1.1)

where w = w(x) > 0 for all x ∈ [0,∞), be a fourth order differential

equation defined on a weighted Hilbert space L2
w([0,∞)) and assume that

T is the corresponding differential operator generated by (1.1). Then

for the spectral analysis, we solve τy(x) = zy(x) or Ty(x) = zy(x),

where zεC is the spectral parameter and T is the minimal differential

operator generated by (1.1) on L2
w([0,∞)). The coefficients pk(x), qj(x)

where k = 0, 1, j = 1, 2 will be assumed to be twice differentiable with

p1(x)→∞ as x→∞. Our main interest in this research was to investi-

gate the deficiency indices of T when the coefficients are unbounded and

if its self-adjoint extension operator exists, then the location of absolutely

continuous spectrum of this extension operator. Recall that an operator

1
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T is said to be bounded if there exists a positive real number C such that

for all x ∈ D(T ), ‖ Tx ‖≤ C ‖ x ‖. If this number does not exist then

the operator is unbounded. Example of unbounded operators are some

differential operators defined on the space of polynomials of degree n. In

mathematics, more specifically functional analysis and operator theory,

the concept of unbounded operators provides an abstract framework for

dealing with differential operators and unbounded observables in quan-

tum mechanics.

The domain of an operator is a linear subspace, not necessarily the whole

space. In contrast to bounded operators, unbounded operators defined

on a given space do not form an algebra, not even a linear space, because

each one is defined on its own domain. Here, the space where T is defined,

is a L2
w([0,∞)) Hilbert space.

The theory of unbounded operators developed in the late 1920’s and early

1930’s was part of developing a rigorous mathematical framework for

quantum mechanics. This theory as developed by John Von Neumann

and Marshall Stone [6], is very important in this research. For instance,

in [12], Naimark has used the results of Von Neumann on unbounded

operators which were solved using graphs to extend his research on linear

differential operators. This approach entails substantial simplifications

and its applications to theory of differential equations which yield a uni-

fied approach to diverse problems arising in differential equations and

their corresponding operators.

In the case of unbounded operators, the most important aspects consid-

ered are the domains and extension problems.

For the Hilbert space adjoint operator T ∗ of a linear operator T to exist,
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T must be densely defined in H and D(T ) ⊂ D(T ∗). It is a well known

fact that a self-adjoint linear operator is symmetric, but the converse is

not generally true in the unbounded case.

Generally, properties of an operator depends largely on the domain and

may change under extensions and restrictions. It is shown In [9] that an

unbounded linear operator satisfying the relation,

: < Tx, y >=< x, Ty > cannot be defined on all of H.

Higher order differential operators generated by (1.1) above, as defined

on a Hilbert space, have received much attention, though there still lies

the problem of computing the eigenvalues of these higher order differen-

tial operators when the coefficients are unbounded. Because of this, we

have investigated the deficiency indices of minimal differential operators

and the location of absolutely continuous spectrum of self-adjoint exten-

sion operators of the minimal differential operators generated by (1.1) on

L2
w([0,∞)) using asymptotic integration.
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1.2 Basic Concepts

Definition 1.2.1

A linear operator T : X → Y is said to be bounded if there exists C ≥ 0

such that ‖ Tx ‖≤ C ‖ x ‖ for all x ∈ X.

If the positive real number C does not exist, then the operator T is said

to be unbounded.

Definition 1.2.2

A linear operator T from one topological vector space, X, to another one,

Y , is said to be densely defined if the domain of T is a dense subset of

X. For example, consider the space C([0, 1];R) of real valued continu-

ous functions defined on the unit interval. Let C1([0, 1];R) denote the

subspace consisting of all continuously differentiable functions. Equip

C([0, 1];R) with the supremum norm ‖ . ‖∞; this makes C([0, 1];R) into

a real Banach space. The differential operator D, that is, D(f) = f ′ for

f ∈ C([0, 1],R) is given by:

D(f) = C1([0, 1];R). so D can only be defined on C1([0, 1];R) and hence

D is densely defined.

Definition 1.2.3

Let H be a Hilbert space and T be a densely defined operator from H into

itself. If T ∗ is a Hilbert adjoint of T such that T ⊂ T ∗, then T is called

a symmetric operator, that is to say, for each x and y in the domain of T

we have < Tx, y >=< x, Ty >

If T = T ∗, then T is self-adjoint operator and if T is symmetric with its

second adjoint T ∗∗ essentially self-adjoint, then T = T ∗∗ and T is said to

be essentially self-adjoint.
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Definition 1.2.4

A bounded linear operator T : H → H on a Hilbert space H is said to be

self-adjoint or Hermitian if T ∗ = T .

Definition 1.2.5

Let T ∗ and T be maximal and minimal differential operators respectively,

generated by (1.1). D(T ∗), the domain of T ∗ associated to τ consist of all

functions y for which the quasiderivatives as defined by Walker [15] are

given by:

y[0] = y,

y[1] = y
′
,

y[2] = p2y
′′ − iq2y′,

y[3] = −(y′′)′ + i( q2
p2

)y[2] + (p1 − q22
p2

)y′ − iq1y.

are absolutely continuous and

T ∗y ∈ L2([0,∞), w), τy ∈ L2
w([0,∞)) τy = T ∗y for y ∈ D(T ∗).

Precisely, this domain is given by:

D(T ∗) = {y ∈ L2((0,∞) : w) : y[0],y[1],y[2],and y[3] are absolutely contin-

uous}.

D(T ∗) is thus the maximal possible domain in L2
w([0,∞)) for which the

quasiderivative makes sense. It is shown in [16] that T ∗ is densely defined
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and closed. An operator defined by restricting the domain of the maxi-

mal operator only to those functions y with compact support is known as

pre-minimal operator. It is denoted by T1 and its domain is defined by:

D(T1) = {y ∈ D(T ∗) : y has compact support in (0,∞)}.

T1y = τy = T ∗y for y ∈ D(T1). For unbounded domains, T1 is not nec-

essarily closed but it is densely defined. The closure of the pre-minimal

operator T1, T 1, is the minimal operator generated by (1.1) and is denoted

by T . It is obvious that T ⊂ T ∗. One can show, however, that T = T ∗∗.

These relations imply that T is symmetric.

Since T is a fourth order differential operator, one therefore defines a self-

adjoint extension H of T by:

D(H) = {y ∈ D(T ∗) | (α1, α2)y(0) = 0}, where α1, α2 are 2 by 2 complex-

valued matrices described by:

α1α
∗
2 + α∗1α2 = I

and

α1α
∗
1 − α2α

∗
2 = 0

with rank(α1, α2) = 2.

Deficiency index can be defined as the number of linearly independent

solutions that are square integrable. It is determined completely by the

coefficients pj, qi. The deficiency index, defT, is then defined as the pair:

defT = (dimNT ∗−i, dimNT ∗+i).
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NT ∗−i is the null space of T ∗− iI and NT ∗+i is the null space of T ∗+ iI.

Thus NT ∗−i is the set of all elements such that τy = iy. If one uses nonreal

complex spectral parameter z, then for Imz > 0, one has dimNT ∗−i =

dimNT ∗−z and dimNT ∗+i = dimNT ∗−z. Although the definition of the

deficiency indices depend on z, as a consequence of the closed symmetric

nature of T , the dimension of the null spaces are independent of z provided

that z remains either in the lower or upper half-planes. For Imz > 0, N+

and N− will denote dimNT ∗−z and dimNT ∗−z respectively. N+ and N−

may be finite or infinite. Thus defT = (N−, N+).

For fourth order differential operator, it implies that 2 ≤ N− = N+ ≤ 4.

If N− = N+ then there exists a partial isometry V such that:

V : N(T ∗ − Z)→ N(T ∗ + Z), ImZ > 0,

so that H is uniquely defined. Similarly, from [9] one defines the self-

adjoint extension H of T by:

D(H) = {y ∈ D(T ∗) | (α1, α2)y(0)} , where α1 and α2 are 2× 2 complex

valued matrices described by:

α1α
∗
2 + α∗1α2 = I and

α1α
∗
1 − α2α

∗
2 = 0

with rankα1, α2 = 2

Definition 1.2.6

Let T be an operator defined on a Hilbert space H. Let λ ∈ C, then λ is

in the spectrum of T , σ(T ), if the operator T − λI is not invertible. The

spectrum of T is denoted by σ(T ) and is defined by:
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σ(T ) = {λ ∈ C : T − λI is not invertible}.

In addition, the complement of the spectrum, (C \ σ(T )), is called the

resolvent of the operator T and is denoted by ρ(T ), that is,

ρ(T ) = {λ ∈ C : T − λI is invertible}.

Thus we define

Rλ(T ) = (T − λI)−1,

as the resolvent operator of T . The sets σ(T ) and ρ(T ), are non inter-

secting.

We note that an operator T − λI fails to be invertible if it is neither

one-to-one nor onto.

If the operator is not one-to-one, then it implies that λ is an eigenvalue of

the operator T , and the set of all such λ ∈ C which makes T − λI not to

be one-to-one forms the component of the spectrum known as the point

(discrete) spectrum denoted by σp(T ). If T − λI is not invertible (does

not have a bounded inverse) because T − λI is not onto then λ in this

case is in the spectrum known as the continuous spectrum. The set of all

such λ is denoted by σc(T ).

Definition 1.2.7

Asymptotic Integration.

It is a method to transform a system like (1.1) into the form uB = (Λ+R)u

where Λ is a diagonal matrix and where R is integrable. If Λ satisfies

the so-called dichotomy condition, the solutions approximates like the
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solutions of an unperturbed system. The asymptotic integration of (1.1)

basically relies on Levinson’s theorem. Levinson’s theorem states that

the solution of a system,

u′(x) = {Λ(x) +R(x)}u(x), Λ(x) = diag(Λi(x))

look like the solutions of the unperturbed system u′ = Λu, if R(x) is

sufficiently small and Λ(x) = diag(Λi(x)) satisfies a dichotomy condition.

In Levinson’s original result, small means absolutely integrable. Levinson

terms are those expressions which after all transformations turn out to

be integrable in the usual sense. They do not contribute essentially to

the asymptotics of the eigenfunctions. Thus they are collected separately.

The notion Levinson term thus depends on the transformation as well as

on the diagonal elements. This can be seen clearly in the various exten-

sions of Levinsons theorem. Generically these terms will be denoted by

R.

In our case the following z-uniform version of Levinson’s results [13] suf-

fices:

Theorem 1.2.8

Let Λ(x, z) =diag(λ1(x, z), ..., λ2n(x, z)) and R(x, z) be 2n× 2n matrices

which for all x, are analytic functions of z ∈ Ω ⊂ C. For any unequal pair

of indices i and j, i, j ∈ [1, ..., 2n], assume that Λ=diag(λ1(x, z), ..., λ2n(x, z))

satisfies the dichotomy condition uniformly in z, that is, for every unequal

pair; i, j = 1, 2, ..., 2n and a ≤ t ≤ x <∞.

Re{λi(x, z)−λj(x, z)} has constant sign modulo L1([a,∞)) for all z ∈ Ω.

Moreover, assume that ‖R(x, z)‖ ≤ p(x) with p ∈ L1([a,∞)).
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Then

Y ′(x, z) = [Λ(x, z) +R(x, z)]Y (x, z) (1.2)

has solutions yk(x, z), 1 ≤ k ≤ 2n, with the asymptotic form

Yk(x, z) = (ek + rk(x, z)). exp(

∫ x

a

λk(t, z)dt) (1.3)

where ek denotes a unit vector with unity in kth position and rk(x, z)

depends analytically on z ∈ Ω and tends to 0 as x→∞.

The proof of the theorem can be obtained in [3].

Definition 1.2.9

M-matrix.

Hinton and Shaw in [9] have developed the theory of M-matrix of Hamil-

tonian systems that one can use to compute the spectra of H. Through

a standard inversion theorem in [15], the spectral measure can be recon-

structed from the M-matrix. Similarly, the M-matrix can be obtained

from eigenfunctions of H. So the M-matrix is the ideal tool that connects

spectral properties of H with those of its eigenfunctions.

The M-matrix generalises the m-function of Weyl Titchmarsh and thus

relates the asymptotics of the eigenfunctions of higher order differential

operators to the spectrum of their self-adjoint realizations.

One therefore uses the results of [15] to construct the M-matrix of the

self-adjoint operator H.

Let Yα(., z) = (Uα(., z), Vα(., z)) be the fundamental matrix of (3.1) with

initial values
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Yα(a, z) =

 α∗1 −α∗2
α∗2 α∗1

, α1, α2 are as defined above.

Uα, Vα are 2n by n complex-valued matrices whose every column solves

τu = zu. Then V (., z) satisfy the boundary conditions at a. Therefore,

the columns of Yα(., z) span the 2n-dimensional vector space solutions of

(1.1).

In the limit point case, self-adjoint extensions are realised by fixing bound-

ary conditions at a. Now fix the boundary conditions to the right through

α = (α1, α2) and using the techniques of Hinton and Shaw [9],for Imz 6= 0,

the M-matrix Mα(z) ∈ Cn×n is defined by:

χα(x, z) = Yα(x, z)

 In

Mα(z)

 ∈ L2
A[a,∞).

Mα(z) is analytic for Imz 6= 0 and ImMα(z) is positive definite in the

upper half plane.The columns of χα(x, z) form a basis for the square

integrable solutions of (1.1). Mα(z) is thus a Herglotz function and all

the properties of the classical m-function for a second order equation are

satisfied for this more general M-matrix [9].

Here, H is defined by extra boundary conditions at infinity i.e

D(H) = {y ∈ D(T ∗) | limx→∞ yk(x)Jy∗k(x) = y(0)Jy∗(0) = 0}; k = 1, 2.

It remains therefore to check on the rank of the M -matrix as well as to

establish that the M -matrix is bounded. For this we use the formular [15]

ImM(z) = lim∈→0 ∈< yk(x, z), yk(x, z) > where z = µ+ iε.

Here, we use one of the eigenfunctions that remain square integrable as

z → 0+.
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Definition 1.2.10

Inner Product Space.

Let E be a complex vector space. A mapping < ., . >: E × E −→ C

is called an inner product in E if for any x, y, z ∈ E and α, β ∈ C the

following conditions are satisfied:

• < x, y >= < y, x >;

• < αx+ βy, z >= α < x, z > +β < y, z >;

• < x, x >≥ 0;

• < x, x >= 0 implies x = 0

A vector space with an inner product is called an inner product space.

1.3 Statement of the problem

Higher order differential operators as defined on Hilbert spaces have re-

ceived much attention though there still lies the problem of computing the

eigenvalues of these operators when the coefficients are unbounded and

hence because of this, the difficulties in estimating the deficiency indices

of such operators. We have computed the deficiency indices of fourth

order minimal differential operators and given the location of absolutely

continuous spectrum of self-adjoint extension operators of the minimal

differential operators generated by (1.1) on the Hilbert space L2([0,∞))

using asymptotic integration.
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1.4 Objective of the study

The objectives of this research were:

• To compute eigenvalues of fourth order differential operator gener-

ated by (1.1) when the coefficients are unbounded.

• To determine the deficiency indices of the minimal differential oper-

ator generated by (1.1) when the coefficients are unbounded under

different asymptotic conditions.

• To locate the absolutely continuous spectrum of self-adjoint exten-

sion operator of the minimal differential operator generated by (1.1)

and its spectral multiplicity.

1.5 Significance of the study

The realization of the above objectives enable mathematicians and other

scholars to approximate eigenvalues of fourth order differential operators

with unbounded coefficients. The results also enriches the existing lit-

erature on the deficiency indices of the minimal differential operators as

well as the location of the absolutely continuous spectrum of self-adjoint

extension operator and its spectral multiplicity.
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1.6 Research methodology

To achieve the objectives above, we have basically applied asymptotic

integration as outlined in Levinson’s theorem. We first did the conversion

of (1.1) into a first order system. Then we computed the eigenvalues and

thereafter established the dichotomy conditions. This has been followed

by determination of the deficiency indices. By application of M-matrix,

we have computed spectral multiplicity. We have defined the self-adjoint

extension operator of the minimal differential operator and hence located

its spectrum together with other subsets of the spectrum like discrete and

continuous spectrum.



Chapter 2

Literature review

In 1920, the theory of unbounded operators was found by attempts to put

quantum mechanics on a rigorous mathematical foundation. The system-

atic development of the theory in [6,8] are results of J. Von Neumann

(1929-1930, 1936) [6] and M.H. Stone (1932) [8]. When this theory was

applied in differential equations a unified approach to diverse questions

and their substantial simplification was yielded.

Much has been done regarding the analysis of higher order differential

operators but the case of the unbounded coefficient has been of great

challenge. In the late seventies and early eighties the deficiency index

and partly the essential spectrum has been partially looked into [1]. The

results were generated by the help of asymptotics of the eigenfunctions

to the spectral properties of the underlying Hamiltonian systems.

Construction of concrete Hamiltonian with singular continuous spectrum

by D. Pearson [14] came as a surprise since it exposed the spectral prop-

erties of the differential operators.

From the outcome of the asymptotic integration by Behncke and Nyamwala

[5], it has been found that a differential operator of order 2n has absolutely

15
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continuous spectrum of spectral multiplicity k if there are 2k bounded and

n − k exponentially increasing and n − k exponentially decreasing solu-

tions.

This study entailed determination of the eigenvalues generated by (1.1) as

well as their deficiency indices and spectral properties using asymptotic

integration. The approach demanded some regularity and decay condi-

tions. The regularity conditions guarantee unique solutions to the initial

value problem for these operators, while the decay conditions are neces-

sary for asymptotic integration.

We are interested in the spectral properties of the self-adjoint exten-

sion operators of minimal differential operators generated by (1.1) on the

Hilbert space L2
w([0,∞)) on the Hilbert space. In particular, we always

assume that w(x) > 0 almost everywhere in [0,∞). If all the coeffi-

cient functions w(x), pi(x), qj(x), i = 0, 1, j = 1, 2are constant, one can

of course give a complete analysis of τ . For example, by taking Fourier

transforms, one sees that basically τ is unitarily equivalent to a multipli-

cation operator. As a consequence, the operator always has absolutely

continuous spectrum, but there may also be some eigenvalues [9]. It

is well-known that sparse or oscillatory potentials may lead to singular

continuous spectra and all sorts of spectral anomalies with SturmLiou-

ville operators. These phenomena will most likely occur for higher order

operators, too. The analysis of such properties, however, requires par-

ticular techniques like subordinacy or transfer matrices. These methods

are generally not available in the higher order situation. The basic tech-

nique we will use here is asymptotic integration, which then leads to

estimates of the M-matrix [12] and [13]. For this, however, regularity
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conditions on the coefficients which combine smoothness and decay are

necessary. Such properties have been used previously by Weidmann [17]

and Behncke [1] for Sturm Liouville operators. Asymptotic integration

theory may be considered as a generalization of the well-known WKB-

method of Schrodinger operators. In this case the asymptotics of the

eigenfunctions are typically determined by an exponential factor. This

in turn excludes singular continuous spectrum, which is generally con-

nected with nonexponential decay. It also restricts the accumulation of

eigenvalues. The spectral analysis of higher order operators is not only

complicated by the multitude of cases, but spectral multiplicity has to be

considered too. In this work we will restrict ourselves to the most typical

cases which exhibit different phenomena. Upon applying the asymptotic

integration, the study identifies the absolutely continuous spectrum of the

differential operator with that of its limiting operator. Thus all results

may also be considered as perturbation results and statements about the

stability of the absolutely continuous spectrum. In this study we have

noted that the coefficients pi and qj, where i, j = 0, 1, 2 will satisfy some

regularity conditions. Beyond this we will only consider the cases in which

there is a well defined asymptotic relation between the coefficients.



Chapter 3

ASYMPTOTIC

INTEGRATION

3.1 Hamiltonian system

Weyl Titchmarsh theory for Hamiltonian systems as developed by Hinton

and Shaw [9] in a series of their work was devoted to the spectral the-

ory of Hamiltonian systems. It is important in spectral analysis to write

a higher order equation as a Hamiltonian system or first order system.

Hamiltonian systems are first order systems with a particular structure

that allows an extension of the Weyl M-function calculus. The M-function

is originally defined only off the spectrum and the spectral proportions

depends on the limiting behavior of M(z) as z tends to the spectrum.

The differential operators generated by expression τ in (1.1) may give rise

to self-adjoint extension operators on L2
w([0,∞)). This is a classical ap-

plication of von Neumann’s theory of self adjoint extensions of symmetric

operators. One first introduces the maximal operator T ∗ associated with

τ as given in Definition 1.5.

18
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In order to convert (1.1) into first order system, we introduce quasideriva-

tives as defined in [5,16]. Thus the appropriate quasiderivatives for (1.1)

are:

y[0] = y,

y[1] = y′,

y[2] = y′′ − iq2y′ and

y[3] = −(y′′)′ + p1y
′ + i(q2y

′)′ − iq1y.

Now let

Y =
[
y[0], y[1], y[2], y[3]

]t
,

where t denotes the usual matrix transpose, then the first order system

becomes:

Y ′ = CY

with C =

 A B

C −A∗

 . Where A =

 0 1

0 iq2

, B =

 0 0

0 1

,

C =

 p0 − z iq1

−iq1 p1 − q22

, and Hamiltonian system of (1.1) becomes

JY ′(x) = (zA(x) + B(x))Y. (3.1)
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where A = (w, 0, 0, 0) and B =

 C A∗

A B

 with C, A and B as de-

fined above. Here, J,A,B ∈ C4×4, A(x), B(x) are locally integrable and

self-adjoint for almost every x, J is a symplectic matrix of the form: 0 −I2

I2 0

 and A has block form A =

 A1 0

0 0

, with A1 ∈ C2×2

positive definite almost everywhere. (3.1) can be transformed into another

first order system by applying the permutation matrix

 I2 0

0 L

 to the

solution vector Y , where L ∈ C2×2 has the matrix elements Lij = δj,n+1−i,

where i, j = 1, 2, ..., 4.

For this to make sense, the system in (3.1) will have to satisfy the follow-

ing regularity conditions:

1. If y satisfies Jy′−By = z0Ay for some y and some z0 with ‖ y ‖A= 0,

then y = 0 and if Jy′−By = Af with the ‖ y ‖A= 0, then ‖ f ‖A= 0.

In this case, this condition holds automatically for all z ∈ C, see

[5,8].

2. In order to express the higher order quasiderivetives by the lower

ones, we demand that our system should satisfy the following regu-

larity condition as well. The equation:

 0s 0

0 I4−s

 (Jy′ −By) = 0

can be solved uniquely for ys+1, ..., y4 in the terms of y1, ...ys and

formal derivatives of these first s components. For more details on



CHAPTER 3. ASYMPTOTIC INTEGRATION 21

this condition, see Hinton and Shaw [9].

The action of the differential operator to be defined is described by the

formal differential operator τ and by the first regularity condition above

we have:

τy =

 A−11 (x) 0

0 0

 (Jy′ −By) = A−1(JY ′ −BY )

where, A1 ∈ C2×2 and A =

 A1 0

0 0

 with A1 =diag((w(x), 0)), but

w(x) = 1.

Therefore, one obtains the following which is another version of (3.1) but

in a simplified way:

Y ′(x, z) = C(x, z)Y (x, z), (3.2)

where
y′0

y′1

y′3

y′2

 =


0 1 0 0

0 iq2 0 1

p0 − z iq1 0 0

−iq1 p1 − q22 −1 iq2




y0

y1

y3

y2


and C =

 A B

C −A∗

 We thus employ asymptotic integration to obtain

solutions of (3.2) which will be the same as the solutions of (1.1).
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3.2 Asymptotic Integration

The standard results on asymptotic integration of systems of linear dif-

ferential equations give sufficient conditions which imply that a system is

strongly asymptotically equivalent to its principal diagonal part. These

involves certain dichotomy conditions on the diagonal part as well as

growth conditions on the off-diagonal perturbation terms. The main pur-

pose of asymptotic integration is to determine the asymptotic of eigen-

functions of differential operators. The basic problem posed by the dif-

ferential equation (1.1) is that it’s vector solutions cannot normally be

written explicitly as expressions involving the entries of the given square

matrix C(x) . Actually this difficulty created the challenge and interest

in developing a wide range of techniques for the investigation of the prop-

erties of the solutions. The most important result which has come handy

in providing solutions to this problem is the Levinson’s theorem [11]. In

spectral theory, the matrix elements of C(x, z) will generally depend also

on the spectral parameter z. This therefore implies that for this work we

need the spectral version of Levinson’s theorem. The version required here

is already given in Theorem 1.8. Therefore, in solving (3.2) we will follow

the steps of asymptotic integration as required by Levinson’s theorem.

These are: approximation of the eigenvalues of C(x, z), establishment of

uniform dichotomy condition, two diagonalisations since the coefficients

are twice differentiable so that (3.2) is reduced to Levinson’s form .



CHAPTER 3. ASYMPTOTIC INTEGRATION 23

3.3 Eigenvalues of C(x)

We will make the following assumptions for the rest of our work unless

otherwise stated. For the growth conditions, we assume

p1(x)→∞x→∞, p0, q1, q2 = o(p1) (3.3)

and similarly for the decay condition we need that:

f ′

p1
∈ L2,

f ′′

p1
, (
f ′

p1
)2 ∈ L1, (3.4)

where f = qj, pk, j = 1, 2 k = 0, 1.

Therefore, computing the eigenvalues using the characteristic polynomial

of C(x, z) through det(C − λ.I4) which we equate to P(x, λ, z) leads to:

P(λ, z, x) = λ4 − 2iq2λ
2 − p1λ2 + 2iq1λ+ p0 − z = 0. (3.5)

This requires the computation of the zeros of the polynomial PF (ν, z, x)

which are the eigenvalues of C(x, z).

In order to eliminate imaginary coefficients in PF (ν, z, x), it is advanta-

geous to replace the eigenvalue parameter λ by −iν.

Therefore, we have a Fourier polynomial Q(ν, z) of the form:

Q(ν, z) = ν4 + 2q2ν
3 + p1ν

2 + 2q1ν + (p0 − wz) = 0. (3.6)

The closed form formula for solving the zeros of quartic polynomials exists

and is via cubic roots. With coefficients that are functions, some of them

unbounded, the asymptotics of the roots can as well be captured if an
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approximation can be arrived at. Thus we apply the approach developed

by Eastham [6] and also used by Nyamwala [13] in order to approximate

ν-values.

The following Lemma whose proof is similar to that of Theorem 2.2.4

[13] will simplify the approximations.

Lemma 3.3.1

Supposed that (3.6) is expressed in the form:

ν20 + f1ν0 + f0 + R0(νoi, z) = 0, where fi = pk or qj, i = 0, 1, k = 0, 1,

j = 1, 2 with R0(νoi, z)→ 0 as x→∞, then there exists a unique interval

and a root νi(x, z) such that:

| νi(x, z)− νoi(x, z) |≤ c(x, z),

where c(x, z) = o(1). Moreover, if νoi(x, z) is real then νi(x, z) is real and

a similar argument applies for the imaginary or complex νoi roots.

The proof of the Lemma above can be found in [13, Theorem 2.2.4].

We, therefore, obtain the following result which will eventually assist in

approximating the roots of (3.6) .

Theorem 3.3.2

Consider (3.2), the roots of the polynomial (3.6) can be approximated

from:
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(i) ν2 + 2q2ν + p1 +R1(ν, z) = 0

(ii) p1ν
2 + 2q1ν + (p0 − z) +R2(ν, z) = 0

where R1(ν, z), R2(ν, z) → 0 as x → ∞. Here R1 = ν−2[2q1ν + p0 − z]

and R2(ν, z) = [ν4 + 2q2ν
3].

Here the magnitude of ν−roots of (i) is approximately | p1 |
1
2 and that of

(ii) is | p0−z
p1
| 12 .

Proof. It suffices to show that R1(ν, z), R2(ν, z)→ 0 as x→∞.

Using | ν |≈ | p1 |
1
2 in (i) then we have:

| R1(ν) |=| 2q1
ν

+ p0−z
ν2
|

≤ 2 |q1||ν| + p0−z
ν2

= 2 |q1|
|p1|

1
2

+ |p0−z|
|p1|

= o(1).

Similarly, we use | ν |≈ |p0|
|p1|

1
2 in (ii) with z absorbed into p0 to get:

| R2(ν) |=| ν4 + 2q2ν
3 |

≤| p0−z
p1
|2 +2 | q2 | |p0−z|

3
2

|p1|
3
2

= o(1).

Since | p1(x) |→ ∞ as x→∞ and hence each term goes to zero.

� Applying similar arguments to those in [13], we may take z in some

appropriate interval such that the roots of (3.6) are distinct. Let ε > 0

be given and pick z ∈ K = {z ∈ C | z − z0 |≤ η < ε} where z = z0 + iη.

In such a case the ν roots and the λ roots of (3.6) and (3.5) respectively

are distinct. Thus the λ-roots together with their correction terms are of
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the form λ ≈ λ0 + δp(λ,z)
δλ

where λ0 is the approximate root and assume

that q2 = q1 = 0 and δp(λ,z)
δλ

is the correction term. These are therefore of

the form:

ν1 ≈ (−p1)
1
2 + δp(λ1)

δλ

ν2 ≈ −(−p1)
1
2 + δp(λ2)

δλ

ν3 ≈ (−p0
p1

)
1
2 + δp(λ3)

δλ

ν4 ≈ −(−p0
p1

)
1
2 + δp(λ4)

δλ

3.4 Dichotomy condition

The major difficulties in determining the asymptotic of the eigenfunctions

and the spectral analysis of differential operators lie with the roots of the

characteristics polynomial. The behavior of these polynomials near these

roots, which is a necessary ingredient for the dichotomy conditions is now

the key barrier to understanding the asymptotics of the eigenfunctions of

these differential operators.

The uniform dichotomy condition in Levinson’s Theorem guarantees

a z-uniform control of the unperturbed equation u′ = Λu which in some

sense is also uniform in Rez, 0 ≤ Rez = η ≤ ε . Since the roots of

P(x, λ, z) are calculated from characteristic polynomial, the uniform di-

chotomy condition needed is equivalent to sign Re (λj (x, z)− λi (x, z))

being constant modulo L1 for all unequal pair of indices i and j . In spec-

tral theory, a z -uniform dichotomy condition is needed in general but

this will only be relevant for the first cluster if p0 ≈ w . In this study,

slightly stronger conditions will suffice. But if one considers the Fourier
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polynomial (3.6), then the dichotomy condition for the ν−roots becomes

Im(νj(x, z)− νi(x, z)) being constant modulo L1 for all unequal indices i

and j. Thus in that case we choose z ∈ K such that 0 ≤ Imz = η ≤ ε.

The following theorem whose results are in [2] greatly reduces the proof

of dichotomy condition.

Theorem 3.4.1

Consider the system u′ = (Λ+R)u and assume λi(x) = λi0+λi1(x)+λi2(x

with λi1 = ◦(1) and λi2(x) conditionally integrable, i = 1, ..., 2n. Sort the

eigenvalues into classes C1, ..., Ck so that

(i) λi ∈ Cl then Reλi0 = αl,where αl is a constant.

(ii)λi ∈ Cl,λj ∈ Cm,l 6= m then | Re (λi0 − λj0) |≥ δ > 0, l,m = 1, ..., k.

Now let ml± = maxλi∈Cl(Reλi1(x))±, where f(±) denotes the positive

(negative) part of f ,f = f+ − f−

Let | Cl | denote the number of elements in Cl. Then the system has | Cl |

independent solutions u associated to Cl satisfying

K1exp(αlx−
∫ x
a
ml−(t)dt ≤‖ u(x) ‖

≤ K2exp(αlx+
∫ x
a
ml + (t)dt, where K1 and K2 are constants.

Since λi2(x) is conditionally integrable, a simple transformation of the

form exp
(∫ x

0
Λi2(t)dt

)
eliminates these terms while preserving the L1 na-

ture of the off-diagonal terms. The rest of the proof follows directly from

that of [2,Theorem 2.1].

The result above implies that the non-real ν-roots leads to square inte-

grable solutions, which decay exponentially and a corresponding set of

exponentially increasing solutions. This holds regardless of dichotomy

conditions. But in all cases, it suffices to check the dichotomy condition
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only for the real ν−roots (imaginary λ−roots). For simplicity, we will do

this for ν-roots.

Theorem 3.4.2

. Let ν1,ν2,ν3 and ν4 be the roots of Fourier polynomial (3.6), then for

z ∈ K, the roots νi i = 1, 2, 3, 4 roots are distinct and satisfy z-uniform

dichotomy condition.

Proof. . Suppose that p1 > 0, p0
p1

> 0, then ν1± and ν2±-roots are

in the complex conjugate pair and by Theorem 2.3, there will be two

eigensolutions which are square integrable and another two that are not

square integrable irrespective of the z-uniform dichotomy condition. One

thus needs no z-uniform dichotomy condition.

Suppose that p1 < 0, then the dichotomy condition is required for ν1±

roots. This is done off-real axis and depends on the correction term

δp(ν1)
δν
≈ 4ν31 + p0−z

ν21±
.

It is only the term p0−z
ν21±

that counts. Here take z = z0 + iη for some η > 0.

Then the correction term is given by

δp(ν1±)
δν
≈ − (p0−z0)+iη

p1
.

p1 < 0 implies that the correction term to ν1+ is negative and hence will

lead to a solution that is not z-uniformly square integrable while ν1− will

lead to a z-uniformly square integrable solution.

For p0
p1
< 0, then the z-parameter has an influence and therefore we have

for Imz 6= 0, ν2± ≈ ( (p0−z0)−iη
p1

)
1
2 and this leads to ν2± which are complex

conjugate pairs.



CHAPTER 3. ASYMPTOTIC INTEGRATION 29

If p1 < 0, and p0
p1
< 0, then for z-uniformly dichotomy condition between

ν1± and ν2±, then note that

| δp(ν2±)
δν
|�| δp(ν1±)

δν
|

and this will solve the dichotomy condition as the z- influence in the two

cases are of different sizes. Finally, if p0 ≈ w ≈ 1, then the dichotomy

condition follows from results of Nyamwala [13]. �

3.5 Diagonalisation

After settling the dichotomy condition, we need to transform (3.2) into

Levinson’s form through two diagonalisations since we had assumed that

the coefficients are twice differentiable. Thus, the transforming matrix is

computed using the eigenvectors of C. The transforming matrix

T (x, z) = (C − λI)νi = 0

is computed from the relation: Cνi − λνi = 0,

where νi = (x1, x2, x3, x4)
t and this leads to the equation:


0− λi 1 0 0

0 iq2 − λi 0 1

p0 − z iq1 0− λi 0

−iq1 p1 − q22 −1 iq2 − λi




x1

x2

x3

x4

 =


0

0

0

0


Therefore,
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ν1 =


1

−p
1
2
1

iq1

−p1

.

In a similar way, ν2, ν3, and ν4 can be obtained.

So

ν2 =


1

p
1
2
1

iq1

−p1



ν3 =


1

(p0
p1

)
1
2

p
1
2
0 p

1
2
1

−iq2(p0p1 )
1
2



ν4 =


1

−(p0
p1

)
1
2

−p
1
2
0 p

1
2
1

iq2(
p0
p1

)
1
2


From these eigenvectors, T (x, z), we obtain:

T (x, z) =


1 1 1 1

p
1
2
1 −p

1
2
1 (p0

p1
)
1
2 −(p0

p1
)
1
2

iq1 iq1 p
1
2
0 p

1
2
1 −p

1
2
0 p

1
2
1

−p1 −p1 −iq2(p0p1 )
1
2 iq2(

p0
p1

)
1
2
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Here T (x, z) is unbounded and its determinant is approximately ©(−4p0
1
2p1

2).

Therefore,

T−1(x, z) = 1
detT (x,z)


iq2p0p

3
2
1 2p

1
2
0 p

3
2
1 iq2p

1
2
0 p0 −2p

1
2
0 p1

−iq2p0p
3
2
1 2p

1
2
0 p

3
2
1 −iq2p

1
2
0 p0 2p

1
2
0 p1

−2p
1
2
0 p1 0 −2p

3
2
1 2p

1
2
0 p1

2p
1
2
0 p

2
1 0 −2p

3
2
1 −2p

1
2
0 p1


Hence T−1(x, z) is bounded.

Now we compute T−1(x, z) C(x, z) T (x, z) to get:

1

detT (x, z)


−4p

1
2
0 p

5
2
1 + iq2p

3
2p1

−4p
1
2
0 p

5
2 − iq2p

3
2
0 p1 ©(| p1 |− 1

2
)

©(| p1 |− 1
2
) −4p0p

3
2
1

©(| p1 |− 1
2
) −4p0p

3
2
1


(3.7)

Thus the correction terms for the first and second eigenvalues are approx-

imately of the form:

1

4p
1
2
0 p

2
1

.iq2p
3
2
0 p1 ≈ ©(p

1
2
0 p
− 1

2
1 )

Even if we write T−1(x, z) C(x, z) T (x, z) in the form [Λ + R] where

Λ = diag(T−1(x, z)C(x, z)T (x, z)) and R is formed with the off diagonal

entries of the same matrix, that is, Rii = 0, i = 1, 2, 3, 4, the form is still

not in the Levinson’s form and hence we need another diagonalisation.

In this case we apply techniques in [13] in order to obtain the second

diagonalisation.

While the general method to diagonalise Λ + S has been described in [2],

a simplified transformation will be used here, that is,
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ν = (I +B)ν1

with Bij = (λj − λi)−1Sij where i 6= j. For this, one needs

(λj − λi)−1Sij =©(1)

so that one can form (I +B)−1. The transformed system is then

ν ′1 = (Λ + S1 + (1 +B)−1R(1 +B))ν1

with S1 = −(I +B)−1(B′ − SB).



Chapter 4

DEFICIENCY INDICES

AND SPECTRA

4.1 Deficiency Index

The deficiency index problem for self-adjoint differential operators, at

least in the form that we now identify it, goes back to Hermann Weyl

[15] around 1910, in one way or another the present investigation of self-

adjoint boundary value problems goes back a good deal longer. The work

of Weyl as well as subsequent work indicates that there may be a close

connection between the index problem and the problem of describing the

spectrum at least qualitatively, of the self-adjoint extensions of the mini-

mal operators. The knowledge of the deficiency index gives quantitative

information about the spectra of self-adjoint extensions and conversely.

In this chapter, we have explicitly computed the deficiency index of min-

imal operator generated by (1.1) and located the absolutely continuous

spectrum of H, its self-adjoint extension.

33
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Theorem 4.1.1

. Let T be a formally symmetric differential operator of order 2n de-

fined on the interval [a,∞) for which a is a regular boundary endpoint.

Suppose that defT = (n + r, n + r) such that 0 ≤ r ≤ n then T has

self-adjoint extension operator H whose domain is defined by separated

boundary conditions as follows:

D(H) = {y ∈ D(T ∗) | (α1, α2)y(a) = 0,

limx→∞w
∗
k(x)Jy(x) = 0, k = 1, ..., r}.

The functions w1, ..., wr are linearly independent modulo D(T ) at in-

finity and may be chosen as eigenfunctions of T ∗wj = zwj, z ∈ C \ R.

for j, k = 1, ..., r}.

We therefore obtain the following results:

Theorem 4.1.2

. Suppose that L is the minimal differential operator generated by (1.1)

on L2([0,∞)) and assume that (2.3) and (2.4) are satisfied.

(i.) If p1 > 0, p0 > 0, then defL = (4, 4) if p
− 1

2
1 is integrable and the

spectrum is discrete and if p
− 1

2
1 is not integrable, then defL = (2, 2) with

σac(H) = [0,∞) of spectral multiplicity 2.

(ii.) If p1 < 0, p0 > 0, then defL = (3, 3) if p
− 1

2
1 is integrable and σ(H) is

discrete but if p
− 1

2
1 is not integrable, then defL = (2, 2) with σac(H) = R

of spectral multiplicity 1.

(iii.) if p1 > 0, p0 < 0, then defL = (3, 3) if p
− 1

2
1 is integrable and σ(H)

is discrete and defL = (2, 2), σac(H) ⊆ [c,∞) of spectral multiplicity 1 if

p
− 1

2
1 is not integrable with lim sup p0 = c.
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(iv.) If p1 < 0, p0 < 0, then defL = (2, 2) and σ(H) is discrete.

Proof. . Suppose L is the minimal differential operator generated by

(1.1) on L2([0,∞)) and assume that (3.3) and (3.4) are satisfied, then

using quasiderivatives, (1.1) can be converted into its first order system

(3.1) where C(x, z) is a four by four matrix as explained in section 3.1.

Since the coefficients are assumed to be twice differentiable, by appli-

cation of Levinson’s theorem, we need two diagonalisations in order to

convert (3.2) into its Levinson form as given in the Levinson’s theorem.

This requires the eigenvalues and the corresponding eigenvectors of the

matrix C(x, z). Using det(C − λ.I4) = 0, we would be able to determine

the eigenvalues of this matrix. Since p1(x) is allowed to be unbounded, it

implies that Eastham’s approximation approach [6] as outlined in section

3.3 can be used to approximate values of λ.

These are approximately given by:

λ1 ≈ (p1)
1
2 , λ2 ≈ (−p1)

1
2 , λ3 ≈ (−p0

p1
)
1
2 and λ4 ≈ (−p0

p1
)
1
2 .

The z-uniform dichotomy condition now follows from Theorem 2.4.2 There-

fore, using the eigenvectors of the form v1,v2,v3 and v4, the system can be

diagonalised though the resultant system will not be in Levinson’s forms.

Because (3.4) is satisfied, a second diagonalisation is necessary. For this,

we write the system after the first diagonalisation in the form.

V ′ = [Λ +R]V

where Λi = diag(λi+correction terms).

Here, correction terms are those perturbing terms that are added to the

diagonal as a result of the first diagonalisation. In our case, these are

given by ©(p
1
2
0 p
− 1

2
1 ) for λ1 and λ2 and ©(p

− 3
2

1 ) for λ3 and λ4.
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The matrix R has its main diagonal all zero’s and off diagonal terms are

©( f
p1

) where f = p0, q1, q2. Now using the Behncke’s approach [2], then

the second diagonalisation is done using the matrix [I + B] where the

matrix B determined by:

Bij = (λi − λj)−1 i 6= j and

Bii = 0

After the second diagonalisation, the system is in Levinson’s form and

therefore Levinson’s theorem can be applied to obtain the closed form

solution of (1.1) respectively (3.2). The solutions will be of the form:

yk(x, z) = ck(ei + o(1)) exp(
∫ x
a
λk(t, z)dt)

where ck is the normalised eigenvector and λk is the corresponding eigen-

value.

The deficiency index, therefore, by Naimark’s results [12] is determined

by the number of eigenfunctions that are z-uniformly square integrable,

that is, bounded as x→∞.

This is determined by those eigenvalues with negative real part and for

those eigenvalues that are pure imaginary, this is done off the imaginary

axis if they have to be z-uniformly square integrable.

(i.) Suppose p1 > 0, p0 > 0, then all the eigenvalues are pure imaginary

and the square integrability is determined by the correction term p
− 1

2
1 . If

this term is integrable, then all the eigenfunctions are z-uniformly square

integrable and defL = (4, 4). The minimal operator L has self-adjoint

extension whose domain using Hinton and Shaw [9] results is defined by

boundary conditions at left hand right hand points (limit circle case)

D(H) = {y ∈ D(T ∗)y(a)Jy∗(a) 6= 0}
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The spectrum of H consists of only eigenvalues and therefore is discrete

spectrum. If p
− 1

2
1 is not integrable, then off the imaginary axis, two eigen-

functions will lose their square integrability as x→∞, these are the eigen-

functions associated to λ1 and λ3 and hence defL = (2, 2). These eigen-

functions that lose their square integrability as Rez → 0+ contributes to

the absolutely continuous spectrum but since one has the freedom to pick

z in the whole of R, σac(H) = R.

Here, H is defined by extra boundary conditions at infinity i.e

D(H) = {y ∈ D(T ∗) | limx→∞ yk(x)Jy∗k(x) = y(0)Jy∗(0) = 0}; k = 1, 2.

It remains therefore to check on the rank of the M -matrix as well as to

establish that the M -matrix is bounded. For this we use the formular

ImM(z) = lim∈→0 ∈< yk(x, z), yk(x, z) >

Here we use one of the eigenfunctions that remain square integrable as

Rez → 0+.

The correction term to λ1 is given by:

w
∂λ
p(λ, z, x) ≈ w

4|p1|
3
2

For y1(x, z) we have:

ImM(z) = limε→0+ ε < y1(x, z), y1(x, z) >= limε→0+ ε
∫∞
0
w(x) | C1 |2|

e1 + ◦(1) |2 . exp(−2
∫ x
0
| w(x) |2 . 1

16
| p1 |−3 dt)

= limε→0+ εC2(
∫∞
0
w(x) | e1 + ◦(1) |2). exp(−2

∫∞
0
| w(x) |2| p1 |−3 dt)dx

≤ limε→0+ εC2

∫∞
0
C.wx | e1 + ◦(1) |2 dx = C3
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Where | C1 |2 and since exp .(−2
∫∞
0
| w(x) |2| p1 |−3 dt) is a bounded

function, we may even assume it is a constant c. Thus ImM(z) is

bounded.

But since two eigenfunctions lose their square integrability, it follows that

rank M(z) = 2 and hence the spectral multiplicity of σac(H) is two.

The proofs of (ii)-(iv) are similar and they follow at once only that in (iii),

since only the eigenfunction associated to λ3 contributes to absolutely

continuous spectrum, one notes that p0 is bounded and is associated to

z, thus the value of p0 affects the location of the absolutely continuous

spectrum. Thus, σac(H) ⊆ [c,∞) where c = lim sup p0(x). The spectral

multiplicity in this case is 1.

�. Remark 4.3

In Theorem 3.1.2 above, part (iv) is the classical case of limit point case

and hence it follows that the spectrum is discrete [9].

Example 4.4.

The following example validates the results of Theorem 3.1.2 and for

simplicity,we will assume power coefficients with the middle term tending

to infinity as the variable x→∞.

Consider a fourth order differential operator generated by:

τy = yiv + axβy′′ + bxαy = zy

where β > 0 and α < 0, a, b 6= 0, a, b ∈ R.

Solution

The associated polynomial is of the form:
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λ4 + axβλ2 + bxα − z = 0

This is a biquadratic and can be solved explicitly. Suppose that λ2 = µ

and if we absorb z into bxα then:

µ± =
−axβ±

√
a2x2β−4bxα
2

= −axβ
2
± (a

2x2β

4
− bxα)

1
2 .

As x → ∞, x2β → ∞, but xα → 0, thus using binomial expansion, we

can approximate the µ± roots as follows:

µ± ≈ −axβ
2
± axβ

2
{1− 4bxα−2β

a2
} 1

2

≈ −axβ
2
± axβ

2
{1− 2bxα−2β

a2
}+©(x−3β)1

2
(−1

2
)

≈ −axβ
2
± axβ

2
∓ bxα−β

a
+©(x−3β)

⇒ µ+ ≈ −bxα−β
a

+©(x−3β)

µ− ≈ −axβ + −bxα−β
a

+©(x−3β)

Here µ = λ2, thus

λ1/2 ≈ µ
1
2
+ ≈ (−bx

α−β

a
+©(x−2.5β))

λ3/4 ≈ (µ−)
1
2

≈ (−axβ)
1
2 +©(x−1.5β)
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The correction term to the diagonals after the first diagonalisation is

approximately given by:

f ′

f
≈ ©(x−1) (off-diagonal terms). Correction to the diagonal is given by:

©(x−0.5β) for λ3/4 but ©(xα−β2) for the λ1/2.

The dichotomy condition is satisfied so we obtain the following results:

(i) a > 0, b > 0, then defL = (4, 4) if β > 2 and β > 2+α. The spectrum

of H is discrete.

But if β < 2 and β > 2 + α, then defL = (2, 2) and σac(H) ∈ R of

multiplicity 1, and if β > 2 and β < 2 + α, then σac(H) ⊆ [0,∞) of

multiplicity 1.

We obtain defL = (2, 2) if β < 2, β < 2 + α with σac(H) = R of

multiplicity 2

(ii) Suppose a > 0, b < 0, then defL = (3, 3). If β > 2 and β > 2 + α,

then the spectrum is discrete.

But if β < 2 and β > 2 + α, then defL = (2, 2) and σac(H) ⊆ [C,∞) of

spectral multiplicity 1 and if β > 2 and β < 2 + α, then

σac(H) ⊆ [0,∞) of multiplicity 1, we obtain defL = (2, 2) if β < 2 and

β < 2 + α with σac(H) = R of multiplicity 2.



Chapter 5

CONCLUSION AND

RECOMMENDATION

5.1 Conclusion

In section 3.2.1, we approximated the eigenvalues of (1.1) when p1(x)→

∞ as x→∞ while the other coefficients p0,q1,q2 are bounded. Theorem

3.3.2 gives the simpler version of (3.6) that approximates these eigenval-

ues. Theorem 4.2.2 gives the deficiency indices of T and spectra of its

self-adjoint extension H together with their spectral multiplicities under

various asymptotic behaviours. In particular, (2, 2) ≤ defT ≤ (4, 4) for

various signs of p1 and p0. Meanwhile the absolutely continuous spectrum

of H, σac(H) is either a subset of [0,∞) or R with spectral multiplicity of

1 or 2 depending on the integrability of p
− 1

2
1 . The objectives as set out in

chapter one are achieved by these results. These results have enriched the

available literature on the spectral theory of higher order differential op-

erators and can also be applicable in quantum mechanics where results of

self-adjoint operators are very much useful. In solving these problems, we

41
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applied the techniques of asymptotic integration as outlined in Levinson’s

theorem which is a pertubation result.

5.2 Recommendation

Proving the dichotomy condition is still a complicated task even in the

case of a fourth order differential operators, this may be due to the diffi-

culty in approximating the eigenvalues of such operators when the coeffi-

cients are unbounded. This might be extremely difficult in higher orders,

and we recommend further investigation in this direction.
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