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ABSTRACT

Unsteady MHD heat and mass transfer over an infinite flat plate with convective surface
boundary condition problems have received little attention yet they are of great importance
in many scientific and engineering fields particularly in the manufacture and maintenance
of ship propulsion unit and thermal energy storage processes in nuclear plants. Every
research work that would give results aimed at improving the efficiency of the modern
marine vessels is of significance to the fields of naval architecture and marine engineer-
ing. Past studies by various researchers in the field of MHD fluid flows seems to have
ignored the effects of ion-slip and Hall currents on velocity, temperature and concentra-
tion profiles of fluid flow. In this research, unsteady MHD heat and mass transfer over
an infinite flat porous plate with convective surface boundary conditions is studied and
more specifically to investigate the contribution of the combined effects of ion-slip and
Hall currents on the velocity, temperature and concentration of an incompressible, viscous
and electrically conducting fluid subject to cooling and heating of the plate by free convec-
tional currents and constant heat flux. The objective of this study was to formulate and
solve, using explicit finite difference scheme, the coupled partial differential equations of
momentum, energy and concentration of species describing the flow. The flow equations
were non-dimensionalized, transformed then programmed into a mathematica code and
results generated in graphs. The effects of physical parameters on velocity, temperature
and concentration fields are analyzed from graphs. Our analysis of the graphical results
obtained shows that velocity and thermal boundary layer thickness increase with increase
in ion-slip and Hall parameters for the cooling of the plate by free convection in the pres-
ence of constant heat flux. The thermal boundary layer thickness increases with cooling
of the plate by free convection and presence of constant heat flux. The concentration of
the fluid increases with increase in time or decrease in mass diffusion parameter or with-
drawal of suction velocity. The results of this research can serve as prototype for practical
propulsion type of problems, for example, generation of propulsion force in moving ship.

v



TABLE OF CONTENTS

DECLARATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

INDEX OF NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Preliminary concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Objectives of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Significance of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Research methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

CHAPTER 2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . 13

2.1 MHD flows past infinite plates . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 MHD free convection flows . . . . . . . . . . . . . . . . . . . . . . . . . . 15

CHAPTER 3 MATHEMATICAL FORMULATION . . . . . . . . . . . . 19

3.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Mathematical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

CHAPTER 4 MODEL SOLUTION . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Numerical technique: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Convergence and stability . . . . . . . . . . . . . . . . . . . . . . . . . . 31

CHAPTER 5 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . 33

vi



5.1 Concentration profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Temperature profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Velocity profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

CHAPTER 6 SUMMARY AND RECOMMENDATIONS . . . . . . . . 43

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.1 Mathematica code (Concentration) . . . . . . . . . . . . . . . . . . . . . 49

A.2 Mathematica code (Temperature) . . . . . . . . . . . . . . . . . . . . . . 51

A.3 Mathematica code (Velocity) . . . . . . . . . . . . . . . . . . . . . . . . 53

vii



LIST OF FIGURES

3.1 Flow configuration with the coordinate system . . . . . . . . . . . . . . . 20

4.1 Computational molecule for the explicit numerical difference scheme. . . 31

5.1 Concentration profiles for different values of Sc when v0 = 0.5 and t = 0.032. 34

5.2 Concentration profiles for different values of t when Sc = 0.4 and v0 = 0.5. 34

5.3 Concentration profiles for different values of v0 when Sc = 0.4 and t = 0.32. 34

5.4 Temperature profiles for different values of βn when Sc = 0.4, v0 = 0.5,

Gr = 0.2, Gc = 1.0, Pr = 7.0, Ec = 0.01, t = 0.032, βm = 1.0, M2 = 5.0,

Bi = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5 Temperature profiles for different values of Gc when Sc = 0.4, v0 = 0.5,

Gr = 0.2, βn = 0.2,Pr = 7.0, Ec = 0.01, t = 0.032, βm = 1.0, M2 = 5.0,

Bi = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.6 Temperature profiles for different values of βm when Sc = 0.4, v0 = 0.5,

Gr = 0.2, βn = 0.2,Pr = 7.0, Ec = 0.01, t = 0.032, Gc = 1.0, M2 = 5.0,

Bi = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.7 Temperature profiles for different values of t when Sc = 0.4, v0 = 0.5,

Gr = 0.2, βn = 0.2,Pr = 7.0, Ec = 0.01, Gc = 1.0, βm = 1.0, M2 = 5.0,

Bi = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.8 Temperature profiles for different values of v0 when Sc = 0.4, Gc = 1.0,

Gr = 0.2, βn = 0.2,Pr = 7.0, Ec = 0.01, t = 0.032, βm = 1.0, M2 = 5.0,

Bi = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.9 Velocity profiles for different values of βm when Sc = 0.4, v0 = 0.5, Gr =

0.2, Gc = 1.0,Pr = 7.0, Ec = 0.01, t = 0.032, βn = 0.2, M2 = 5.0, Bi = 1.0 39

5.10 Velocity profiles for different values of βn when Sc = 0.4, v0 = 0.5, Gr =

0.2, Gc = 1.0, Pr = 7.0, Ec = 0.01, t = 0.032, βm = 1.0, M2 = 5.0, Bi = 1.0 39

viii



5.11 Velocity profiles for different values of βm when Sc = 0.4, v0 = 0.5, Gr =

−0.2, Gc = 1.0, Pr = 7.0, Ec = 0.01, t = 0.032, βn = 0.2, M2 = 5.0, Bi = 1.0 40

5.12 Velocity profiles for different values of βn when Sc = 0.4, v0 = 0.5, Gr =

−0.2, Gc = 1.0, Pr = 7.0, Ec = 0.01, t = 0.032, βm = 1.0, M2 = 5.0,

Bi = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.13 Velocity profiles for different values of M2 when Sc = 0.4, v0 = 0.5, Gr =

0.2, Gc = 1.0, Pr = 7.0, Ec = 0.01, t = 0.032, βm = 1.0, βn = 0.2, Bi = 1.0 41

5.14 Velocity profiles for different values of Gc when Sc = 0.4, v0 = 0.5, Gr =

0.2, M2 = 5.0, Pr = 7.0, Ec = 0.01, t = 0.032, βm = 1.0, βn = 0.2, Bi = 1.0 41

5.15 Velocity profiles for different values of v0 when Sc = 0.4, Gc = 1.0, Gr =

0.2, M2 = 5.0, Pr = 7.0, Ec = 0.01, t = 0.032, βm = 1.0, βn = 0.2, Bi = 1.0 41

5.16 Velocity profiles for different values of t when Sc = 0.4, Gc = 1.0, Gr = 0.2,

M2 = 5.0, Pr = 7.0, Ec = 0.01, v0 = 0.5, βm = 1.0, βn = 0.2, Bi = 1.0 . . 42

ix



INDEX OF NOTATIONS

MHD Magnetohydrodynamic . . . 1

V Velocity vector . . . . . . . . . 1

B Magnetic field intensity . . . . 1

J Current density vector . . . . . 1

x1, y1, z1 Dimensional Cartesian co-

ordinates . . . . . . . . . . . 3

u1, v1, w1 Dimensional velocity com-

ponents of V . . . . . . . . . 3

τ Shear stress . . . . . . . . . . . 3

µ Coefficient of dynamic viscosity 3

ρ Fluid density . . . . . . . . . . 4

t1 Dimensional time . . . . . . . . 4

fB Body force per unit mass . . . 4

g Gravitational field strength vec-

tor . . . . . . . . . . . . . . 5

Cp Specific heat capacity at con-

stant pressure . . . . . . . . 5

Q Internal heat generation . . . . 5

K Thermal conductivity . . . . . 5

φ Thermal energy due to dissipa-

tion of heat . . . . . . . . . 5

T Dimensional temperature . . . 5

σ Electric conductivity . . . . . . 5

µ0 Permeability of free space . . . 5

ε0 Permittivity of free space . . . 5

E Electric field intensity vector . 6

e Unit electric charge . . . . . . . 6

Fe Force on electric charge . . . . 6

ρe Electric charge density . . . . . 6

B0 magnetic field vector applied

to the plate . . . . . . . . . 6

e.m.f Electromotive force . . . . . 6

U Velocity of the plate . . . . . . 8

C1 Dimensional concentration of

the injected material . . . . 8

P Pressure . . . . . . . . . . . . . 8

q Heat flux vector . . . . . . . . . 9

D Diffusion coefficient . . . . . . . 10

v∗0 Dimensional suction velocity . 19

(fB)x1 Component of the body force

along x1 -axis . . . . . . . . 20

(fB)y1 Component of the body force

along y1 -axis . . . . . . . . 20

(fB)z1 Component of the body force

along z1 -axis . . . . . . . . 20

Jx1 , Jy1 , Jz1 Components of cur-

rent density vector, J . . . . 21

βc Coefficient of volumetric expan-

sion due to concentration gra-

dient . . . . . . . . . . . . . 21

x



C∞ Dimensional free stream con-

centration . . . . . . . . . . 21

βT Coefficient of volumetric ex-

pansion due to temperature 21

Bx1 , By1 , Bz1 Components of mag-

netic field vector, B . . . . . 23

Ex1 , Ey1 , Ez1 Components of elec-

tric field vector, E . . . . . . 23

ωe Cyclotron frequency . . . . . . 24

τe Electron collision time . . . . . 24

βn Ion slip parameter . . . . . . . 24

βm Hall current parameter . . . . 24

u, v, w Dimensionless velocity com-

ponents . . . . . . . . . . . . 25

v0 Dimensionless suction velocity 25

t Dimensionless time . . . . . . . 25

Cw Concentration of injected ma-

terial at the plate wall . . . 25

C Dimensionless concentration of

the the injected material . . 25

ν Coefficient of kinematic viscosity 25

θ Dimensionless temperature . . . 25

Gr Grashof number . . . . . . . . 26

Gc Modified Grashof number . . . 26

M Magnetic parameter . . . . . . 26

Pr Prandtl number . . . . . . . . 26

Bi Convective heat exchange pa-

rameter . . . . . . . . . . . . 26

Ec Eckert number . . . . . . . . . 26

Sc Schmidt number . . . . . . . . 27

Z Complex velocity . . . . . . . . 27

Z̄ Complex conjugate of Z . . . . 27

k′ Coefficient of heat diffusivity . 32

λ Mesh ratio parameter . . . . . . 32

xi



CHAPTER 1

INTRODUCTION

The word Magnetohydrodynamics (MHD) refers to the branch of fluid mechanics which is

concerned with the interaction of electrically conducting fluids and electromagnetic fields.

Some of these fluids are mercury, salty water, molten iron, ionized gases (plasma) e.g

solar atmosphere. The official birth of incompressible fluid magnetohydrodynamics was

in 1937 when Hartman and Lazarus [1] performed theoretical and experimental studies

of MHD flows in ducts using mercury. It was observed that a force is produced on the

fluid in the direction normal to both the applied electric and magnetic fields. Later, a

Swedish electrical engineer Alvén [2] in 1947 from his research on magnetohydrodynamics

described astrophysical phenomenon as an independent scientific discipline. Thereafter

several others [3, 4, 10, 16, 25, 28] have continued to conduct research into various aspects

of the problem of MHD flows with respect to application. In many engineering practical

applications, the knowledge of MHD is very useful as it has been used to explain certain

phenomena in the universe [2, 13]. This has led to intensive scientific research in the

field of computational modeling of MHD fluid flows [31, 33]. MHD covers phenomena in

electrically conducting fluid where the velocity of the fluid, V, and the magnetic field

intensity, B, are coupled. Any movement of a conducting material in a magnetic field,

and electric field with currents, J, experiences MHD force given by J×B, known as the

Lorentz force [1]. When a viscous electrically conducting liquid flows in the presence of

a transverse magnetic field, electromagnetic forces such as the Lorentz force acts on the

fluid particles thereby altering the geometry of their motion. This motion of the particles

creates viscous dissipation in the fluid which affects the overall motion of the fluid. A

wide variety of problems dealing with heat and fluid flow over porous and non-porous

surfaces have been studied with both Newtonian and non-Newtonian fluids and with

the inclusion of imposed magnetic fields and power law variation of the velocity [8, 18,

32]. MHD boundary layer with heat and mass transfer past vertical plates are found in
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many engineering and geophysical applications such as geothermal reservoirs and thermal

insulation [4, 27]. It is also reported that heat and mass transfer occur in processes, such

as drying evaporation at the surface of water body and energy distribution of temperature

and moisture over agricultural fields [17, 26]. Several interesting computational studies of

steady MHD boundary layer flows with heat and mass transfer have appeared in recent

years [3, 17, 19, 33]. The idea of using convectional boundary condition was recently

introduced by Aziz [3] in 2009 to study the classical boundary layer flow over a flat surface.

Convective boundary condition has been found to be more general and realistic especially

with respect to several engineering and industrial processes like transpiration cooling

processes as explained by Singh [5]. Convective heat transfer studies are very important

since it has been found to be very useful in processes involving high temperatures such as

thermal energy storage and heat exchange design [11, 29, 32]· Some researchers [17, 33]

have also showed that the use of some polymer fluids like polyethylene oxide solution

which have better electromagnetic properties, can be used as a cooling liquid as their

flow can be regulated by external magnetic fields in order to improve the quality of final

product. In this study, our work is to modify the study of Aziz [3] who researched on

steady MHD thermal boundary layer flow and demonstrated that a similarity solution is

only possible if the convective heat transfer associated with the hot fluid on the lower

surface of the plate is proportional to x−
1
2 . His results showed that for a constant heat

flux, Representative Prandtl numbers of 0.1 - 0.72 or 7.0- 10.0 for computations can be

carried out for air or water respectively. We therefore carry out a study on unsteady

MHD mass and heat flow for a thermal, velocity and solutal boundary layers subject to

convective surface boundary condition.

1.1 Preliminary concepts

In this section, we give some basic definitions that are vital in this study.

Definition 1.1.0.1. Laminar flow

Laminar flow sometimes known as streamline flow is one in which all fluid particles at

2



the same distance from the axis of a plate would have the same velocity so that the fluid

could be thought of as moving in layers. That is, the paths taken by the individual fluid

particles do not cross one another.

Definition 1.1.0.2. Two dimensional flow

Is a fluid flow in which the motion pattern in a certain plane is the same as that in all

other planes within the fluid. For example, in rectangular coordinate system, the velocity

is a function of time and the two rectangular space coordinates.

Mathematically, if u1 and v1 are the x1 and the y1 velocity components of the velocity,

V, respectively, then [36].

u1 = f1(x1, y1), v1 = f2(x1, y1) (1.1)

where f1 and f2 in Equation (1.1) are arbitrary functions of x1 and y1.

Definition 1.1.0.3. Unsteady flow

This is a type of flow in which the fluid flow variables change with time. For this study,

fluid flow variables such as velocity, temperature and concentration of the fluid at a point

in the flow region change with time. Otherwise the fluid flow is said to be steady.

Definition 1.1.0.4. Viscosity and viscous dissipation

Viscosity is the property of a fluid which determines its resistance to shearing stresses

between the layers of the fluid. It is a measure of the internal fluid friction which causes

resistance to the fluid flow.

Mathematically,

τ = µ
du1
dy1

(1.2)

where τ is the shear stress, µ is the coefficient of dynamic viscosity and du1
dy1

is the

velocity gradient. Fluids which follow the relation defined in equation (1.2) are referred

to as Newtonian fluids as explained by Chandra [34].
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When an electrically conducting fluid flows, an increase in temperature leads to an in-

crease in its skin friction or viscosity. This viscosity increase could be along the x-axis,

y-axis or z-axis as explained by Manyonge [36]. This phenomenon is called viscous dissi-

pation.

Definition 1.1.0.5. Equation of continuity

If V is the velocity of the fluid whose density is ρ, [34, 36] then

∂ρ

∂t1
+∇ · (ρV) = 0 (1.3)

Where ∇ is the gradient operator. Equation (1.3) means that mass is conserved and

that for any liquid, the flow is assumed to be continuous, that is, no empty spaces occur

between particles which are in contact.

Definition 1.1.0.6. Equation of momentum

The equation of momentum also referred to as Navier-Stokes equation of fluid motion(with

the Lorentz force) as described by Crank [35] is given by

ρ

(
∂V

∂t1
+ (V · ∇)V

)
= −∇P + µ∇2V + ρfB (1.4)

where fB and P in equation (1.4) are the body force per unit mass and pressure of the

fluid respectively. fB is given by

fB = g + J×B (1.5)

where g,J,B in equation (1.5) are the gravitational field strength, current density and

magnetic field vectors respectively.

Definition 1.1.0.7. Equation of energy

Equation of energy with joule heating [34, 36] is given by

ρCp

(
∂T

∂t1
+ (V · ∇)T

)
= k∇2T + µφ+Q+

J2

σ
(1.6)
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where Cp, k, T, σ, φ and Q in equation (1.6) are the specific heat capacity at constant

pressure, thermal conductivity of the fluid, temperature of the fluid, electric conductivity

of the fluid and the thermal energy due to dissipation of heat and internal heat generation

respectively.

Definition 1.1.0.8. Maxwell’s equations

The basic law of electricity and magnetism can be summarized in form of differential

equations form. The equations provide link between the electric and magnetic fields in-

dependent of the properties of matter [1, 36, 38]. The set of Maxwell’s electromagnetic

differential equations that considers the fact that most hydromagnetic flows are unsteady

is given by;

i) Faraday’s law of induction: The voltage induced in a closed circuit is proportional to

the rate of change of the magnetic flux it encloses.

− ∂B

∂t1
= ∇× E (1.7)

ii) Amperé’s circuital law: The magnetic field induced around a closed loop is propor-

tional to the electric current plus rate of change of electric field it encloses.

∇×B = µ0

(
J + ε0

∂E

∂t1

)
(1.8)

Assuming permeability of free space, µ0 and permittivity of free space, ε0 are both unity,

then Amperé’s circuital law described in equation (1.8) reduces to:

∇×B = J +
∂E

∂t1
(1.9)

iii) Gauss’s law: The electric flux leaving a volume is proportional to the charge inside.

∇ · E = ρe (1.10)
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vi) Gauss’s law for magnetism: There are no magnetic monopoles; that is total magnetic

flux through a closed surface is zero.

∇ ·B = 0 (1.11)

where B in equations (1.9) and (1.11) is the magnetic field intensity, E is the electric

field intensity, J in equation (1.9) is the current density.

Definition 1.1.0.9. Ohm’s law

An electric charge, e, moving in an electromagnetic field encounters an electric force,

V × B. The resultant force, Fe, on the charge is given by the Lorenz’s equation [2, 34]

which is expressed as

Fe = E + V ×B (1.12)

In MHD fluid flow, this force acts on the fluid particles and in the direction normal to

both J and B. The generalized Ohm’s law is given by.

J = σ(E + V ×B) + ρeV (1.13)

where the term ρeV in equation (1.13) represents the displacement current usually negli-

gible at any fluid velocity V if the magnetic field associated with electric field everywhere

in the flow does not vary as is our case since B0, which is the magnetic field vector applied

to the plate is constant and σ is the electric conductivity. The law reduces to

J = σ(E + V ×B) (1.14)

Definition 1.1.0.10. Hall effect

An electromotive force (e.m.f) is always set up transversally or across a current carrying

conductor when a perpendicular magnetic field is applied on the conductor [1, 2]. This

phenomenon called Hall effect has always been used in the determination of flux density,
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B, of a magnetic field.

Definition 1.1.0.11. Free convection

In a free convection flow,as discussed by Kinyanjui [30], the fluid motion is as result of

density gradient due to either temperature or concentration variation.

Definition 1.1.0.12. Convective heat transfer

Convective heat transfer involves heat energy exchange between boundary surfaces and

an adjacent fluid due to temperature variation [31, 34, 36].

Definition 1.1.0.13. Convective mass transfer

This involves the transport of materials (e.g chemical ions) between boundary surface

and moving fluid [17, 21, 33 ]. Mass transport always play an important role in many

industrial processes, for example, the removal of pollutants from plant discharge.

Definition 1.1.0.14. Convective boundary condition

Here the exchange of heat takes place between the surface or boundary and the surround-

ing environment due temperature gradient in the fluid [3, 4, 30]. Convective boundary

condition assumes that heat conduction at the surface of a boundary is equal to the heat

convection at the surface in the same direction.

Definition 1.1.0.15. Dimensionless quantity

It is a quantity without any physical unit(s) and therefore is treated as just a pure number.

A quantity with physical unit(s) is referred to as dimensioned or dimensional quantity,

for instance force is a dimensioned quantity having unit as newton(N).

1.2 Statement of the problem

The magnetohydrodynamics (MHD) flow over an infinite plate is a classical problem that

has applications in MHD power generators, MHD pumps where MHD principle is used

in pumping of materials that are hard to pump using conventional pumps and propulsion

type of problems in propulsion units in ships. Heat and mass transfer occur in processes
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such as drying, evaporation at the surface of a water body, and energy transfer in a wet

cooling tower. Numerous research work concerning the MHD flows have been obtained

under different physical effects. In all cases, the Hall current and ion-slip current terms

were assumed to be negligible, hence ignored in applying Ohms’s law as they have no

marked effect for small and moderate values of the magnetic field. However, the trend

for the application of MHD is towards a strong magnetic field, so that the influence of

electromagnetic field is noticeable. Under these conditions, the ion-slip and Hall currents

have a marked effect on the magnitude and direction of the current density and magnetic

force term and consequently on the velocity and temperature profiles of MHD fluid flows.

Therefore, we carried out a research on the combined effects of ion-slip current and Hall

current on the unsteady MHD mass and heat transfer flow over an infinite horizontal

porous plate with convective surface boundary condition so as find out how velocity,

temperature and concentration profiles vary with different values of thermo-physical pa-

rameters. We consider an unsteady MHD heat and mass transfer for an incompressible,

viscous and electrically conducting fluid over a moving infinite porous flat plate with con-

vective surface boundary condition. The plate is taken to be electrically non-conducting

and is along the x1−axis. A uniform transverse magnetic field B0 is applied perpendic-

ularly to the x1z1− plane (see Fig 3.1). At time t1 > 0, the plate which is subjected to

constant heat flux, starts moving impulsively in its own plane with uniform velocity, U.

In our study, we consider the model equation (1.4) and use the expanded form of body

force in equation (1.5) to get

ρ

(
∂V

∂t1
+ (∇ ·V)V

)
= −∇P + µ∇2V + ρ(g + J×B) (1.15)

Taking into account internal heat generation in fluid flow system, equation (1.6) can be

written as

ρCp

(
∂T

∂t1
+ (V · ∇)T

)
= k∇2T +Q+ µφ+

J2

σ
(1.16)
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and according to [34, 36], equation of energy in terms of chemical species concentration

due to the chemicals being constantly injected in the flow is given by

(
∂C1

∂t1
+ (V · ∇)C1

)
= D∇2C1 (1.17)

where k, Cp, Q, D in equations (1.16) and (1.17) are respectively the thermal conductiv-

ity, specific heat capacity at constant pressure, internal heat generation, concentration

diffusion coefficient.

Since the fluid is initially at rest, its velocity everywhere is zero, the fluid temperature

is taken to be the free stream temperature, T∞ and concentration is taken to be the free

stream concentration, C∞. We therefore apply the following initial conditions.

For t1 ≤ 0 :

u1(y1, 0) = 0, w1(y1, 0) = 0 (1.18)

and

T (y1, 0) = T∞, C1(y1, 0) = C∞ (1.19)

On the lower boundary, velocity component of the fluid along x1 direction assumes the

plate velocity, U due to no slip effect, velocity along y1 axis is taken to be zero. Temper-

ature on the lower boundary is due to heat diffusion caused by heat flux vector, q and

concentration on the lower boundary is taken to be the wall (plate) concentration, Cw1 .

Velocities u1 and w1 on the upper boundary are assumed to be zero. Hence

For t1 > 0 :

u1(0, t1) = U, w1(0, t1) = 0,
∂T

∂y1
= − q

k
, C1(0, t1) = Cw1 (1.20)

u1(∞, t1) = 0, w1(∞, t1) = 0, T (∞, t1) = T∞, C1(∞, t1) = C∞ (1.21)
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We will then expand the body force term in equation (1.15) to include the Hall current

and ion-slip term and further analysis of equations (1.16) and (1.17).

1.3 Objectives of the study

The broad objective of this research was to formulate and solve governing MHD equations

describing unsteady flow of a viscous, incompressible, electrically conducting fluid past

an infinite porous flat plate subjected to mass transfer and convective heat exchange

at the plate surface with the consideration of ion-slip and Hall current effect so as to

evaluate and analyze the effects of thermo-physical parameters on the velocity profiles,

temperature profiles and concentration profiles of the flow. The specific objectives of this

study were:

1. To describe and analyze the effects of Hall currents, ion-slip on the velocity bound-

ary layer thickness in the presence of cooling and heating of the plate by free

convection currents.

2. To evaluate the effects of various thermo-physical parameters such as magnetic

parameter, Grashof number, mass diffusion parameter, ion-slip parameter, Hall

parameter, modified Grashof number, suction velocity on the solutal boundary

layer, velocity and temperature profiles.

3. To evaluate and analyze how cooling of the plate by free convection currents affects

the thermal boundary layer of an unsteady laminar fluid flow.

1.4 Significance of the study

Magnetohydrodynamic mass and heat transfer is of considerable interest to mathemati-

cians, scientists and engineers because it has many applications including design of MHD

power generators and MHD pumps, MHD heat exchangers and design of ship propulsion
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units. Our findings show that it can be possible to improve on the design of MHD pumps

which operates on the principle that motion(force) on a fluid depends on magnitude of

velocity of the fluid. The results also have the potential to serve as prototype for practical

propulsion type of problems, for example, generation of propulsion force in moving ship

1.5 Research methodology

For successful completion of this research, a good background knowledge of both numer-

ical and analytical technique of solving differential equations is paramount. It is also

a fact that equations governing MHD fluid flow are always non-linear and their exact

solutions are difficult to obtain. A number of mathematicians researching on related

areas for the case of steady MHD flows have used Newton-Raphson shooting method

along with Runge-Kutta integration algorithms to numerically solve partial differential

equations(p.d.e’s) of momentum and energy balance governing MHD problems. Although

Runga-Kutta is a powerful technique of solving differential equations numerically, it is

used only in cases of steady p.d.e’s and also it may not work satisfactorily in such cases

where initial and boundary conditions are not ”smooth” in nature as explained by Ku-

mar [39]. Typical example is where the boundary condition changes abruptly from one

time step to another as in our case with the velocity boundary condition since the plate

is impulsively set in motion meaning velocity changes abruptly from its initial value of

zero to U (plate velocity). We considered the general form of Navier-Stokes equation

of momentum, incorporated the hall and ion-slip current terms in the body force factor

and formed the velocity equations. The equation of energy in terms of temperature was

formed where the contribution of constant heat flux arising from convective heat transfer

and concentration diffusion gradient were taken into consideration to give the total heat

energy of the system. In forming the p.d.e, we considered the fact that the fluid flow

is along x1 axis and the presence of suction velocity at the plate. Since the formulated

coupled partial differential equations in the present study were non-linear and because

the flow is unsteady, only finite difference method can be used to solve the p.d.e. We used
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an explicit scheme of finite difference technique in solving the unsteady partial differential

equations of the continuity, momentum and energy balance governing the problem. We

first studied in details the specific p.d.e, carried out transformations using complex trans-

form, injected the initial and boundary conditions imposed on the problem, carried out

stability analysis to check and ascertain that the finite difference scheme used in finding

solutions in this study is both convergent and stable. We then developed a mathematica

code, executed the simplified explicit difference equations, presented the results graph-

ically. We discussed and analyzed the results for the effects Hall and ion-slip currents

on the velocity profiles due to both cooling and heating of the plate by free convectional

currents. We also evaluated the effects of various thermo-physical parameters on concen-

tration, temperature and velocity profiles of the flow. Conclusions were drawn from the

findings and then finally we put forward recommendations.
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CHAPTER 2

LITERATURE REVIEW

2.1 MHD flows past infinite plates

In 1956, Shercliff [24] studied the steady motion of an electrically conduction fluid in pipes

under transverse magnetic fields. He investigated the ultimate steady velocity profile and

its associated pressure gradient. His results showed that pressure drop associated with

the adjustment of the velocity profile is found to be independent of field strength. His

work did not take into account the induced electric potential. Gebhart and Mollendorf [7]

in 1969 studied viscous dissipation in external natural convectional flows and found out

that viscous dissipative heat is important when the free convective flow field is of extreme

size or the flow is at extremely low temperature. This has become the basis of considering

viscous fluid flows subjected to constant heat flux. Their work failed to show how viscous

forces contribute to the overall velocity profiles. In 1978, Ram and Singh [23] studied

steady laminar flow of an electrically conducting fluid through a channel in the presence of

a transverse magnetic field under the influence of a periodic pressure gradient and solved

the resulting differential equations by the method of Laplace transform. Their findings

which showed variation of velocities with pressure gradient parameter were only based on

weak magnetic field i.e M = 1.0, M = 1.5 and M = 2.0 and no consideration of ion-slip

effects. Soundalgekar et al [12] in 1979 investigated the problem of free convection effects

on Stokes problem for a vertical plate with transverse applied magnetic field. In the year

1986, Sahoo et al [32] investigated the unsteady free convection and mass transfer effect

on the flow past a uniformly accelerated infinite non-conducting vertical plate through a

porous medium in the presence of a uniform magnetic field and showed that temperature

increases with increase in variable thermal conductivity and decreases with increasing

radiation and suction velocity. In their research, Hall current and ion-slip current were

ignored. It was established by Naidu et al in 1987 when they studied boundary layer

heat transfer with electromagnetic fields that the velocity boundary layer is reduced
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by the effects of transverse magnetic field for some compressible MHD fluids while the

temperature profiles are increased. Naidu’s findings were only limited to cases of varying

pressure gradient with no consideration of mass transfer and suction at the boundary.

Dikshit et al [13] in 1988 studied hydrodynamic flow past a continuously moving semi-

infinite plate with large suction and assumed the effects hall current while using relatively

weak magnetic field but the current trend in MHD studies is to use a strong magnetic

fields. A gain in the year, 1988, Singh and Sacheti [40] reported the results of their study

of hydromagnetic free convection flow with constant heat flux where it was observed that

the magnetic parameter had a retarding effect on the flow velocity. However, nothing

was mentioned with regard to the contribution of either Hall current or ion-slip current

to the velocity profiles of the flow. Special cases of this topic have also been studied by

Mansour et al [26] in 1990 in connection with emerging questions. When the scholars

investigated the influence of lateral mass flux on free convection flow past a vertical flat

plate embedded in a saturated porous medium and with the aim of providing solutions to

the effects of electromagnetic fields on the boundary layer flow. They analyzed the effects

magnetic parameter, Grashoff number, suction velocity on velocity, temperature flow

fields. However, the general information available in the application of strong magnetic

fields, effects of ion slip currents was still remarkably scarce. Convective heat and mass

transfer of a viscous flow past a hot vertical plane wall with periodic heat sources was

studied by Dash and Tripathy [31] in 1993. Although their findings for velocity profiles as

affected by weak magnetic fields were in line by the previous findings, there arose the need

to apply strong magnetic fields. Ram et al [27] in the year 1995 solved the MHD Stokes

problem of convective flow from a vertical infinite plate in a rotating fluid and found

out that an increase in hall parameter leads to an increase in primary velocity profiles

for large Grashof numbers. There was no mention of ion-slip effects. Elbashbeshy [10]

in 1997 studied MHD heat and mass transfer problem a long a vertical plate under the

combined buoyancy effects of thermal and species diffusion and established that in fluid

flow where the buoyancy forces are strong (larger Grashof number), then buoyancy forces

drives natural convection while viscous force retards fluid velocity but he did not factor
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in the effects of hall currents. Yih [9] in 1999 studied the free convection effect on MHD

coupled heat and mass transfer of a moving permeable vertical surface. The analysis of

steady flow resulted in findings of effects of thermo-physical parameters on the fluid flow

patterns but failed to take into account the effects of ion-slip current since the study

was for a steady flow. In 2001, Soundalgekar et al [12] investigated the problem of free

convection effects on Stokes problem for a vertical plate with transverse applied magnetic

field. Their findings were based on smaller values of magnetic parameter (M < 5.0).

2.2 MHD free convection flows

Seddeek [20] in 2001 studied the thermal radiation and buoyancy effects on MHD free

convection heat generation flow over an accelerating permeable surface with temperature

dependent viscosity and concentrated more on analyzing the effects of buoyancy forces

on fluid velocity. Also Kinyanjui et al [30] in 2001 presented their work on MHD free

convection heat and mass transfer of a heat generating fluid past an impulsively started

infinite vertical porous plate with hall current and heat absorption. An analysis of the

effects of the parameter of skin friction, rates of mass and heat transfer on velocity was

reported with no analysis to combined effects of Hall and ion-slip on flow fields but only

examining isolated effects of hall parameter on the fluid flow fields. Azzam [6] in 2002,

carried out a study on the radiation effects on the MHD mixed free-forced convection

flow past a semi-infinite moving vertical plate for high temperature differences and re-

ported the effects of radiation parameters along with Eckert and magnetic numbers how

they cause variation on velocity and temperature profiles of a fluid flow. There was no

attempt to impose suction on the plate and also include ion-slip effect on the fluid flow.

In the same year, Takha et al [8] investigated electrically conducting fluid in an unsteady

magnetohydrodynamics fluid flow for heat transfer in an ambient fluid and came up with

results that showed thick velocity boundary flow for increasing modified Grashof num-

ber. But still their was consideration of lower values of magnetic fields. In the year, 2004

Ghally and Seddeek [14] investigated the effects of chemical reactions, heat and mass
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transfer on laminar flow along a semi-infinite horizontal plate with temperature depen-

dent viscosity and showed that for cooling of the plate by free convection, velocity profiles

of the flow increases with increase in modified Grashof number, Gc. No investigations

were made concerning a case of heating the plate by free convection currents. Unsteady

MHD convective heat transfer past a semi-infinite vertical permeable moving plate with

heat absorption was also reported by Chamka [4] in the same year and the analysis was

more on thermo-physical parameters excluding ion-slip currents and he showed that to

some extent, fluid velocity is retarded by the presence of increasing values of magnetic

parameter in the flow. In 2005, Chandra [34] investigated steady MHD flow of an electri-

cally conducting fluid between two parallel infinite plate when the upper plate is made to

move with constant velocity while the lower plate is stationary. His findings were on the

effects magnetic parameter, Eckert number and magnetic Reynold number on velocity

and temperature profiles. However, there was no mention of Hall and ion-slip currents

because the study was mainly on steady flow and time is a factor current. Cortell [21]

in 2007 analyzed MHD mass transfer for two classes of viscoelastic fluid over a porous

stretching sheet. The influence of magnetic parameter, Viscoelastic parameter on the

boundary layer were reported, he concluded that for a given viscoelastic fluid subjected

to a constant suction, the work done due to deformation effect increases with increase in

the magnetic parameter, M. Although Cortell considered a case of a viscoelastic fluid, he

did not mention anything on ion-slip current. Again in 2007 Ganesh and Krishnambal

[25] studied unsteady MHD Stokes flow of a viscous fluid between two parallel porous

plate. They considered fluid being withdrawn through both walls of the channel at the

same rate. They obtained exact solution for all values of Suction Reynolds number, R and

magnetic parameter, M. It was found out that in the presence of a transverse magnetic

field the fluid is being withdrawn through both walls of the channel at the rate. There

was no consideration of effects ion-slip or Hall currents of flow velocity. Bataller [16] in

2008 explored Sakiadis and Blasius flow problems with convective boundary effects and

considering a case of constant wall temperature where he investigated fluid-solid inter-

face characteristics for different values of Prandtle, Pr and radiation parameter, Nr. His
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results reflected a numerical solution for a combined effects of thermal radiation and con-

vective surface heat flow. He did not tackle cases of cooling of the plate by free convection

with constant heat flux. He also neglected ion-slip currents. In the same year, 2008, the

effects of thermal radiation on heat and mass transfer flow of a variable viscosity fluid

past a vertical porous plate permeated by a transverse magnetic field was reported by

Makinde et al [15]. They discovered that flow patterns of the fluid are greatly affected

by heating of the plate by free convection. However, there was no mention in their work,

the combined effects of Hall current and ion-slip parameter.

Makinde [17] again in 2009 considered a steady MHD flow past a semi-infinite

porous plate with constant heat flux. In his work, Hall current effects were ne-

glected. He solved the Pde equations governing the flow by Newton-Raphson

shooting method along with fourth order Runge-kutta integration algorithm. His

findings revealed that for positive values of the buoyancy parameter, the skin

friction increases with increase in Ec and decreases with increasing values of per-

meability parameter. In his work, Hall current effects were neglected. Within the

same year, Rajeswari et al [19] investigated the effect of chemical reaction, heat

and mass transfer on non-linear MHD boundary layer flow through a stationary

vertical porous surface in the presence of suction with power law surface temper-

ature and concentration. Their findings showed that velocity boundary thickness

increases with increase Grashof number, time but decreases with increase in Hart-

man number. Still in their study, effects of ion-slip currents were neglected in their

study. Also in 2009, Beg et al [33] in their work investigated numerically the free

convection MHD heat and mass transfer from a stretching surface to a saturated

porous medium with Soret and Dufour effects. They used a small magnetic pa-

rameter( M = 0.1) signifying a very weak magnetic field and negligible internal

heat source. Towards the end of 2009, Aziz [3] researched on steady MHD thermal

boundary layer flow and demonstrated that a similarity solution is only possible if

the convective heat transfer associated with the hot fluid on the lower surface of

the plate is proportional to x−
1
2 . His results showed that for a constant heat flux,

Representative Prandtl numbers of 0.1 - 0.72 or 7.0 - 10.0 for computations can

be carried out for air or water respectively. Where as Aziz’s findings have become

applicable in many computational modeling involving hydromagnetic fluids, his

work fell short of including the isolated or complementary effects of Hall and ion-

slip currents in an MHD fluid flow. Sacheti and Singh [32] in 2010 studied MHD

free-convective flow with constant heat flux and reported an oscillatory behavior of

the velocity profiles with changing magnetic parameter and attributed his results
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to a low value of external applied magnetic field and because of excess cooling of

the plate. This means that the current trend is towards using a stronger magnetic

field and moderate cooling of the plate.

In view of the findings of mathematicians’ work in the field of computational mod-

eling of MHD liquid flows, no study appeared to have considered the combined

effects of ion-slip current, Hall current and convective mass transfer over an infi-

nite plate surface for a boundary layer flow, which is the focus of our research. We

therefore considered hydromagnetic mass and heat transfer over a flat surface as

was investigated by Aziz [3], modified his work to the case of unsteady flow and

included the combined effect of ion-slip current, Hall current and the convective

heat exchange at the plate on the boundary layer flow.

18



CHAPTER 3

MATHEMATICAL FORMULATION

3.1 Problem setting

We consider a flat horizontal porous plate which is impulsively set into motion with

a uniform velocity U along the x1-axis at the time, t1 > 0 (see Figure 3.1). But

initially, at the time, t1 = 0, the plate is at rest. A uniform magnetic field, B0 is

applied perpendicular to the plate. The fluid velocity components are (u1, v1, w1)

relative to the frame of reference.

There is uniform injection of chemical species whose concentration is limited to

the fluid density. The temperature and concentration of the fluid over the plate is

taken to be T∞ and C∞ respectively. The lower surface of the plate is heated by

convection from a hot fluid at a temperature, Tf . The plate is porous and there is

constant sipping out of some fluid a cross the plate at a constant velocity of v∗0.

Since the plate is infinite in extent and the flow is unsteady, the physical variables

such as velocity, temperature and concentration are functions of y1 and t1 only.

Given that density of the fluid, ρ is constant, the equation of continuity given in

equation (1.3) is expressed as

∂u1
∂x1

+
∂v1
∂y1

+
∂w1

∂z1
= 0 (3.1)

Considering the suction velocity at the plate, v∗0, then the velocity component

along the y1-axis, v1, everywhere in the flow is given by

v1 = −v∗0 (3.2)

using equation (3.2) and the fact that velocity components depend on y and t only,

equation (3.1) becomes zero on both sides. This shows that mass is conserved.

The Navier-Stokes momentum equation given in equation (1.4) can be expressed as

∂V

∂t1
+ (∇ ·V)V = −1

ρ
∇P +

µ

ρ
∇2V + fB (3.3)

where fB is the sum total of all the body forces and the other symbols are as

defined in the index of notations. Since all variables depend on y1 and t1 only,
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Figure 3.1: Flow configuration with the coordinate system

equation (3.3) in components form gives

∂u1
∂t1
− v∗0

∂u1
∂y1

= −1

ρ

∂P

∂y1
+
µ

ρ

∂2u1
∂y21

+ (fB)x1 (3.4)

∂v∗0
∂t1

+ v∗0
∂v∗0
∂y1

= −1

ρ

∂P

∂y1
− µ

ρ

∂2v∗0
∂y21

+ (fB)y1 (3.5)

∂w1

∂t1
− v∗0

∂w1

∂y1
= −1

ρ

∂P

∂y1
+
µ

ρ

∂2w1

∂y21
+ (fB)z1 (3.6)

where (fB)x1 in equation (3.4), (fB)y1 in equation (3.5) and (fB)z1 in equation (3.6)

are components of body force vector, fB along x1, y1 and z1 directions respectively.

Suction velocity, v∗0 is assumed to be constant everywhere in the flow, hence,

equation (3.5) reduces to

0 = −1

ρ

∂P

∂y1
+ (fB)y1 (3.7)
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3.2 Mathematical analysis

The component of the body force along y1-axis is negligible given that the mo-

tion of the fluid is along x1 direction and is mainly caused by forces in the same

direction, meaning (fB)y1 ≈ 0, equation (3.7) shows the constancy of pressure a

long y1-axis and everywhere in the flow since pressure gradient along x1 and y1 is

zero. Under the usual Boussinesq and Oberbeck approximations as explained by

Aziz [3], considering that heat transfer can reasonably cause significant changes

in the transport proportions in an incompressible viscous fluid flow, the contri-

bution of temperature difference and concentration difference to body force term

are respectively given by gβT (T − T∞) and gβc(C1 − C∞) and they also have

the effect of causing movement of fluid particle along x1 direction. The Lorentz

force, along x1 and z1 directions are respectively given by By1Jz1 and By1Jx1 with

their directions determined by Fleming’s clock rule. Therefore equations (3.4) and

(3.6) which are respectively equations of motion along x1 and z1 directions become

∂u1
∂t1
− v∗0

∂u1
∂y1

= gβT (T − T∞) + gβc(C1 − C∞) +
µ

ρ

∂2u1
∂y21

+
By1

ρ
Jz1 (3.8)

∂w1

∂t1
− v∗0

∂w1

∂y1
=
µ

ρ

∂2w1

∂y21
− By1

ρ
Jx1 (3.9)

where g, βT , T, T∞, βc, C1, C∞, µ, By1 , Jz1 , Jx1 and ρ in equations (3.8) and

(3.9) are respectively the gravitational field strength, thermal expansion coefficient,

dimensional temperature, dimensional free stream temperature, concentration ex-

pansion coefficient, dimensional concentration of the injected material, dimensional

free stream concentration, dynamic viscosity coefficient, magnetic field vector in

y1-direction, current density in z1 direction, current density in x1 direction and

fluid density.

The fluid is electrically conducting with minimal electrical resistance implying that

electric current due to Hall and ion slip effects produces insignificant heat energy

(joule heating) in the system. Given that the contribution of joule heating to the

total heat energy is very minimal, then equation (1.16) which is the equation of

energy for the temperature can be written as

ρCp

(
∂T

∂t
+ (V · ∇)T

)
= k∇2T + µφ+Q (3.10)

where k, φ and Q are thermal conductivity, thermal energy due to dissipative heat

and internal heat generation respectively. Thermal energy due to dissipative heat,
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φ along y1 direction is given by

φ = (
∂u1
∂y1

)2 + (
∂v∗0
∂y1

)2 + (
∂w1

∂y1
)2 (3.11)

Considering that temperature is dependent on y1 and t1 only, the components of

equation (3.10) along x1 and z1 reduces to zero. Using equation (3.11) in equation

(3.10) and on simplification, the y1 component of equation (3.10) is given as

∂T

∂t1
− v∗0

∂T

∂y1
=

k

ρCp

∂2T

∂y21
+

µ

ρCp

(
(
∂u1
∂y1

)2 + (
∂w1

∂y1
)2
)

+
Q

ρCp
(3.12)

The species concentration can be given in form of the convective-diffusion equation

as

∂C1

∂t1
− v∗0

∂C1

∂y1
= D

∂2C1

∂y21
(3.13)

where D is the concentration diffusion coefficient. Equations (3.8), (3.9), (3.12),

and (3.13) are the main equations for considerations where Jz1 and Jx1 in equations

(3.8) and (3.9) are to be analyzed. Since heat is uniformly applied to the plate,

we apply Fourier’s law of heat conduction as given by Manyonge [36] as

∂T

∂y1
= − q

k
(3.14)

For simplicity, internal heat generation in the system as explained by Chandra [34]

is assumed to be given as qν
kU
Q, where U is the velocity of the plate.

From the setting of the problem as indicated in the statement of the problem, we

apply the following initial and boundary conditions

For t1 ≤ 0 :

u1(y1, 0) = 0, w1(y1, 0) = 0 (3.15)

and

T (y1, 0) = T∞, C1(y1, 0) = C∞ (3.16)

For t1 > 0 :

u1(0, t1) = U, w1(0, t1) = 0,
∂T

∂y1
= − q

k
, C1(0, t1) = Cw1 (3.17)

and

u1(∞, t1) = 0, w1(∞, t1) = 0, T (∞, t1) = T∞, C1(∞, t1) = C∞ (3.18)
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Considering the effects of ion-slip currents as given by Chandra [34], the general-

ized Ohm’s law is given as

J = σ(E + V ×B)− ωeτe
B0

(J×B)− ωeτeβn
B2

0

((J×B)×B) (3.19)

where B, E, V, J, σ, ωe, τe, βn are respectively the magnetic field vector, the electric

field vector (E = [Ex1 , Ey1 , Ez1 ]), the fluid velocity vector (V = [u1, v1, w1]), the

current density vector, the heat conductivity of the fluid, the cyclotron frequency,

the electron collision time and the ion-slip parameter.

For partially ionized fluids, the magnetic Reynolds number may be neglected since

the induced magnetic field is negligible in comparison to the applied magnetic field

but the effects of viscous dissipation in the fluid is taken into account as indicated

by Kinyanjui et al [30]. Given that B ≡ (Bx1 , By1 , Bz1) and in the absence of free

magnetic poles, the solenoidal relation, ∇.B = 0 implies that By1 = B0= constant

everywhere in the flow. The equation of the conservation of electric charge∇.J = 0

where J ≡ (Jx1 , Jy1 , Jz1) gives Jy1= constant. This constant is zero since Jy1 = 0

at each point on the plate which is electrically non-conducting. Thus Jy1 = 0

everywhere in the flow. From the assumption that the induced magnetic fields

are neglected, then the Maxwell’s equation (Faraday’s law of induction) given in

equation (1.7) becomes

∇× E = 0 (3.20)

which gives
∂Ex1
∂x1

= 0 (3.21)

and
∂Ez1
∂z1

= 0 (3.22)

Equations (3,21) and (3.22) implies that Ex1 and Ez1 which are electric field vectors

along x1-axis and z1-directions respectively are constant everywhere in the flow.

Equation (3.19) can therefore be expressed into components form along the x1 and

z1 directions only since Jy1 = 0. Therefore equating the x1 and z1 components of

equation ( 3.19) we get

Jx1 = σ(−Ex1 + w1By)−
ωeτeBy1Jz1

B0

− ωeτeβnJx1
B2

0

(3.23)
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and

Jz1 = σ(−Ez1 + u1By) +
ωeτeBy1Jx1

B0

− ωeτeβnJz1
B2

0

(3.24)

In view of the above assumptions made on magnitude of magnetic field vector, B,

and that B2
0 ≡ B0 · B0 = 1 as explained by Makinde [17], equations (3.23) and

(3.24) are simplified to give us

Jx1 = σ(−Ex1 + w1B0)− ωeτeJz1 − ωeτeβnJx1 (3.25)

and

Jz1 = σ(−Ez1 + u1B0) + ωeτeJx1 − ωeτeβnJz1 (3.26)

Choosing βm = ωeτe as the Hall current parameter and rearranging equations

(3.25) and (3.26) we get

Jx1(1 + βmβn)− βmJz1 = σEx1 − σB0w1 (3.27)

and

Jz1(1 + βmβn) + βmJx1 = σEz1 + σB0u1 (3.28)

To get the current densities Jx1 and Jz1 , we solve equations (3.27) and (3.28) si-

multaneously giving

Jx1 =
σ[(1 + βmβn)(Ex1 −B0w1) + βm(Ez1 +B0u1)]

(1 + βmβn)2 + β2
m

(3.29)

Jz1 =
σ[(1 + βmβn)(Ez1 +B0u1)− βm(Ex1 −B0w1)]

(1 + βmβn)2 + β2
m

(3.30)

Using equations (3.29) and (3.30), the equations of motion along x1 and z1 direc-

tions as shown in equations (3.8) and (3.9) become

∂u1
∂t1
− v∗0

∂u1
∂y1

= gβT (T − T∞) + gβc(C1 − C∞) +
µ

ρ

∂2u1
∂y21
−

σB0[(1 + βmβn)(Ez1 +B0u1)− βm(Ex1 −B0w1)]

ρ[(1 + βmβn)2 + β2
m]

(3.31)

∂w1

∂t
−v∗0

∂w1

∂y1
=
µ

ρ

∂2w1

∂y21
−σB0[(1 + βmβn)(Ex1 −B0w1) + βe(Ez1 +B0u1)]

ρ[(1 + βmβn)2 + β2
m]

(3.32)
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The electric field vector Ez1 along the z1- axis produces force equivalent to −B0U

according to the usual Fleming’s law of electromagnetic induction as explained

by Chandra [34], where U is the plate velocity. The effect of electric field vector

Ex1 on the flow is infinitesimal and so Ex1 ≈ 0. Equations (3.31) and (3.32) are

therefore reduced to equations (3.33) and (3.34) respectively.

∂u1
∂t1
− v∗0

∂u1
∂y1

= gβT (T − T∞) + gβc(C1 − C∞) + ν
∂2u1
∂y21
−

σB2
0 [(1 + βmβn)(u1 − U) + βmw1]

ρ[(1 + βmβn)2 + β2
m]

(3.33)

∂w1

∂t1
− v∗0

∂w1

∂y1
= ν

∂2w1

∂y21
− σB2

0{(1 + βmβn)w1 − βm(u1 − U)}
ρ[(1 + βmβn)2 + β2

m]
(3.34)

The dimensional equations (3.33) and (3.34) together with (3.12) and (3.13) which

are the model equations to be solved are converted to non-dimensional form. We

define the dimensionless quantities as follows:

Let

u =
u1
U
,w =

w1

U
, v0 =

v∗0
U

y =
y1U

ν
, t =

t1U
2

ν
, C =

C1 − C∞
Cw − C∞

θ =
T − T∞

( qν
kU

)

Equations (3.12), (3.13), (3.33) and (3.34) are dimensionalized giving us

U3

ν

∂u

∂t
− v0U

3

ν

∂u

∂y
= gβT θ(

qν

kU
) + gβc(Cw − C∞)C +

U3

ν

∂2u

∂y2
−

σB2
0 [(1 + βmβn)(uU − U) + βmwU ]

ρ[(1 + βmβn)2 + β2
m]

(3.35)

U3

ν

∂w

∂t
− v0U

3

ν

∂w

∂y
=
U3

ν

∂2w

∂y2
− σB2

0 [(1 + βmβn)wU − βm(uU − U)]

ρ[(1 + βmβn)2 + β2
m]

(3.36)
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U2

ν
(
qν

kU
)
∂θ

∂t
− v0U

2

ν
(
qν

kU
)
∂θ

∂y
=

U2k

ρCpν2(
qν
kU

)

∂2θ

∂y2
+

Qν

ρCpU2( qν
kU

)
+

U4

ν2Cp
[(
∂u

∂y
)2 + (

∂w

∂y
)2] (3.37)

(Cw − C∞)
U2

ν

∂C

∂t
− (Cw − C∞)

v0U
2

ν

∂C

∂y
= (Cw − C∞)D

U2

ν2
∂2C

∂y2
(3.38)

On dividing equations (3.35)and (3.36) all through by U3

ν
, equation (3.37) all

through by U2

ν
( qν
kU

) and equation (3.38) all through by (Cw − C∞)U
2

ν
, we have

∂u

∂t
− v0

∂u

∂y
=
νgθβT ( qν

kU
)

U3
+
νgβc(Cw − C∞)C

U3
+
∂2u

∂y2
−

νσB2
0 [(1 + βmβn)(u− 1) + βmw]

U2ρ[(1 + βmβn)2 + β2
m]

(3.39)

∂w

∂t
− v0

∂w

∂y
=
∂2w

∂y2
− νσB2

0 [(1 + βmβn)w − βm(u− 1)]

U2ρ[(1 + βmβn)2 + β2
m]

(3.40)

∂θ

∂t
− v0

∂θ

∂y
=

k

ρνcp

∂2θ

∂y2
+

Qν

ρCpU2( qν
kU

)
+

U

Cp(
qν
kU

)

[
(
∂u

∂y
)2 + (

∂w

∂y
)2
]

(3.41)

∂C

∂t
− v0

∂C

∂y
=
D

ν

∂2C

∂y2
(3.42)

Equations (3.39) to (3.42) can be written as

∂u

∂t
− v0

∂u

∂y
= Grθ +GcC +

∂2u

∂y2
− M2[(1 + βmβn)(u− 1) + βmw]

[(1 + βmβn)2 + β2
m]

(3.43)

∂w

∂t
− v0

∂w

∂y
=
∂2w

∂y2
− M2[(1 + βmβn)w − βm(u− 1)]

[(1 + βmβn)2 + β2
m]

(3.44)

∂θ

∂t
− v0

∂θ

∂y
=

1

Pr

∂2θ

∂y2
− Biθ

Pr
+ Ec[(

∂u

∂y
)2 + (

∂w

∂y
)2] (3.45)
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∂C

∂t
− v0

∂C

∂y
= Sc

∂2C

∂y2
(3.46)

where

Gr = νgθβT
U3 ( qν

kU
) is the Grashof number,

Gc = νgβc(Cw−C∞)
U3 is the modified Grashof number,

M = [(σν
ρ

)
1
2
B0

U
] is the Hartmann number,

Pr = νρCp
k

= µcp
k

is the Prandtl number,

Bi = Qν
kU2 is the convective heat exchange parameter,

Ec = U
Cp(

qν
kU

)
is the Eckert number,

Sc = D
ν

is the mass diffusion parameter.

The initial and boundary conditions are non-dimensionalized so as to get

For t ≤ 0 :

u(y, 0) = 0, w(y, 0) = 0 (3.47)

and

θ(y, 0) = 0, C(y, 0) = 0 (3.48)

For t > 0 :

u(0, t) = 1, w(0, t) = 0, θ(0, t) = 1, C(0, t) = 1 (3.49)

and

u(∞, t) = 0, w(∞, t) = 0, θ(∞, t) = 0, C(∞, t) = 0 (3.50)

In order to reduce the number of equations at the present level, we apply complex

transformation as follows: Z = u+ iw− 1, where i =
√
−1 and Z̄ = u− iw− 1

the complex conjugate of Z. So that

∂Z

∂t
=
∂u

∂t
+ i

∂w

∂t
,

∂Z

∂y
=
∂u

∂y
+ i

∂w

∂y
,

∂2Z

∂y2
=
∂2u

∂y2
+ i

∂2w

∂y2

and

∂Z

∂y
· ∂Z̄
∂y

= (
∂u

∂y
+ i

∂w

∂y
) · (∂u

∂y
− i∂w

∂y
)

= (
∂u

∂y
)2 + (

∂w

∂y
)2
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Adding equations (3.43) and (3.44) together, we get

∂u

∂t
+
∂w

∂t
− v0(

∂u

∂y
+
∂w

∂y
) = Grθ +GcC +

∂2u

∂y2
+
∂2w

∂y2
−

M2 ([(1 + βmβn)(u− 1) + βmw] + [(1 + βmβn)w − βm(u− 1)])

[(1 + βmβn)2 + β2
m]

(3.51)

On applying the complex transformation explained above, equation (3.51) is there-

fore written as
∂Z

∂t
− v0

∂Z

∂y
=
∂2Z

∂y2
+Grθ +GcC−

M2 ((1 + βmβn)(u+ iw − 1)− iβm(u+ iw − 1))

[(1 + βmβn)2 + β2
m]

(3.52)

or

∂Z

∂t
− v0

∂Z

∂y
=
∂2Z

∂y2
+Grθ +GcC −

M2 ((1 + βmβn)− iβm)Z

[(1 + βmβn)2 + β2
m]

(3.53)

Equation (3.45) after simplification becomes

∂θ

∂t
− v0

∂θ

∂y
=

1

Pr

∂2θ

∂y2
− Biθ

Pr
+ Ec

∂Z

∂y

∂Z̄

∂y
(3.54)

The initial and boundary conditions after transformation become

For t ≤ 0:

Z(y, 0) = 0, θ(y, 0) = 0, C(y, 0) = 0 (3.55)

For t > 0 :

Z(0, t) = 1, θ(0, t) = 1, C(0, t) = 1 (3.56)

and

Z(∞, t) = 0, θ(∞, t) = 0, C(∞, t) = 0 (3.57)
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CHAPTER 4

MODEL SOLUTION

4.1 Numerical technique:

It is a fact that unsteady partial differential equation models can only be solved

numerically by finite difference techniques. In order to solve the unsteady non-

linear partial differential equations (3.53), (3.54) together with (3.46) under the

initial and boundary conditions in equations (3.55) to (3.57), a finite difference

approximation scheme for the second derivative in space and first derivative in

time has been employed. Equations (3.53), (3.54), and (3.46) in finite difference

form are as follows, respectively.

Zi,j+1 − Zi,j
∆t

= v0
(Zi,j − Zi−1,j)

∆y
+

(Zi−1,j − 2Zi,j + Zi+1,j)

(∆y)2
+

Grθi,j +GcCi,j −
M2[(1 + βmβn)− iβm]Zi,j

[(1 + βmβn)2 + β2
m]

(4.1)

θi,j+1 − θi,j
∆t

= v0
(θi,j − θi−1,j)

∆y
+

(θi−1,j − 2θi,j + θi+1,j)

Pr(∆y)2
−

Bi

Pr
θi,j + Ec

(Zi,j − Zi−1,j)
∆y

(Z̄i,j − Z̄i−1,j)
∆y

(4.2)

Ci,j+1 − Ci,j
∆t

= v0
(Ci,j − Ci−1,j)

∆y
+ Sc

(Ci−1,j − 2Ci,j + Ci+1,j)

(∆y)2
(4.3)

In this study, we used the approximate absolute value of the nodal point defined

by (Zi,j − Zi−1,j)(Z̄i,j − Z̄i−1,j), which is the numerator of last term in equation

(4.2) as (Zi−1,j − 2Zi,j + Zi+1,j) as explained by Muschietti [37]. Using Zi,j ≡ Zj
i ,

θi,j ≡ θji , Ci,j ≡ Cj
i , equations (4.1), (4.2) and (4.3) in finite difference form can

be explicitly written as follows:

Zj+1
i = (ai−v0di)Zj

i−1+(v0di+1−2ai−M2αi)Z
j
i +aiZ

j
i+1+∆tGrθ

j
i+∆tGcC

j
i (4.4)
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θj+1
i = (

ai
Pr
− v0di)θji−1 + (1 + v0di −

2ai
Pr

+
Bi

Pr
∆t)θji +

ai
Pr
θji+1+

Ecai(Z
j
i−1 − 2Zj

i + Zj
i+1) (4.5)

Cj+1
i = (aiSc − v0di)Cj

i−1 + (v0di + 1− 2aiSc)C
j
i + aiScC

j
i+1 (4.6)

where

ai =
∆t

(∆y)2
, di =

∆t

(∆y)

and

αi =
∆t(1 + βmβn)− iβm

(1− βmβn)2 + β2
m

The suffix i corresponds to nodal points in y while j corresponds to t (see Figure

4.1). Also ∆t = tj+1 − tj and ∆y = yi+1 − yi. Knowing the values of Z, θ, and C

at a time t, we can then calculate their values at the next time step (see Figure

4.1). Although the boundary conditions for t > 0 applies to y = ∞ , (where ∞
in this context refers to a large number). For convenience, we used domain length

along the grid as y = 1.0. This choice of spacial length is applicable to modeling of

MHD fluid flows over moving flat horizontal plates as explained by Makinde [22]

and Kinyanjui [30] in their model solutions. We subdivided our solution domain on

y into 101 solution points where i = 101 as corresponding to y =∞ and therefore

Z(101, j) = θ(101, j) = C(101, j) = 0. This is chosen so because Z, θ, C tend to

zero at around y = 1.0 as per the boundary equation (3.57).

The velocity at y = 0, (i = 0) has to change rapidly to 1 from its value of zero at

t < 0 since the plate is impulsively set into motion by velocity U , hence Z0,j = 1.

The concentration of the injected material also changes rapidly to 1 from its zero

value at t < 0 giving C0,j = 1.

While velocity and concentration change as explained, the temperature of the

plate wall changes gradually due to the effect of the constant heat flux at the plate

(y = 0) hence θ0,0 = 0. Therefore the following set of initial conditions are applied.

For t ≤ 0 : For all i: Zi,0 = 0, θi,0 = 0, Ci,0 = 0

The boundary conditions for the velocity, temperature and concentration are then

given as follows:

For j > 0 at y = 0:

Z0,j = 1, θ0,j = 0, C0,j = 1 (4.7)

For j > 0 at y =∞:
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Figure 4.1: Computational molecule for the explicit numerical difference scheme.

Z∞,j =, θ∞,j = 0, C∞,j = 0 (4.8)

The difference equations (4.4) to (4.6) were programmed into a mathematica code

(see Appendix). The velocity at the end of time step ∆t, viz. Z(i, j+1), i =

1, 2, ..., 100 is computed from equation (4.4) in terms of velocities, temperatures

and concentrations at points on earlier time step. Similarly, θ(i, j + 1) and C(i,

j+1) are computed from equation (4.5) and (4.6) respectively. This procedure

is continued until j = 1200. That is, up to time t = 0.048. Computations are

carried out for water using Pr = 7.0 as per the findings of Aziz [3]. The Grashof

number, Gr = 0.2 used corresponds to cooling of the plate by free convection.

Other physical parameters used in the present study with their standard values

when water is the fluid under consideration as explained by Aziz [3] and Crank

[35] are: Sc = 0.4, Gc = 1.0, m2 = 5.0, Ec = 0.01, v0 = 0.5, βm = 1.0, βn = 0.2

and Bi = 1.0.

4.2 Convergence and stability

A numerical method is said to be convergent if the solution of the difference equa-

tion by the numerical technique used tends to the exact solution of the difference

equation as ∆y and ∆t both tend to zero. The difference between exact solution

and numerical solution is called the discretization error. In general, the discretiza-

tion error can be decreased by decreasing ∆y and ∆t. This means that the number

of equations to be solved will increase and the method will be restricted by such
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factors as time, degree of accuracy desired and computer core capacity.

A system of finite difference equations is stable when the cumulative effect of all

the rounding errors is negligible. Since an explicit scheme of a finite difference

technique is being used for determining the unknown nodal values at the (n+ 1)th

time step from the nodal values at the nth time step, there is need to know the

largest time-step consistent with stability, for which the solution to the present

problem is achievable.

In order to test convergence and stability, we used Von Neumann method for sta-

bility as explained by Crank [35], an explicit method is both convergent and stable

if the mesh ratio parameter, λ is such that

λ =
k′∆t

(∆y)2
≤ 1

2
(4.9)

where k′ in equation (4.9) is the coefficient of heat diffusivity.

Based on Crank’s analysis on how to get a suitable mesh ratio for finite difference

scheme for small heat flow rate, as in our case, he found out that k′ can be taken

to be 1.0 cm2/s. To come up with the choice of step sizes for time and length, the

following points were considered (based on the above discussion):

1. For finite difference method the control of accuracy and adjustment of the

step size ∆t is done by comparison of the results due to double or single step

size. This is one of the many methods available in the literature as explained

by Ram [23], Manyonge [36] and Makinde [22]

2. The explicit finite difference scheme satisfies the condition of stability given

in equation (4.9)

For this case, in order to make sure that time-step, ∆t is in line with stability

criterion, we used spacial step size, ∆y as 0.01 given that the grid length is 1.0

and grid range of 100 was chosen. The maximum time-step for this choice of ∆y

was 0.00005 corresponding to a mesh ratio of 0.5. The best results were obtained

when we used 0.4 as the mesh ratio with ∆t = 0.00004 for the mathematica

algorithm applied in the present study. The program was run with smaller values

of time-step, ∆t such as ∆t = 0.00001, 0.000001 and it was noted that there

were no significant changes in the results, which ensures that the finite difference

method used in this problem converges and is stable. That is, numerical solutions

Zj
i , θ

j
i and Cj

i of the discrete equations (4.4) to (4.6) approximate the analytical

solutions Z(y, t), θ(y, t) and C(y, t) respectively, of the p.d.e on the grid.
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 Concentration profiles

To come up with results for the present research, numerical computations have

been performed for the concentration, temperature and velocity. The results are

represented by use of graphs.

The chemical species concentration profiles against span-wise coordinate y for vary-

ing values of physical parameters in the boundary layer flow can be analyzed from

Figures 5.1-5.3. From these figures, it is seen that the concentration of the mass

(chemical species) value of unity at the plate surface, remains fairly constant within

the boundary layer but later on decreases rapidly till it attains the minimum value

of zero far away from the plate surface. Physically, an increase in mass diffusion

parameter, Sc means a decrease of molecular diffusion D. This could be happening

because for higher values of Sc, there is a relatively reduced level of ion concen-

tration in the fluid. Hence, the concentration of the species is higher for smaller

values of Sc and lower for larger values of Sc. It is clear from Figure 5.1 that an

increase in mass diffusion parameter, Sc, leads to a decrease in the concentration

of the injected materials. However, the mass diffusion parameter is seen to have

no effect on the concentration near the boundary. The effect of Sc is only noticed

as the distance from the plate increases. Figure 5.2 reveals that the concentration

of the injected materials increases with an increase in the time, t far away from the

plate surface. This could be due to the cumulative concentration of the injected

ions. Figure 5.3 shows that as the distance from the free stream region increases,

the concentration profiles increase with the withdrawal of suction velocity, v0.

5.2 Temperature profiles

The influence of various thermophysical parameters on the temperature profiles

against coordinate y is demonstrated in Figures 5.4-5.8. From Figure 5.4 it is

noted that the temperature profiles increase with an increase in ion slip parame-

ter, βn. This can be attributed to the fact that temperature distribution depends

upon the streams of the fluid and the velocity gradient of the fluid. In the present

case, velocity changes with changes in βn and Hall parameter, βm in different pro-

portions. The increase in βn gives rise to increase in velocity resulting in increase
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Figure 5.1: Concentration profiles for different values of Sc when v0 = 0.5 and
t = 0.032.

Figure 5.2: Concentration profiles for different values of t when Sc = 0.4 and
v0 = 0.5.

Figure 5.3: Concentration profiles for different values of v0 when Sc = 0.4 and
t = 0.32.
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Figure 5.4: Temperature profiles for different values of βn when Sc = 0.4, v0 = 0.5,
Gr = 0.2, Gc = 1.0, Pr = 7.0, Ec = 0.01, t = 0.032, βm = 1.0, M2 = 5.0, Bi = 1.0

.

in temperature while increase in βm although increases velocity, it decreases the

temperature fields within the flow. Figure 5.5 shows that an increase in modi-

fied Grashof number, Gc results in an increase in temperature profiles. Gc has an

overall tendency to influence the velocity gradient of the flow hence increasing the

velocity. This could be the reason for high temperatures when Gc is increased.

It is observed from Figure 5.6 that an increase in Hall parameter, βm leads to a

decrease in the temperature profiles. It also seen from Figure 5.7 that an increase

in time, t leads to a rise in temperature profiles of the fluid. This is because tem-

perature increase as heat is continuously supplied to the fluid. Figure 5.8 reveals

that the temperature profiles for the fluid is not affected by the withdrawal of the

suction velocity, v0. The reason is that the overall effect of v0 on velocity is seen

to be zero hence no effect on temperature. It is observed in Figures 5.4-5.8 that at

around mid-point, y = 0.5 the temperature value is higher than the main source

of heating which is the flat plate. The high temperatures (θ ≥ 100) could be at-

tributed to accumulation of heat within the flowing fluid as a result of heating by

the plate, internal heat generation since the fluid is viscous and heat dissipation

due to momentum diffusivity.

5.3 Velocity profiles

Figures 5.9 - 5.16 represent graphs of velocity distribution with span-wise coor-

dinate y for different values of thermophysical parameters. It is evident from

Figures 5.9, 5.10, 5.13 - 5.16 that for Gr > 0 , velocity from its initial value of

one at the plate surface increases gradually until it reaches its peak value away
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Figure 5.5: Temperature profiles for different values of Gc when Sc = 0.4, v0 = 0.5,
Gr = 0.2, βn = 0.2,Pr = 7.0, Ec = 0.01, t = 0.032, βm = 1.0, M2 = 5.0, Bi = 1.0

.

Figure 5.6: Temperature profiles for different values of βm when Sc = 0.4, v0 = 0.5,
Gr = 0.2, βn = 0.2,Pr = 7.0, Ec = 0.01, t = 0.032, Gc = 1.0, M2 = 5.0, Bi = 1.0

.
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Figure 5.7: Temperature profiles for different values of t when Sc = 0.4, v0 = 0.5,
Gr = 0.2, βn = 0.2,Pr = 7.0, Ec = 0.01, Gc = 1.0, βm = 1.0, M2 = 5.0, Bi = 1.0

.

Figure 5.8: Temperature profiles for different values of v0 when Sc = 0.4, Gc = 1.0,
Gr = 0.2, βn = 0.2,Pr = 7.0, Ec = 0.01, t = 0.032, βm = 1.0, M2 = 5.0, Bi = 1.0

.
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from the plate surface then gradually decreases to zero far away from the plate

surface. For Gr < 0, (Figures 5.11 and 5.12) the velocity from its initial value of

unity, drops to steady value approximately 0.2 near the boundary region before

gradually attaining its minimum zero value far away from the plate surface. It

is observed from Figure 5.9 that a decrease in Hall parameter, βm leads to an a

decrease in the velocity profiles. Figure 5.10 shows that velocity profiles rise with

an increase in ion slip parameter, βn. Figure 5.11 displays that for Gr = −0.2, the

velocity profiles decrease as the Hall parameter, βm falls. Figure 5.12 reveals that

for Gr = −0.2, the velocity profiles increase as the ion slip parameter, βn increases.

The effects of βn and βm on velocity profiles can be explained that both parame-

ters enhance the fluid velocity slightly, possibly due to the fact that the effective

conductivity term,
(

σ
(1+βnβm)2+β2

m

)
, decreases with increase in βn and βm which

decreases the magnetic resistance force hence increasing rate of fluid flow. It is

noted from Figure 5.13 that an increase in squared magnetic parameter, M2 leads

to a decrease in velocity profiles. This is attributed to the increasing damping force

caused by presence of Lorentz force which decreases the fluid velocity. Figure 5.14

shows that an increase in modified Grashof number, Gc results in an increase in

the velocity profiles. The possible reason for this observation being that the ionic

strength of the fluid makes it more conductive hence creating more thermal force

which increases the particles’ speed. Figure 5.15 reveals that withdrawal of suction

velocity, v0, results in a decrease in the velocity from the plate surface to near the

mid stream region but the velocity profiles rises as the distance increases past the

free stream. This can be attributed to the fact that suction ”delays” or prevents

boundary layer separation since nearer the wall, the fluid travels at a lower velocity

and also convection of the fluid pushes heated fluid past the mid-stream where the

effect of boundary layer separation is more stable. It is observed from Figure 5.16

that an increase in time, t results in a large increase in the velocity profiles for the

flow. This is mainly because the flow variables directly depend on time factor.
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Figure 5.9: Velocity profiles for different values of βm when Sc = 0.4, v0 = 0.5,
Gr = 0.2, Gc = 1.0,Pr = 7.0, Ec = 0.01, t = 0.032, βn = 0.2, M2 = 5.0, Bi = 1.0

.

Figure 5.10: Velocity profiles for different values of βn when Sc = 0.4, v0 = 0.5,
Gr = 0.2, Gc = 1.0, Pr = 7.0, Ec = 0.01, t = 0.032, βm = 1.0, M2 = 5.0, Bi = 1.0

.
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Figure 5.11: Velocity profiles for different values of βm when Sc = 0.4, v0 = 0.5,
Gr = −0.2, Gc = 1.0, Pr = 7.0, Ec = 0.01, t = 0.032, βn = 0.2, M2 = 5.0, Bi = 1.0

.

Figure 5.12: Velocity profiles for different values of βn when Sc = 0.4, v0 = 0.5,
Gr = −0.2, Gc = 1.0, Pr = 7.0, Ec = 0.01, t = 0.032, βm = 1.0, M2 = 5.0,
Bi = 1.0

.
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Figure 5.13: Velocity profiles for different values of M2 when Sc = 0.4, v0 = 0.5,
Gr = 0.2, Gc = 1.0, Pr = 7.0, Ec = 0.01, t = 0.032, βm = 1.0, βn = 0.2, Bi = 1.0

.

Figure 5.14: Velocity profiles for different values of Gc when Sc = 0.4, v0 = 0.5,
Gr = 0.2, M2 = 5.0, Pr = 7.0, Ec = 0.01, t = 0.032, βm = 1.0, βn = 0.2, Bi = 1.0

.

Figure 5.15: Velocity profiles for different values of v0 when Sc = 0.4, Gc = 1.0,
Gr = 0.2, M2 = 5.0, Pr = 7.0, Ec = 0.01, t = 0.032, βm = 1.0, βn = 0.2, Bi = 1.0

.
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Figure 5.16: Velocity profiles for different values of t when Sc = 0.4, Gc = 1.0,
Gr = 0.2, M2 = 5.0, Pr = 7.0, Ec = 0.01, v0 = 0.5, βm = 1.0, βn = 0.2, Bi = 1.0

.
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CHAPTER 6

SUMMARY AND RECOMMENDATIONS

6.1 Summary

In this work, we formulated governing MHD equations describing unsteady flow

for a viscous, incompressible, electrically conducting fluid past an infinite flat plate

subjected to mass and heat transfer with convective surface boundary condition.

The resulting approximate coupled non-linear partial differential equations gov-

erning the flow after dimensionalization have been modeled numerically using ex-

plicit finite difference method. The final non-dimensionalized explicit difference

equations were programmed into a mathematica code and the solutions were then

generated. A parametric study of the specific parameters involved in the flow is

conducted and a representative set of numerical results for the velocity and tem-

perature distribution as well as concentration profiles are illustrated graphically

to show trends of the solution to our research problem.

From the present numerical investigation, we established that for Prandtl number,

Pr = 7.0, which corresponds to that of water, the temperature of the liquid gen-

erally increases from zero on the plate surface, attains a maximum value slightly

away from the boundary region and then decreases to free stream value far away

from the plate surface. This shows that in the presence of constant heat flux, cool-

ing of the plate by free convection currents, (Gr > 0) causes an increase in thermal

boundary layer thickness. It was noticed that within the free stream region, the

temperature value is higher than the main source of heating which is the flat plate.

The high temperature could be as a result of accumulation of more heat within the

flowing fluid caused by convective heating by the plate, internal heat generation

since the fluid is viscous and heat dissipation due to momentum diffusivity.

For cooling of the plate by free convection currents (Gr > 0) and presence of

constant heat flux, an increase in ion-slip parameter and Hall parameter leads to

an increase in velocity boundary layer thickness. This is because an increase in

the two parameters have a general effect of suppressing heat conduction and mag-

netic resistance force thereby increasing flow velocity. However, for Gr < 0, which

corresponds to heating of the plate by free convection currents and presence of

constant heat flux, increase in ion-slip parameter and Hall parameter results in an

increased velocity boundary layer thickness but of lower magnitude compared to

those of Gr > 0. Reason being that as the plate is heated by convection, conduc-

tivity term is lowered more, magnetic resistance force is suppressed to a very low

43



value resulting into low velocity profiles.

For Gr > 0, it is observed that past the free stream region, increase in time

produces an increase in concentration level while the concentration of the fluid

decreases with increase in mass diffusion parameter, Sc. This is happening simply

because for higher values of Sc, there is a relatively reduced level of ion concentra-

tion in the fluid. Also increase in time, t and Gc results in a thick boundary layer

for both velocity and temperature as compared to the effects of other parameters.

It is observed that using a strong magnetic field intensity, (increasing magnetic

parameter, M2) degrades rather than enhance the momentum change efficiency.

This is because the presence of magnetic field in an electrically conducting fluid

introduces a force called Lorenz force, which acts against the flow if the magnetic

field is applied in the normal direction to the flow, as in the present case. This

type of resisting force slows down the fluid velocity. This finding on the effect

of magnetic parameter is in agreement with what was observed by Kinyanjui et

al [30] that an increase in magnetic parameter results in a decrease in the fluid

velocity profiles.

An interesting finding in this study is the reversal nature of the effect of with-

drawal of suction velocity, v0, on the velocity. This reveals that without suction

velocity, velocity of the fluid is lower on the plate surface than far away from the

plate surface.

6.2 Recommendations

Finally, our analysis suggests several areas in which additional research would be

useful. For example we recommend research on unsteady MHD heat and mass

flow over a wavy plate for a turbulent flow with surface boundary condition.

We recommend that an extension of this study is pursued for a case where contri-

bution of joule heating to the total heat energy (which we assumed to be negligible)

is taken into consideration.

We do recommend also that an extension of this study is pursued for a case where

the component of body forces along y1 (forces parallel to magnetic force field) is

taken in consideration.
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APPENDICES

A.1 Mathematica code (Concentration)

Np = ”value”; yI = ”value”; yF = ”value”;

step = (yF − yI)/(Np − 1); h = N [step];

Sc = ”value”; u0 = ”value”; Gr = ”value”; M2 = ”value”;

Bi = ”value”; Pr = ”value”; Ec = ”value”; βm = ”value”;

βn = ”value” ; α = (1− βm ∗ βn − βm)/((1− βm ∗ βn)2 + β2
m);

grid = Range[yI, yF, h];

np = Length[grid];

tstep = ”value”;

a1 = tstep ∗Map[((1/h− u0)/h), , grid];

b1 = tstep ∗Map[((u0 + h/tstep−m2 ∗ α ∗ h− 2/h)/h), , grid];

d1 = tstep ∗Map[(1/h2), , grid];

e = tstep ∗Map[Gr, grid];

f = tstep ∗Map[Gc, grid];

a2 = a1;

b2 = tstep ∗Map[((u0 − (2/h) + h/tstep)/h), , grid];

d2 = d1;

a3 = tstep ∗Map[((Sc/h− u0)/h), , grid];

b3 = tstep ∗Map[((u0 − (2/h) ∗ Sc + h/tstep)/h), , grid];

d3 = tstep ∗Map[Sc/h
2, , grid];

nsteps = ”value”;
v1 = Map[0, , grid]; v2 = Map[0, , grid]; v3 = Map[0, , grid];

Z = Map[1, , grid]; θ = Map[1, , grid]; C = Map[1, , grid];

Z[[np]] = 0; θ[[np]] = 0; C[[np]] = 0;

Do [{t = j ∗ tstep;
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Do[{ v1[[1]] = Z[[1]];

v2[[1]] = θ[[1]];

v3[[1]] = C[[1]];

v1[[np]] = Z[[np]];

v2[[np]] = θ[[np]];

v3[[np]] = C[[np]];

v1[[i]] = a1[[i]]Z[[i− 1]] + b1[[i]]Z[[i]] + d1[[i]]Z[[i+ 1]]

+e[[i]]θ[[i]] + f [[i]]c[[i]];

v2[[i]] = a1[[i]θ[[i− 1]] + b2[[i]]θ[[i]] + d1[[i]]θ[[i+ 1]]− (Bi/Pr)

∗tstep+ Ec ∗ (Z[[i− 1]]− 2 ∗ Z[[i]]) + (Z[[i+ 1]]) ∗ tstep/h2;

v3[[i]] = a3[[i]]C[[i− 1]] + b3[[i]]C[[i]] + d3[[i]]C[[i+ 1]], }{i, 2, np− 1}];

Z = Re(v1);

θ = Re(v2);

C = v3;

If [Mod[j,”value”]==0, (Print[ListPlot[Transpose[{grid,C}], Frame→ True, Joined

→ True,

Plotstyle → Red, FrameLabel → {Style[”y”, ”value”], Style[”C(y, t)”, ”value”]},
Epilog →
Style[Text[”t = ”<> ToString[t], {”value”, 0.005}]]]},{j, 1, nsteps}];
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A.2 Mathematica code (Temperature)

Np = ”value”; yI = ”value”; yF = ”value”;

step = (yF − yI)/(Np − 1); h = N [step];

Sc = ”value”; u0 = ”value”; Gr = ”value”; M2 = ”value”;

Bi = ”value”; Pr = ”value”; Ec = ”value”; βm = ”value”;

βn = ”value” ; α = (1− βm ∗ βn − βm)/((1− βm ∗ βn)2 + β2
m);

grid = Range[yI, yF, h];

np = Length[grid];

tstep = ”value”;

a1 = tstep ∗Map[((1/h− u0)/h), , grid];

b1 = tstep ∗Map[((u0 + h/tstep−m2 ∗ α ∗ h− 2/h)/h), , grid];

d1 = tstep ∗Map[(1/h2), , grid];

e = tstep ∗Map[Gr, grid];

f = tstep ∗Map[Gc, grid];

a2 = a1;

b2 = tstep ∗Map[((u0 − (2/h) + h/tstep)/h), , grid];

d2 = d1;

a3 = tstep ∗Map[((Sc/h− u0)/h), , grid];

b3 = tstep ∗Map[((u0 − (2/h) ∗ Sc + h/tstep)/h), , grid];

d3 = tstep ∗Map[Sc/h
2, , grid];

nsteps = ”value”;
v1 = Map[0, , grid]; v2 = Map[0, , grid]; v3 = Map[0, , grid];

Z = Map[1, , grid]; θ = Map[1, , grid]; C = Map[1, , grid];

Z[[np]] = 0; θ[[np]] = 0; C[[np]] = 0;

Do [{t = j ∗ tstep;
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Do[{v1[[1]] = Z[[1]];

v2[[1]] = θ[[1]];

v3[[1]] = C[[1]];

v1[[np]] = Z[[np]];

v2[[np]] = θ[[np]];

v3[[np]] = C[[np]];

v1[[i]] = a1[[i]]Z[[i− 1]] + b1[[i]]Z[[i]] + d1[[i]]Z[[i+ 1]]

+e[[i]]θ[[i]] + f [[i]]c[[i]];

v2[[i]] = a1[[i]θ[[i− 1]] + b2[[i]]θ[[i]] + d1[[i]]θ[[i+ 1]]− (Bi/Pr)

∗tstep+ Ec ∗ (Z[[i− 1]]− 2 ∗ Z[[i]]) + (Z[[i+ 1]]) ∗ tstep/h2;

v3[[i]] = a3[[i]]C[[i− 1]] + b3[[i]]C[[i]] + d3[[i]]C[[i+ 1]], }{i, 2, np− 1}];

Z = Re(v1);

θ = Re(v2);

C = v3;

If [Mod[j,”value”]==0, (Print[ListPlot[Transpose[{grid,θ}], Frame→ True, Joined

→ True,

Plotstyle → Red, FrameLabel → {Style[”y”, ”value”], Style[”θ(y, t)”, ”value”]},
Epilog →
Style[Text[”t = ”<> ToString[t], {”value”, 0.005}]]]},{j, 1, nsteps}];
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A.3 Mathematica code (Velocity)

Np = ”value”; yI = ”value”; yF = ”value”;

step = (xF − xI)/(Np − 1); h = N [step];

Sc = ”value”; u0 = ”value”; Gr = ”value”; M2 = ”value”;

Bi = ”value”; Pr = ”value”; Ec = ”value”; βm = ”value”;

βn = ”value” ; α = (1− βm ∗ βn − βm)/((1− βm ∗ βn)2 + β2
m);

grid = Range[yI, yF, h];

np = Length[grid];

tstep = ”value”;

a1 = tstep ∗Map[((1/h− u0)/h), , grid];

b1 = tstep ∗Map[((u0 + h/tstep−m2 ∗ α ∗ h− 2/h)/h), , grid];

d1 = tstep ∗Map[(1/h2), , grid];

e = tstep ∗Map[Gr, grid];

f = tstep ∗Map[Gc, grid];

a2 = a1;

b2 = tstep ∗Map[((u0 − (2/h) + h/tstep)/h), , grid];

d2 = d1;

a3 = tstep ∗Map[((Sc/h− u0)/h), , grid];

b3 = tstep ∗Map[((u0 − (2/h) ∗ Sc + h/tstep)/h), , grid];

d3 = tstep ∗Map[Sc/h
2, , grid];

nsteps = ”value”;
v1 = Map[0, , grid]; v2 = Map[0, , grid]; v3 = Map[0, , grid];

Z = Map[1, , grid]; θ = Map[1, , grid]; C = Map[1, , grid];

Z[[np]] = 0; θ[[np]] = 0; C[[np]] = 0;

Do [{t = j ∗ tstep;
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Do[{v1[[1]] = Z[[1]];

v2[[1]] = θ[[1]];

v3[[1]] = C[[1]];

v1[[np]] = Z[[np]];

v2[[np]] = θ[[np]];

v3[[np]] = C[[np]];

v1[[i]] = a1[[i]]Z[[i− 1]] + b1[[i]]Z[[i]] + d1[[i]]Z[[i+ 1]]

+e[[i]]θ[[i]] + f [[i]]c[[i]];

v2[[i]] = a1[[i]θ[[i− 1]] + b2[[i]]θ[[i]] + d1[[i]]θ[[i+ 1]]− (Bi/Pr)

∗tstep+ Ec ∗ (Z[[i− 1]]− 2 ∗ Z[[i]]) + (Z[[i+ 1]]) ∗ tstep/h2;

v3[[i]] = a3[[i]]C[[i− 1]] + b3[[i]]C[[i]] + d3[[i]]C[[i+ 1]], }{i, 2, np− 1}];

Z = Re(v1);

θ = Re(v2);

C = v3;

If [Mod[j,”value”]==0, (Print[ListPlot[Transpose[{grid,Z}], Frame→ True, Joined

→ True,

Plotstyle → Red, FrameLabel → {Style[”y”, ”value”], Style[”Z(y, t)”, ”value”]},
Epilog →
Style[Text[”t = ”<> ToString[t], {”value”, 0.005}]]]},{j, 1, nsteps}];
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