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ABSTRACT

Population growth and harvest modeling is an active area of current research.

There has been an effort to move from deterministic Ordinary Differential Equa-

tions (ODE) to Stochastic Differential Equations (SDE) modeling. Moreover,

the latter is most realistic in describing life systems that are often perturbed by

unpredictable environmental activity. Bamboo growth and harvest modeling was

motivated by the “Tobacco to Bamboo” (TTB) Project where farmers in selected

sections of Homabay and Migori Counties in Kenya were persuaded to plant bam-

boo instead of tobacco. This was met with pessimism due to the lengthy wait,

at least three years, before harvesting. They also needed to know the expected

income compared to the tobacco income they used to earn. This study there-

fore sought to explore suitable models that could be used to determine optimal

expected sustainable bamboo yield. In view of this, data from the TTB project

was analyzed to determine parameters including population growth rate r, car-

rying capacity K and population size at time t, Nt. ODEs and SDEs were used

in modeling equilibrium populations and maximum sustainable yield. SDEs were

solved using Itô calculus and associated Fokker–Planck equations. The Monte-

Carlo simulation procedure was used to construct population trajectories under

various model parameter values. A stochastic model with both growth rate and

harvest parameters coupled with white noise and a three year delayed continuous

harvest proportional to population size was developed. This was found to be

most suitable since it ensures maximum mean sustainable yield without the risk

of extinction as long as noise was kept at low levels. The model may not only be

applied in bamboo harvesting strategies but also other renewable resources that

have similar population dynamics.
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CHAPTER ONE

INTRODUCTION

Population growth and decay are interesting dynamics for population modeling experts.

There are a series of factors that affect population dynamics. These include temperature,

rainfall, introduction of a new predator, congestion of the ecosystem due to uncontrolled

population growth, human activity that could be pro or against the population in ques-

tion, natural calamities including earthquakes, fires, landslides, floods and drought among

others.

Some of these factors are controllable so that the system is easily represented by some

precise and determinable variables. The reality is different though. In most cases it turns

out that the dynamic variables are often perturbed by uncontrollable deviations that can

only be explained by chance.

1.1 About bamboo

Bamboo is a member of the grass family, distinguished from other grasses by its woody

stems, branched growth and often by large size. They are easy to grow, but some may take

a lot of management to control unwanted spread. Worldwide, approximately 87 genera

and over 1,500 species of bamboo exist [63, 7] and among these nearly 62 are found in

the Philippines [79]. They range in size from dwarfs that are only 12 inches tall to giant

types that tower up to 60 feet tall. A few bamboos have variegated foliage and some have

very attractive canes of rose, burgundy, yellow, orange, gray or black. Although many

types of bamboo are tropical there are also many that grow in temperate regions. The

selection of desirable types of bamboo is much greater for southern gardeners than in the

north where winter is the limiting factor. They are found growing in many parts of the

world but are most common in south-east Asia, China and Japan.

Bamboo is widely distributed, mainly in the tropical, subtropical and mild temperate

zones of the world, with the tropical belt having the maximum number of bamboo species.

1



Interest in the use of bamboo in the field of construction is growing around the world.

This can be attributable to its good engineering properties as well as the fact that it

is a renewable resource. There are several different bamboo types, with a great deal of

variation in microstructure and mechanical properties. In the Brazilian North-eastern,

bambusa vulgaris is the most common type. However, its durability and mechanical

properties are usually inferior to many other species such as dendrocalamus giganteus

and Guadua angustifolia.

Intensified interest on bamboos has resulted in their emergence as potentially the most

important non-timber forest resource to replace wood. Their strength, straightness, light-

ness combined with extraordinary hardness, range in size, abundance, easy propagation,

and short vegetation period to attain maturity, make them suitable for a variety of pur-

poses and uses [36]. Furthermore, bamboo as a woody plant is uniquely suited to agro

forestry. Some of the many uses of bamboo in agro forestry are: Intercropping; Riparian

vegetation filter; Constructed wetlands; living screens; and perm culture [34].

The flowering habits of bamboo are not well understood. Some bloom every year while

others bloom only once in fifty to one hundred years and then die depending on the

variety and climate. Some species have never been known to bloom. When a bamboo

shoot flowers, the event usually signals the end of its life cycle. Melocanna baccifera

blossoms en masse. All bamboo stocks of the same flower-type blossom at the same time

every 50 to 60 years, regardless of geographical location, and consequently die, leading

in many cases to the seasonal starvation of animal creatures that normally feed on the

bamboo plant. Though there are many theories as to what the reason behind bamboo

mass blossoming is, the exact answer remains unknown.

Bamboo is the fastest growing woody plant in the world [51]. In a single day, a bamboo

plant can grow an average of up to 60 centimeters (about 23.6 inches), and certain species

have been measured to grow as much as 121 centimeters (about 47.6 inches) in one 24-

hour period. It grows most abundantly in the East and Southeast Asian regions of the

world, but it can also be found in Northern Australia, India, sub-Saharan Africa and the

tropical regions of the Americas.

Bamboo has become a popular eco-friendly alternative to using hardwood as building

material. Because of its rapid growth and short life-cycle, bamboo is one of the most

renewable natural resources in the world, and it can be harvested on a regular basis

without causing significant damage to its surrounding ecosystem.

2



1.2 Bamboo species

The accurate number of species is not accurately known. As earlier reported, 87 genera

and over 1,500 species of bamboo exist [63, 7]. The American Bamboo Society [7] enlisted

various species in their database. We are interested in two common species, bambusa

vulgaris and Dendrocalamus giganteus. The two species were introduced in experimental

forms described in Chapter Three.

1.2.1 Bambusa vulgaris

b. vulgaris is a medium sized clumping bamboo with pachymorph rhizomes. This species

is, as its Latin name suggests, an ordinary bamboo in the sense that it is very common and

widespread. It is cultivated throughout the tropics and is easily propagated by traditional

means including culm cuttings.

There are several varieties within the species [72], the most common being b. vulgaris

‘vulgaris’, which has culms that are bright glossy green in color . The variety b. vulgaris

‘Vitatta’ (also known as b. vulgaris var. striata) is distinguished by its glabrous, shiny,

yellow culms with light green stripes. A variety with green culms and yellow stripes also

exists, but is less common. The striped varieties are mainly used as ornamentals.

b. vulgaris is a multipurpose bamboo with culms of 8 to 20m in length. The diameter

of culms is 5-10 cm with a wall thickness ranging between 7-15 mm [72]. It is used for

paper-making, scaffolding, fencing, construction, poles, and handicrafts. The shoots of

the species are edible, and consumed throughout south-east Asia. [48] studied Growth

and development of b. vulgaris schrad planted on the coastal homesteads of Bangladesh.

They reported culm height of 16.3 m and diameter of 5.29 cm with an average of 15.44

culms per clump at age 3 years and 21.2 culms at age 4 years.

b. vulgaris grows wild in the warmer parts of the country up to an altitude of 1,500

m, thriving best near river banks [50]. This widely cultivated species grows 6-18 m in

height and 5-10 cm in diameter. The most commonly grown variety, the striata bears

characteristic green streaks on a yellow background. This bamboo grows very fast and

can attain a height of 9 m within 3 months. It is a highly versatile bamboo and is

extensively used. The culms are relatively soft and poises long fibers, making them a

valuable source of paper pulp. Ambika and Rajapogal [5] recently studied the potential

of b. vulgaris as medicine for human use. b. vulgaris has perpetually remained vegetative

with no flowering reported.
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1.2.2 Dendrocalamus giganteus

d. giganteus is a tight clumping bamboo with pachymorph rhizomes. It is commonly

known as Giant Bamboo. Originally from South East Asia, it has been introduced in nu-

merous countries including India, Bangladesh and (southern) China. It is also cultivated

in subtropical regions of the United States and in Australia. It grows naturally in humid

tropical highlands, up to 1200 m above sea level and grows successfully in tropical low-

lands on rich alluvial soils. Known to be one of the largest bamboo species in existence,

its culms extend to heights of 35 m and with a diameter of up to 25 cm [72] and walls of

25 mm thick. Young shoots of the species are distinguished by their purple color. The

full extension of the culm is achieved within three and a half months. The full giant size

of the culm is attained only after 10 to 15 years. Thinning of the clump may begin 4 years

after planting, removing the oldest culms and leaving space for the development for new

shoots. 7 to 8 years after planting large 3 year old culms may be harvested. New shoots

annually increase in size until the plant reaches maturity. The large culms of the species

have many uses including construction, scaffolding, water pipes, buckets and paper pulp.

The young shoots are edible and are distinguished by their creamy texture.

dendrocalamus giganteus (Giant Bamboo), native to Burma, may be the largest in the

world. Its leaves can grow almost two feet long and four inches wide [50]. Bamboo is

a common term for a large number of giant grasses that include many different species

and varieties. There are two main types of bamboo. Runner types send out underground

stems to varying distances and send up vertical shoots. These will grow in large thickets

or groves if left alone. Runners are mainly found in temperate regions. Clump bamboos

have underground stems that sprout vertical shoots much closer to their parent plants

growing slowly outward. D. longispathus grows widely in parts of west Bengal, Assam

and other areas of Eastern India, usually along streams. It can grow in an elevation of

4,000 m. the culms generally attain a height of 10-18 ft and a diameter of 6-10cm. It

is one of the 15 economically important species of India that are recommended in the

manufacture of paper.

1.3 Propagation and Growth of Bamboo

Bamboo propagation is one of the key links of bamboo production. It is used to obtain a

great deal of fine seedlings for planting. Bamboo propagation can be classified into two

kinds, one is sexual and another is asexual. Under each kind there are many sub-kinds

for propagation. There are different propagation methods for different bamboo species.

4



Thus one should select a proper way of propagating them according to species specific

requirements. Micro propagation of bamboos will be useful even with seed/seedling

tissue as it would augment the supply of planting material. However, it would be ideal

to perform micro-propagation with adult tissues as it would help in multiplying superior

bamboo clumps on a large scale.

1.4 Harvesting of Bamboo

Depending upon the intensity of Bamboo occurrence, the following three categories are

identified:

1. Scattered bamboo: With 50 clumps or less per hectare.

2. Dense bamboo: More than 50 clumps but less than 100 clumps per hectare.

3. Pure bamboo: More than 100 clumps per hectare.

The site quality indicates the capacity of site to produce bamboo culms of a given size.

The best quality is indicated as an average height of the culm over 7 meters and average

diameter at breast height of over 4 cm and in case of bambusa arundinacea an average

diameter of 5 cm at breast height.

The production of new culms in the clump depends on the vigour of the underground rhi-

zome, its growth activity and stored food in the previous growing season. Therefore, each

clump must have sufficient number of green culms with adequate foliage to manufacture

food and store in the underground rhizome. Repeated working will reduce the produc-

tive capacity of the clumps. Removal of congestion in the clumps, ensuring protection of

underground rhizome from rotting, fire and other damages increases productive capacity

of the clumps.

The best silvicultural system which satisfies all the requirements for maximum productive

capacity of the clumps is selective felling of mature culms combined with tending of

clumps to reduce congestion.

A three year felling cycle is found quite satisfactory to keep up the productivity. There-

fore, the same has been prescribed in most of the working plans.

To provide congenial conditions for healthy growth of clump and culms, a 3 month rest

period is prescribed from 1st July to 30th September every year [64]. This helps to protect
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the rhizome from disturbance and prevents damage to tender bamboo shoots during the

monsoon period.

The following felling rules apply [64]:

1. All current year culms should be retained.

2. A minimum of 6 culms over one year old, spaced uniformly all over the clump should

be retained. In case of big clumps, proportionately more mature culms should be

retained.

3. Culms should be felled between the first and second internodes from the ground

level.

4. Felling cut should be given using a sharp instrument to avoid splitting and damage

of culms.

5. All dead and dry bamboo and high cuts should be removed first.

6. Lopping of bamboo for feeding the livestock or otherwise is prohibited.

7. Clumps having 6 or less than 6 mature culms (more than one year old) in each

clump will not be cut. Only broken, dead, dry or badly damaged and twisted

bamboos are removed.

8. Rhizomes should not be damaged nor the clump uprooted.

9. All cut debris shall be removed at least one meter away from the periphery of each

worked clump.

10. As far as possible in the year following working, the coupe should be closed from

grazing.

11. Bamboo forests should be rigidly protected from fires especially during the year of

working and the year following it.

12. When flowering is sporadic, all flowered clumps within the coupe under working

and which have shed their seed, should be clear felled.

13. In case of gregarious flowering all clumps which have flowered, irrespective of felling

cycle are clear felled, after seed is shed. The felled material should be removed

expeditiously. These areas are strictly prohibited for grazing and are rigidly fire

protected at least for 5 years to help establishment and growth of young regenera-

tion. In addition, digging of cattle proof trenches wherever needed, should be taken

up.
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14. The congested bamboo clumps should be clear felled.

Unlike hardwoods, bamboo plants achieve their full height and girth in just one growing

season, which lasts between three and four months. Bamboo shoots spend the first

year stretching upwards, after which they begin to dry and harden and begin sprouting

branches and leaves. After their second year, the shoots continue to harden even more,

shedding their young sheath layers and becoming fully mature bamboo plants. After 5

to 8 years, bamboo shoots begin to decay and die, partly as a result of fungus and mold.

Because of their short life-cycle, bamboo is best harvested between its 3rd and 7th years.

1.5 Mathematical modeling

Modeling population dynamics continues to be an area of interest to mathematicians and

biologists. Growth and harvest estimation are key mathematical problems that arise in

many real life situations. Methods of accomplishing this major goal have evolved over

time, from deterministic equations that use differential calculus to more complex systems

that use stochastic differential equations. The main reason for this shift is understandably

the need to be realistic in estimates. Deterministic models assume that processes produce

accurate results. However, in reality, the solutions are approximate. This gives the

stochastic approach more credibility since solutions are assumed to vary each time we

compute them.

Mathematical models have been applied in many areas of population studies. For exam-

ple, there is a good amount of literature in modeling fish populations using the logistic

equation [52, 83]. Moreover, various fishing strategies for mean sustainable yield (MSY)

are documented.

1.6 The logistic model

The logistic model has been long used in ecological modeling due to its simplicity and

effectiveness in portraying the growth of a population. The logistic equation has been

widely studied and applied in population and ecological modeling. It describes population

growth using a self-limitation term R which serves as a correction to the unlimited growth

of the Malthusian model; the term is commonly referred to as the carrying capacity. The

classic logistic (or Verhulst’s) equation was suggested by Pierre Vehuslt [95] and is given
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by:
dNt

dt
= rNt

[
1− Nt

K

]
(1.1)

where Nt is the number of individuals at time t, r the intrinsic growth rate and K is the

maximum number of individuals that the environment can support. Equation (1.1) is

autonomous as the parameters r andK are constant. Its nature is such that the properties

of the solutions, for all strictly positive initial conditions, approach the constant value

of the carrying capacity, K, as time, t, tends to infinity (see Figure 1.1)). It is not

often realistic to assume that the carrying capacity is constant, especially in modeling

populations. Thus, many studies have discussed an alternative approach by investigating

the importance of time-dependent carrying capacities, K = Kt embedded in a non-

autonomous logistic equation [31, 78, 41, 42, 43].

Figure 1.1: Logistic growth curves with K = 10 for various initial conditions N0

1.7 Stochastic logistic model

A close observation on any population processes reveals that they are non-linear and

stochastic in nature. In recent times a great deal of research work has been pursued

to elucidate the role of nonlinearity and stochasticity in the evolution of the processes.

Most of the work incorporating nonlinearities and stochasticity is either theoretical or

qualitative in description. We have been motivated to make an empirical attempt to

study stochastic logistic models of bamboo population growth. The stochastic logistic

model can take many forms depending on which term in the system is considered volatile.
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A general case where the growth rate is stochastic is given by:

dNt = rNt

(
1− Nt

K

)
dt+ σNtdBt (1.2)

where σ is the diffusion coefficient which measures the size of fluctuations. Bt is the

Brownian process with mean Zero and constant variance t. Equation (1.2) cannot be

solved using the usual Riemann integration. This calls for Itô calculus and the Fokker-

Planck equation. In our work, we move from the ordinary differential equations in the

deterministic domain to stochastic differential equations under a noisy environment.

1.8 Statement of the Problem

Population growth and harvesting dynamics has attracted immense attention of re-

searchers and mathematical population modelers in recent times. Furthermore, existing

models such as Agricultural Production Systems Simulator (APSIM), [11] are crop spe-

cific. They are time series based and assume constant environmental and human effects.

Further, none of them has incorporated bamboo as one of the possible input crops.

Various population models have been presented with variations dependent on the char-

acteristics of the population under study. Most of these models are mainly based on

the classical Malthusian theory of population growth, together with the Lokta-Volttera

population interaction models. These models have their shortcomings considering the

variability of growth dynamics from one population to another. They do not take into

account the unpredictability of the environment in which the population under study is

resident.

Our interest is in modeling Bamboo population growth and harvesting dynamics. We

not only use the already established modeling techniques but also suggest introduction of

effects of environment and human interferences commonly called white noise. This is done

by invoking Brownian motion. This leads us to stochastic differential equations tailored to

suit Bamboo populations. Other than deriving the stochastic differential equations under

various harvesting strategies, we involve Monte-Carlo simulation techniques to determine

the paths of Bamboo populations for each strategy. Further, a comparison of the paths

under steady state and ruin scenarios are studied. Finally, the best strategy is supported

for application by Bamboo farmers.
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1.9 Objectives of the Study

1.9.1 General objective

The main objective is to model bamboo population growth and optimal harvesting strate-

gies under a stochastic environment usig determinitic and stochastic differential equations.

1.9.2 Specific objectives

The specific objectives include;

1. Determining bamboo population growth parameters from experimental data.

2. Determining the most suitable growth model among a range of possible models.

3. Constructing deterministic bamboo population growth and harvesting models suit-

able to bamboo characteristics and determining optimum harvest.

4. Constructing a stochastic bamboo population growth and harvesting model and

determining the optimum harvest.

5. Determining the possibility of ruin and time to extinction of bamboo population

under deterministic and stochastic environments.

1.10 Significance of the study

Modeling parameters as a means of forecasting harvest is no doubt, a milestone in agri-

cultural economics and planning. Suppose that a farmer, before planting a particular

crop, say bamboo, already knows approximately how much he could earn from a given

area of land. This is not only morale boosting but also valuable in early planning for

aspects like marketing, storage, labour force requirements and many other elements in

the production line. Further and most important is the fact that we have determined

a harvesting strategy that does not leave the population vulnerable to extinction. The

farmer will continue enjoying long-term revenue from his crop.
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1.11 Outline of the thesis

In this chapter, we have introduced the aspect of population modeling, giving a preview

on the areas of concern that we will address in later chapters. We also introduce bamboo,

its properties, uses and cultivation process. Further, we state our objectives and justify

them.

In Chapter Two, we discuss useful literature that introduces what has been done so far

in this area of mathematical population modeling. We have highlighted deficiencies of

available work in addressing the problem at hand.

In Chapter Three, we give the methods used in both modeling and bamboo data analysis.

Brief theory on the logistic model, stochastic processes, the Itô’s Lemma and stochastic

calculus are given. This gives way to Chapter Four where we undertake the modeling

and analysis of model equations. We also simulate trajectories at various instances of

modeling.

In chapter Five we analyze bamboo data and give various comparisons of growth parame-

ters. We proceed to fit the suggested harvesting models and get useful estimates of mean

sustainable yield (MSY). Finally in Chapter Six, we summarize our results in line with

the stated objectives, and give suggestions for further work.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

One of the goals of modern population ecology is to understand population phenomena

in terms of the behavior of individuals. The development of a stand of plants results from

the growth of individuals, as altered by interactions among these individuals. We know

that plant growth is sigmoid [46, 94], and several sigmoid growth models with biologi-

cally interpretable parameters have been proposed to describe the growth of individual

plants. These include the logistic and Gompertz models. In most sigmoid growth mod-

els, initial growth is exponential, and a negative term reduces the relative growth rate

as size increases, resulting in an asymptotic maximum size [101]. The main difference

among different sigmoid growth models is the inflection point, the size at which a plant

experiences its maximum absolute growth rate [82].

In the Richards model, this inflection point is not fixed but modeled by an additional

parameter [75]. This makes the Richards growth model highly flexible and inclusive

of most other sigmoid growth models. The Richards growth model generally fits plant

growth data well and has been widely used in plant ecology and forestry. Estimating the

inflection point as a free parameter seems biologically reasonable since there is no general

theory that predicts at what growth stage plants experience their maximum growth rate,

and the inflection point has been shown to depend on density [32]. One biologically

undesirable feature of the Richards growth model is that when maximum growth rate is

obtained early in plant growth, i.e. the growth curve has a low inflection point, initial

growth is not exponential [18]. To address this problem, Birch [18], proposed a growth

model that has both initial exponential growth and an inflection point parameter. The

degree of mathematical flexibility of the Birch growth model is comparable to that of the

Richards model and both models have the same number of parameters, so it is expected

that the Birch growth model will fit plant growth data as well as the Richards growth

model. Furthermore, there are some problems with parameter estimation in the Richards
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growth model [18, 73, 92, 101], but since the Birch model does not include a power

function of the current size relative to the maximum size, it is expected to have better

estimation properties than the Richards model [18].

In a previous study [32], the Richards growth model was used to analyze competition

among individual plants by coupling individual growth models such that the saturation

term is based on the cumulative size of the whole population and including effects of size-

asymmetric competition [98]. Genetic differences in microhabitat and variation in local

competition may cause variation in the shape of individual growth curves. Accounting

for such variation among individuals is important to reduce biased and auto correlated

residuals, which may influence inferences made concerning the parameters of interest [24].

There is increasing interest in including the variation among individuals in the modeling

of population growth with hierarchical models, in which some parameters are estimated

at the level of the population, whereas other parameters are assumed to vary among

individuals according to a specific distribution (e.g. a normal distribution), where the

mean and the variance of the distribution can be estimated [26, 38, 81].

Diameter at breast height (dbh) and crown width are important tree characteristics and

an accurate prediction of tree dimensions has become prominent as analysis techniques,

models, and other statistical tools to allow for the rapid evaluation of extensive volumes of

data. Some variables (e.g., diameter or age) are easy to measure with simple instruments

and it is widely used by forest inventories. However, a number of studies have shown that

other variables which are not so easily obtained are also good predictors of forest dynamics

and they can improve the reliability of tools like growth and yield models. One of these

variables is crown size, which has received increasing attention as a means to estimate tree

growth [20]. Crown diameter prediction has been studied by many researchers [12, 13, 15]

as a measure of plant growth. Curve fitting in an effort to determine appropriate growth

distributions of tree growth parameters is another interesting area that has been addressed

[89].

Measurement of tree crown width is more difficult and more time consuming than that

of dbh [10]. Crown width is used in tree and crown level growth-modeling systems,

where simple competition indices are not available to adequately predict recovery from

competition when a competitor is removed [94]. Crown width is also used in calculat-

ing competition indices based on crown overlap [17, 33] and predicting above ground

biomass. Crown width models can be formulated from open-grown trees or from stand-

grown trees [40]. Equations for predicting the dimensions of crowns in open locations

consider maximum biological potential, and so are known as “maximum crown width”

(MCW) equations, while those for stand-grown trees which generally have a smaller crown
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due to competition, are called “largest crown width” (LCW) equations [44]. LCW mod-

els predict the actual size of tree crowns in forest stands, and have many applications

including estimations of crown surface area and volume in order to asses forest health

[96], tree- crown profiles and canopy architecture [45, 57], forest canopy cover [39] and

the aboveground biomass. Modeling crown diameter as a simple linear model between

crown width and diameter at breast height is often adequate [23, 66, 87].

The development of equations to predict dbh, height, crown diameter, crown height, leaf

area and other measures will enable researchers and forest managers to model cost and

benefit, analyze alternative management scenarios and determine the best management

practices for substancial forestry [58]. Peper et al [68] suggests a logarithmic regression

equation for predicting growth measures using age or diameter at breast height (dbh).

Addison et al [1] evaluated the utility of using variable-top, total and merchantable tree

green weight equations for predicting crown biomass on operational harvests in southern

pine stands. Stands at three locations in Georgia were inventoried prior to an opera-

tional thinning or clear cut. Round-wood and biomass amounts were estimated using

the inventory data with appropriate weight equations. Actual tonnage of round-wood

and biomass were monitored by product during the operational harvest. A post-harvest

inventory was then performed to assess the residual stands after thinning as well as any

residual material left on the ground at each site. Pre-harvest estimates were compared to

the sum of material harvested and remaining on site to assess the utility of this approach

to accurately estimate biomass available for harvest in an operational setting.

2.2 Growth and harvest modeling

Brauer and Sanchez [21], [22] investigated the effect of constant rate harvesting periodic

harvesting in periodic environments on the asymptotic behaviour of several continuous

population models. In both cases, a great deal of attention was given to the continuous

logistic model.

The maximum sustainable yield (MSY) for the continuous logistic model under different

harvesting strategies has been widely investigated in the literature [14, 25, 37, 101]. Zhang

et al. [102] argued that continuous harvesting under the logistic model is superior when

compared with an impulsive harvesting.

Alvares and Shepp [4] investigated optimal harvesting for stochastically fluctuating pop-

ulations. This was done under unbounded and bounded harvesting rates. They recom-

mended partial harvesting as opposed to clean cuts.
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Liu [54] considered a stochastic logistic model with impulsive perturbation. He added an

equation to the known Stochastic Logistic Equation (SLE) which checks fluctuations in

population size at some future time t+ compared to current time t. Properties of solutions

were also discussed.

Pasquali [65] studied a variant of the stochastic logistic equation where she determined

the stability of stationary solutions. She simulated paths of trajectories at various levels

of noise and noted that at large σ, the system goes extinct.

Zhang et al [102] established a model for optimal impulsive harvesting policy for an au-

tonomous population using the logistic equation. They added a Dirac impulsive function

to a proportional harvest term.

Soboleva and Pleasants [88] used non-linear stochastic differential equations for growth

process of biological populations. In particular they studied the Gompertz and logistic

stochastic models. They showed that initial conditions have more effect on variable than

the mean process.

Shah [83] studied a stochastic logistic model for fish growth. His model included an

oscillating carrying capacity. He however stated that in the long run, the system will

follow an approximately stable path. Qi and Mao [69] developed a stochastic population

model where they showed that noise suppresses explosion in population dynamics. They

also showed that the model is stochastically bounded.

Allen [3] discussed continuous time SIR malaria nodes under Markov chain, determinis-

tic, and stochastic procedures. Simulated sample paths were obtained under the three

conditions. It was noted that while there was variance in trajectories under the three

systems, the general trend was the same.

Hritonenko et al. [62] discussed a bang-bang regime in optimal harvesting of size-

structured populations. The conclusion was that a linear age structural population model

is similar in optimal population trajectory to the non-linear size structured model. It was

recommended selective logging between two common logging regimes; clear cutting and

selective logging.

Li and Wang [53] considered some optimal harvesting policy for a general stochastic

logistic population model. The optimization was computed for the objectives of maximum

retained profit. Various powers of the density term were considered and their effect on

the behavior of the system discussed.

Liu and Wang [54] studied stationary distribution, ergodicity and extinction of a gen-

eralized stochastic logistic system. They noted that when the intensity of white noise
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is sufficiently large, the system is extinctive. However, for sufficiently minor intensities,

there is a stationary and ergodic population distribution.

Zou et al [99] discussed the Ergodic method of optimal harvesting for a stochastic Gom-

pertz type diffusion process. They also showed equivalency of results on optimal harvest-

ing strategy by mean compared to use of the ergodic method.

A stochastic Markov chain model for bamboo harvest forecasting was also reported by [9].

In their model, transition probabilities derived from bamboo growth data were used to

construct a Markov chain. This was analyzed and steady state probabilities of the system

derived. These were in turn used to predict future values of harvest. The shortfall in the

stochastic model is that it used data only within three years of growth. It therefore was

able to determine only the size of the first harvest. The researchers suggested further

research on what happens after the first harvest.

Doust and Saraj [35] considered harvesting a logistic population with constant growth

and harvesting rate h. They further explored a case of variable harvest Y dependent on

the population x such that Y = hx/(x + 1). They assumed that the carrying capacity

K = 1. Further, a theorem describing the stability of a real model of single species was

proved.

Jingliang and Wang [49] studied almost sure permanence of stochastic single species

models. They included some numerical simulations to support their main results.

Morteza and Kiaee [60] studied the stochastic dynamical theta-logistic population model

with application to Iranian population data between 1921 to 2011. Some preliminaries of

stochastic calculus were presented. They also simulated growth paths for various values

of theta.

Recently, Anderson et al. [8] suggested that the carrying capacity of an environment

is stochastic. They used SDEs to determine the paths, variances of solutions and dis-

tributions using the Monte-Carlo method. They however did not solve the equation to

give explicit solutions. They claimed that solutions of some variants of stochastic logistic

equations had not been found.

Most recently, Yoshioka [100] suggested a simplified stochastic optimization model for

logistic dynamics with control dependent carrying capacity. This was motivated by the

algae population management problem. It was noted that a given amount of flow must

reach some threshold for it to be able to break off and push away algae at a river bed.
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2.3 Agricultural Production Systems Simulator (AP-

SIM)

APSIM [11] is a cropping systems modeling environment specially designed to allow a

plug-in-pull-out approach for the integration of various simulation models via a common

modeling protocol [59]. It is a product of the Agricultural Production Systems Research

Unit (APSRU). APSIM can be configured with modules suitable for the simulation of

many different systems. Whilst these initially concentrated upon dry-land cropping sys-

tems, APSIM’s usage has broadened and now it is also being used in the study of forestry

[67], agro forestry [47] and pasture [86] systems. Horticultural crop models are now being

included into the suite of crop models available within APSIM. APSIM-Broccoli is one

such model.

APSIM software is a modular modeling framework that has been developed by APSRU

(Agricultural Production Systems Research Unit) in Australia. APSIM was developed

to simulate biophysical processes in farming systems, particularly as it relates to the

economic and ecological outcomes of management practices in the face of climate risk.

APSIM is structured around plant, soil and management modules. These modules include

a diverse range of crops, pastures and trees, soil processes including water balance, N

and P transformations, soil pH, erosion and a full range of management controls. APSIM

resulted from a need for tools that provided accurate predictions of crop production in

relation to climate, genotype, and soil management factor while addressing the long-term

resource management issues.

2.4 Conclusion

Much of work has been reviewed in this section. No doubt, there is a lot of mathematical

research that has been done with impressive results documented. However, other than

some applications in the fishing industry and human population projections, much of

it remains mathematical proficiency. In all the literature, a good amount of theoretical

effort has been made to derive various population dynamic equations. Plant population

dynamics using stochastic differential equations is rare in literature. From the literature

cited, it was found that different variants of the logistic model have been studied. There is

however no clear explanation on which particular format fits a given natural phenomenon.

It is therefore left to the imagination of the reader to decide where and when to use a

particular formulation.
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In our study, we attempt to model as we fit the system to real data and test how well

the data agrees with the model dynamics. Different populations behave differently, so a

model that fits one instance of a population does not necessarily fit another. Furthermore,

tailor made models that have minimum assumptions are more befitting that general

ones. Specifically, we construct bamboo growth and harvest models where we drop the

assumption of constant growth rate, constant harvest rate and deterministic solutions. We

use stochastic differential equations, incorporate harvest and study the systems behavior,

steady state (equilibrium) points and extinction in finite time.

Further, we note that all harvest models we were able to sample in literature assume that

the initial population is large enough so that harvesting starts immediately. From our

observation with bamboo, where one seedling is planted, from which tens of culms emerge

after some time, harvesting cannot start immediately. In fact, a harvest free period of 3

years must be accorded in order for the harvest to be mature and useful. In our work,

we therefore suggest time delayed harvesting models, where the first three years are pure

growth phase and for the rest of the years, the harvest model picks up.
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CHAPTER THREE

METHODOLOGY

3.1 Introduction

In this chapter, the methods used during the study are introduced. Stochastic processes,

Ordinary differential equations and stochastic differential equations are defined. Methods

of solving SDEs are also given. Furthermore, various data analysis methods are also

discussed.

3.2 Essential Theory

3.2.1 Random Walk

Let {Xi; i ≥ 1} be a sequence of of IID random variables, and let Sn = X1+ · · ·+Xn. The

integer-time stochastic process {Sn;n ≥ 1} is called a random walk, or, more precisely,

the one dimensional random walk based on {Xi; i ≥ 1}.

For a given n, Sn is simply a sum of IID random variables, but here the behavior of the

entire random walk process, {Sn;n ≥ 1}, is of interest .Thus, for a given real number

α > 0, we might want to find the probability that the sequence {Sn;n ≥ 1} contains any

term for which Sn ≥ α (that is the threshold at α is crossed) or to find the distribution

of the smallest n for which Sn ≥ α.

A simple random walk

Suppose X1, X2, . . . are IID binary random variables, each taking on the value 1 with

probability p and −1 with probability q = 1− p. Letting Sn = X1 + · · ·Xn, the sequence
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of sums {Sn;n ≥ 1}, is called a simple random walk. Note that Sn is the difference

between positive and negative occurrences in the first n trials, and thus a simple random

walk is little more than a notational variation on a Bernoulli process. For the Bernoulli

process, X takes the values 1 and 0, whereas for a simple random walk X takes on the

values 1 and −1. For the random walk, if Xm = 1 for m trials, then Sn = 2m− n, and

Pr(Sn = 2m− n) =

(
n

m

)
pmqn−m (3.1)

3.2.2 Stochastic Processes

Suppose that (Ω,F , P ) is a probability space, and that X : Ω → R is a random vari-

able. Recall that this means that Ω is a space, F is a σ-algebra of subsets of Ω, P is a

countably additive, non-negative measure on (Ω,F) with total mass P (Ω) = 1, and X is

a measurable function, i.e.,

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F

for every Borel set B ∈ B(R).

A stochastic process is simply a collection of random variables indexed by time. It will be

useful to consider separately the cases of discrete time and continuous time. A discrete

time stochastic process X = {Xn, n = 0, 1, . . .} is a countable collection of random

variables indexed by the non-negative integers, and a continuous time stochastic process

X = {Xt, 0 ≤ t < ∞} is an uncountable collection of random variables indexed by the

non-negative real numbers.

3.2.3 Martingales

A martingale is defined as an integer-time stochastic process {Xn; n ≥ 1} with properties

that E[|Xn|] <∞ for all n ≥ 2 and

E[Xn|Xn−1, Xn−2, . . . , X1] = Xn−1 (3.2)

for all n ≥ 2.

The name martingale comes from gambling terminology where martingales refer to gam-

bling strategies in which the amount to be bet is determined by the past history of

winning or losing. If one visualizes Xn as representing the gambler’s fortune at the end of
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the nth play, the definition above means, first, that the game is fair (in the sense that the

expected increase in fortune from play n − 1 to n is 0.), and, second, that the expected

fortune on the nth play depends on the past only through the fortune on play n− 1.

E[Xn|Xn−1 = xn−1, Xn−2 = xn−2, . . . , X1 = x1] = xn−1 (3.3)

for all possible sample values x1, x2, . . . , xn−1.

The second is that

E[Xn|Xn−1 = xn−1, Xn−2 = xn−2, . . . , X1 = x1]

is a function of the sample values x1, . . . , xn−1 and thus E[Xn|Xn−1, . . . , X1] is a random

variable which is a function of the random variables X1, . . . , Xn−1.

One example of of a martingale is a zero mean random walk. Since if Xn = Y1 + · · ·+Yn,

where the Yi are IID with zero mean, then

E[Xn|Xn−1, . . . , X1] = E[Xn] +Xn−1 = Xn−1.

3.2.4 Brownian motion

The conventional way to model the velocity of a particle V (X(t), t) is by using Brownian

motion (Bt)t≥0 with the properties:

(i) Bt ∼ N(0, t)

(ii) B0 = 0. The process starts at zero.

(iii) dBt = B(t+dt) −Bt is independent of Bt, that is, Bt is stationary with independent

increments.

(iv) The increment Bt −Bs with 0 < s ≤ t is N(0, (t− s)).

(v) cov[Bt, Bs] = min{t, s},∀s, t ∈ R+

(vi) Bt is a martingale, that is, the expected value of the future is the present.

E[Bt+s|Bt] = Bt

(vii) Bt is continuous everywhere.

(viii) Bt is fractal
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3.2.5 Beta function

The Beta function is given by

B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx =
Γ(a)Γ(b)

Γ(a+ b)
(3.4)

Alternatively

B(a, b) =

∫ ∞
0

xa−1

(1 + x)a+b
dx (3.5)

with x > 0, a, b ∈ R+

3.2.6 Gamma function and the Gamma density

The Gamma function is given by

Γ(α) =

∫ ∞
0

xα−1exdx (3.6)

with identities

Γ(α + 1) = αΓ(α) and Γ(1) = 1,Γ

(
1

2

)
=
√
π, x > 0, a, b ∈ R+

A continuous random variable X has a Gamma distribution if

f(x) =


βα

Γ(α)
xα−1e−βx, 0 < x <∞

0, elsewhere

(3.7)

3.2.7 Itô’s lemma

Let X be an Itô process with stochastic differential equation

dX(t) = µ(t)dt+ σ(t)dW (t) (3.8)

Further assume that we are given a C1,2 function f : R+ × R→ R Define a new process

Z by

Z(t) = f(t,X(t)) (3.9)

22



Then Z has a stochastic differential equation given by

df(t,X(t)) =
∂f

∂t
dt+

∂f

∂x
dX(t) +

∂2f

2∂x2
[dX(t)]2

=

(
∂f

∂t
+ µ

∂f

∂x
+
σ2∂2f

2∂x2

)
dt+ σ

∂f

∂x
dW (t)

(3.10)

where the term µ∂f
∂x

is shorthand for µ(t)∂f
∂x

(t,X(t)) and so on. Note that formally

[dX(t)]2 = [µdt+ σdW (t)]2

= µ2[dt]2 + 2µσ[dt][dW (t)] + σ2[dW (t)]2 = σ2dt
(3.11)

where we used the following multiplication table

× dt dW (t)

dt 0 0

dW (t) 0 dt

In the special case where the function f : R→ R is twice differentiable we get:

df(X(t)) =

(
µf ′(X(t)) +

1

2
σ2f ′′X(t)

)
dt+ σf ′X(t)dW (t) (3.12)

Consider the population growth model

dNt

dt
= atNt (3.13)

where N0 is given. We choose at = rt + σ dWt

dt
in order to include uncertainty in growth

rate in the model. Let us assume that rt = r we include the uncertainty in the model.

constant. By the Itô interpretation, equation (3.13) is equivalent to

dNt = rNtdt+ σNtdWt (3.14)

Equivalently
dNt

Nt

= rdt+ σdWt (3.15)∫ t

0

dNs

ds
= rt+ σWt (3.16)

where W0 = 0. The evaluation of the integral on the left hand side requires the use of

the Itô formula for the function

g(t, x) = ln x, x > 0
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In this case get

d(lnNt) =
1

Nt

dNt +
1

2

(
− 1

N2
t

)
(dNt)

2

=
dNt

dt
− 1

2N2
t

σ2N2
t dt

=
dNt

dt
− 1

2
σ2dt

Therefore
dNt

dt
= d(lnNt) +

1

2
σ2dt (3.17)

Equating equation (3.17) to equation (3.15) we find that

d(lnNt) +
1

2
σ2dt = rdt+ σdWt

It follows that

d(lnNt) =

(
r − 1

2
σ2

)
dt+ σdWt (3.18)∫ t

0

d(lnNs) =

∫ t

0

[(
r − 1

2
σ2

)
ds+ σdWt

]
ln

(
Nt

N0

)
=

(
r − 1

2
σ2

)
t+ σWt.

Hence

Nt = N0e
(r− 1

2
σ2)t+σWt (3.19)

3.2.8 Fokker-Planck equation

The Fokker-Planck equation is a partial differential equation that describes the time

evolution of the probability density function P (Xt, t) of the velocity of a particle under

the influence of drag forces f(Xt, t) and random forces g(Xt, t). The velocity can also be

seen as a rate of growth of some population that can be represented as a stochastic Itô

process

dXt = f(Xt, t)dt+ g(Xt, σ)dW (3.20)

For a uni-dimensional process, P (Xt, t) is given by the partial differential equation

dP (Xt, t)

dt
= −∂f

∂x
P (Xt, t) +

∂2D

2∂x2
P (Xt, t) (3.21)

where D = g2(Xt, t). It is also known as the Kolmogorov forward equation.
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The Ornstein-Uhlenbeck process is a process defined as

dXt = −µXtdt+ σdWt (3.22)

Its associated Fokker-Planck equation is

dP (Xt, t)

dt
= µ

∂

∂x
[XtP (x, t)] +

σ2∂2

2∂x2
P (x, t) (3.23)

We can use Itô’s theorem to transform equation (3.22).

Let yt = Xte
µt then

Xt = yte
−µt,

∂yt
∂t

= µXte
µt,

∂yt
∂X

= eµt and ,
∂2yt
∂X2

= 0

Substituting this into Itô’s Lemma, we get

dyt = σeµtdWt (3.24)

Integrating on both sides of equation (3.24) we get

yt = y0 + σ

∫ t

0

eµsdWs

Reverting to initial notation we have

Xt = X0e
−µt + σe−µt

∫ t

0

eµsdWs (3.25)

To characterize Xt we need its mean and variance. Thus we compute

E[Xt] = X0e
−µt + σe−µt

∫ t

0

eµsE[dWs] (3.26)

so

E[Xt] = X0e
−µt (3.27)

Further, given that V ar[Xt] = E[X2
t ]− (E[Xt])

2 we have

V ar[Xt] =
σ2

2µ
(1− e−2µt) (3.28)

Thus the distribution of Xt is Gaussian with the derived mean and variance. Explicitly,

P (Xt, t) =
1√

πσ2

µ
(1− e−2µt)

exp

[−µ(Xt −X0e
−µt)2

σ2(1− e−2µt)

]
(3.29)
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is the density function of the Ornstein Uhlenbeck process.

3.2.9 Stochastic population models

Let the quantity of a measure at time t be Xt. Consider a small subsequent time interval

dt during which Xt changes to Xt + dXt, then the intrinsic growth rate is

dXt

dt
= R(Xt, t) (3.30)

If the rate of change is deterministic then

dXt = R(Xt, t)dt (3.31)

However, the rate of change is generally not deterministic. It often is affected by many

factors and uncertainties including environmental disturbances. These are stochastic in

nature. We model uncertainty by adding a stochastic part as follows:

dXt = R(Xt), t)dt+ V (Xt, t)N(0, dt) (3.32)

Here the random change V (Xt, t) is the stochastic part modeled as a normal distribution

with mean 0 and variance V 2.

The stochastic model can therefore be written as

dXt = R(Xt), t)dt+ V (Xt), t)dBt (3.33)

which can be rewritten as

dXt = RXtdt+XtdBt (3.34)

This is a stochastic differential equation. Here R and V can be constants or linear

functions in Xt and t. That is R = b + aXt and V = σXt. In this case, the equation

becomes

dXt = Xt([b+ aXt]dt+ σdBt) (3.35)

Consider the exponential growth differential model

dXt = µXtdt (3.36)
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It is written as a stochastic differential equation (SDE) as

dXt = µXtdt+ σXtdBt (3.37)

The SDE has an explicit solution (see example in section 3.2.8)

Xt = X0e
(µ−0.5σ2)t+σBt (3.38)

We note that if σ = 0 we have the simple exponential solution

Xt = X0e
µt. (3.39)

Now for solution of the stochastic exponential equation, when

(i) µ > 0.5σ2, the population Xt →∞ exponentially with probability 1.

(ii) µ < 0.5σ2, the population Xt → 0 exponentially with probability 1.

(iii) µ = 0.5σ2, then lim inf
t→∞

Xt =∞ while lim sup
t→∞

Xt = 0 with probability 1.

We note that in the ODE model µ > 0 leads to population explosion while in the SDE

the population goes extinct almost surely. This illustrates the importance of considering

stochastic modeling over deterministic models.

3.3 Bamboo data

The study was carried out in four sites in the former South Nyanza region of Kenya.

These were Rangwe and Suba (in Homa Bay County), Ngege and Kuria/Ikierege (in

Migori County). To conduct this study, 120 farmers in the region were selected forming

four bamboo farmers’ cooperative societies each with 30 farmers. The farmers were

selected on the basis of whether or not one was a tobacco farmer, gender, age, poverty

status, farming scale, access to water and the willingness to provide land for the bamboo

experimentation. A total of 2,420 bamboo cuttings consisting of 1210 giant and 1210

bambusa species were planted. Each farmer was given 20 bamboo cuttings (that is, 10

each of giant bamboo and 10 of common bamboo). Each cutting was planted in a cubic

hole measuring 0.6 × 0.6 × 0.6 m. Spacing between two-bamboo clumps was 5 m. 50%

of bamboo clumps were randomly selected and tagged with codes indicating the site,

farmer’s number, species and the clump number for easy identification and monitoring.

Survival rates, number of culms, culm heights and diameters, among other parameters

were measured.
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3.3.1 Survival proportion

The survival fraction was calculated by counting the number of surviving clumps in every

farm after six months of planting the bamboo cuttings. Another rate was calculated after

a year of planting. Subsequent rates remained the same since clumps of over one year

are already hardy.

3.3.2 Number of culms per clump

A culm is a bamboo pole while a clump is the cluster of poles that emerge from one

seedling. The number of culms in the tagged clumps were counted and recorded. This

was done at an interval of three months starting from the planting date to ascertain the

rate of culm development. After one year, the measures were taken in intervals of six

months.

3.3.3 Culm height

Three dominant culms were selected from each of the five selected (tagged) clumps and

their heights measured. This was accomplished using a, tape measure for short culms or

a Suunto height meter or a straight pole marked in meters for tall ones. Bent stems were

straightened so that the actual length of the stem could be measured.

3.3.4 Culm diameter

Twelve months after planting bamboo cuttings of the two species, the diameter of each

of the selected bamboo culms was measured using a diameter tape. Progressive measure-

ment was done on new thicker culms.

3.4 Data Collection

On each farm, there were 10 bambusa vulgaris and 10 dendrocalamus giganteus clumps

planted. Five clumps of each species were tagged for consistent data recording. Obser-

vations were made on various clumps of each species and the number of culms and new

shoots per clump counted at various intervals of time (3 to 6 months). The observations
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of the clumps involved visually identifying small, medium, and large culms and measuring

the diameters of selected culms using a measuring tape. Based on the measured samples

of various sizes of culms of each species, an average culm diameter was calculated for

each species.

The average height of the culms of each species was determined in many cases, roughly

by observation, as well as accurately, by using a height meter. This method was applied

by sampling 3 of the tallest culms per clump, for tagged clumps of each species.

The estimated potential (the number of averagely sized culms per hectare per year) was

made with the assumption that, all mature culms per clump are annually harvested. Note

that only 3 year old mature culms are harvested and that new culms (year 0, shoots), as

well as 1 and 2 year old culms are left to mature.

3.5 Monte-Carlo simulation

Monte Carlo is also suitable for solving complex stochastic problems because it can deal

with a large number of random variables, various distribution types, and highly non-

linear stochastic models. Different from a physical experiment, Monte Carlo simulation

performs random sampling and conducts a large number of experiments on computer.

Then the statistical characteristics of the experiments (model outputs) are observed, and

conclusions on the model outputs are drawn based on the statistical experiments. In each

experiment, the possible values of the input random variables are sampled (generated)

according to their distributions. Then the values of the output variable are calculated

through the performance of function transformation of samples of input random variables.

With a number of experiments carried out in this manner, a set of samples of output vari-

able are available for the statistical analysis, which estimates the characteristics of the

output variable.

A Monte Carlo method consists of representing the solution of a problem as a parameter

of a hypothetical population, and using a random sequence of numbers to construct

a sample of the population, from which statistical estimates of the parameter can be

obtained. This is also sometimes referred to as stochastic simulation.

The objective is to estimate an integral
∫
x
f(x)dx which is analytically intractable. In

practice, using Monte Carlo simulation to investigate the properties of an estimator or

test follows the procedure:

(i) Generate a sample (size N) using a population model (the data generating process).
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(ii) Calculate your estimates/statistics.

(iii) Repeat this M times (when you are interested in the tails of a distribution you need

more replications than when you are interested in the center).

Monte Carlo simulation can be considered as a methodical way of doing a what-if analysis.

In Monte Carlo simulation, we identify a statistical distribution which we can use as the

source for each of the input parameters. Then, we draw random samples from each

distribution, which then represent the values of the input variable. The steps performed

for the Monte Carlo simulation of a physical process [60, 63] are further explained.

3.6 Random number generation

After identifying the underlying distributions for the input parameters of a simulation

model, we generate random numbers from these distributions. The generated random

numbers represent specific values of the variable. Next, we will discuss the most common

method for generating random numbers from discrete and continuous distributions.

3.6.1 Generating random numbers from a distribution function

a) Inverse Transformation Method

This provides the most direct route for generating a random sample from a distribu-

tion. In this method, we use the inverse of the cummulative density function (CDF)

(for continuous distributions) or cummulative mass function (CMF) (for discrete

distributions), and convert a random number between 0 and 1 to a random value

for the input distribution. The process can be Mathematically described as follows:

Let X be a continuous random variable (which we want to generate) following a

PDF f . Let the cumulative probability distribution function (CDF) for the variable

be denoted by F which is continuous and strictly increasing in (0, 1). Let F−1 denote

the inverse of the function F , which is often called inverse CDF. Then, the following

two steps will generate a random number X from the CDF f .

(i) Generate U ∼ U(0, 1)

(ii) Return X = F−1(U).

Since 0 ≤ U ≤ 1, F−1(U) always exists.
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b) Generating a random sample from a dataset: Bootstrapped Monte Carlo

Often it is not possible to obtain an underlying distribution for an input vari-

able in a simulation model. This can be because of the complicated shape of the

original distribution (like non-convex or multi-modal), scarcity of data (for exam-

ple, destructive testing or costly data) and so on. In those cases, we might end

up with nothing more than a few historical values for the input parameter. Here

bootstrapped Monte Carlo simulation (often called bootstrapping) can be used to

generate a random sample. In bootstrapping, we do not really generate new random

numbers. Instead, we repeatedly sample the original dataset to choose one of the

data points from the set (choose a number with replacement). For many datasets,

this method provides good result for simulation purposes. For bootstrapped Monte

Carlo simulation, one has to still use a uniform random number generator (RNG)

to generate integer random numbers among the indices of an array, which is being

used for storing the original dataset.

3.6.2 Monte Carlo simulation output analysis

The result of the Monte Carlo simulation of a model is typically subjected to statistical

analysis. As mentioned before, for each set of random numbers (or trials) generated for

each of the random variable, we use the model formula to arrive at a trial value for the

output variable(s). When the trials are complete, the stored values are analyzed [81].

Averaging trial output values result in an expected value of each of the output variables.

Aggregating the output values into groups by size and displaying the values as a frequency

histogram provides the approximate shape of the probability density function of an output

variable. The output values can themselves be used as an empirical distribution, thereby

calculating the percentiles and other statistics. Alternatively, the output values can be

fitted to a probability distribution, and the theoretical statistics of the distribution can

be calculated. These statistics can then be used for developing confidence bands. The

precision of the expected value of the variable and the distribution shape approximations

improve as the number of simulation trials increases.

All the operations discussed above have been incorporated in statistical software and can

be readily applied without programming them first. In R, there are various packages for

the operations discussed [84, 86].
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3.7 Data analysis

Collected time series data were entered into spreadsheets and cleaned using Excel. Data

analysis was done in R and SPSS. Consistency of collected data was affected by death of

some clumps and loss of tags. Various statistical tools were used during data analysis.

First, a descriptive analysis of growth measures was performed producing frequency tables

and bar charts. Then time series data were fitted with regression models (curve fitting).

Further, the data collected were used in determining probability distribution parameters

for use in simulation. Comparison of performance of growth measures in different study

sites and between the two species was accomplished by correlation analysis, and tests of

hypotheses.
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CHAPTER FOUR

BAMBOO POPULATION GROWTH AND HARVEST MODELING

4.1 Introduction

Starting from the classical Verhulst ordinary differential equation the harvesting com-

ponent was introduced and the model characteristics at equilibrium determined. An

extension to the stochastic differential equations realm was explored with explicit solu-

tions computed at equilibrium. The models were constructed starting with the following

general assumptions.

i. That shooting is continuous and uniform and that the shooting rate (which we shall

refer to as intrinsic population growth rate) will be constant throughout the life of

the clump.

ii. That a culm that is 3 years old is ready for harvesting. Thus we assume harvesting

occurs for oldest culms in a clump before new ones are harvested. So harvesting is

discriminate on age.

iii. Harvesting is continuous just like growth.

iv. The rate of harvesting is constant.

v. There is no competition between bamboo and other plants in the farm.

vi. The carrying capacity of a clump is constant.

4.2 The logistic model

In 1838 the Belgian mathematician Verhulst introduced the logistic equation, which is a

kind of generalization of the equation for exponential growth but with a maximum value
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for the population. Pierre Francois Verhulst [95] published the equation,

dNt

dt
= rNt

[
1− Nt

K

]
(4.1)

where Nt is the number of individuals at time t, r the intrinsic growth rate and K is the

maximum number of individuals that the environment can support. The solution to this

logistic equation is called the logistic equation.

Nt =
N0K

N0 + (K −N0)e−rt
(4.2)

Now suppose the growth rate r is stochastic, with population size Nt coupled with noise

dBt then the SDE (4.3) best describes the evolution of the system.

dNt = rNt

[
1− Nt

K

]
dt+ σNtdBt (4.3)

4.3 The Beverton-Holt logistic model

A famous discrete time model for logistic growth was first proposed by Beverton and Holt

[16] for the dynamics of exploited fish populations. It gives the population dynamics as:

Nt+1 =
λKNt

K + (λ− 1)Nt

, N0 > 0, λ > 1, and t ∈ N (4.4)

Nt is the number of individuals at time t. K is carrying capacity and λ the inherent

growth rate. Bohner and Warth [19] studied the characteristics of this equation. Al

Sharawi and Rhouma [2] studied the Beverton-Holt model with constant, periodic and

conditional harvest. For constant harvest they gave

Nt+1 =
λKNt

K + (λ− 1)Nt

− h̄, h̄ > 0 (4.5)

here all notations have same meaning as in (4.4) with h̄ being the intensity of harvesting.

For some constant α > 0, Nt = αXt and α = K
λ−1 , h̄ = αh then (4.5) becomes

αXt+1 =

(
λαXtK

K + (λ− 1)αXt

)
− h̄ =

λαXt

1 + λ−1
K
αXt

− αh

Xt+1 =
λXt

1 +Xt

− h
(4.6)
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They summarized constant harvest with the objective of maintaining indefinite survival

of the population as follows:

Let Xth = (
√
λ− 1) and h = hth = (

√
λ− 1)2

• If X0 ≥Xth, then hth = (
√
λ− 1)2 is the optimal intensity of harvesting.

• If X0 ≤Xth, then hth = (X0(a−1−X0))
(1+X0)

is the optimal intensity of harvesting.

4.4 A Modified Beverton-Holt logistic model

Model (equation (4.6)) assumes that harvesting starts at time zero. Suppose fingerlings

are introduced in a pond, as many as desirable. Even if they can still be harvested the

following day, it cannot be the objective of the farmer. They must be fed and let to

grow for some time until they are mature enough. A period of pure growth is therefore

desirable. The model does not satisfy our assumption (ii). Thus in our work, we suggest

a delayed discrete harvesting model:

Xt+1 =


λXt

1 +Xt

, t = 0, 1, 2, . . . , d− 1

λXt

1 +Xt

− ht−d, t ≥ d

(4.7)

where ht is the intensity of harvest in the tth generation and d the delay. For bamboo

d = 3 years. Meanwhile due to the constant harvest assumption h(t+p) = ht for all p ∈ N
as long as t ≥ d. We further propose a stochastic discrete logistic model where the growth

rate is random. The equation is

Nt+1 = Nt + r̃Nt

(
1− Nt

K

)
− h (4.8)

with r̃ = r + U [−σ, σ] with uniform random numbers between −σ and σ.

σ being the standard deviation of the growth rate to be determined empirically. A 100

sample average path for the process is given in Figure 4.2(b). The following are some

simulation results with parameter levels determined from data.
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(a) (b)

Figure 4.1: Discrete logistic model at various levels of harvest

(a) (b)

Figure 4.2: Discrete age dependent harvesting logistic model

Figure 4.1(a) shows that the more the harvest, the more unstable the growth system

becomes. With no harvest, it takes a logistic growth trajectory. As the number harvested

is increased further, the time to a diminishing population is shorter (see Figure 4.1(b)).

Clear cutting of the bushes causes spells of no harvest. It is also evident that in the long

run the bushes will be extinct. In Figure 4.2(a) the range of upper and lower paths is

some constant harvest amount. Figure 4.2(b) gives a simulation of the stochastic discrete

logistic distribution with uniform noise U [−σ, σ] on the growth rate r. It is noted that

while noise ensures that the population does not stabilize, there are limits within which

the system oscillates. The larger the noise, the wider the volatility band.

4.5 Logistic growth with constant harvest

Next we consider the logistic differential equation with constant harvesting rate H.

dNt

dt
= rNt

(
1− Nt

K

)
−H (4.9)
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Where Nt is the population size at time t,K is the carrying capacity, r is the intrinsic

population growth rate and H is the harvesting rate (culms per unit time). We find the

equilibrium points by letting dNt
dt

= 0. That is

rNt −
r

K
N2
t −H = N2

t −KNt +
HK

r
= 0 (4.10)

This has roots

l1 =
K

2

(
1−

√
1− 4H

rK

)
, l2 =

K

2

(
1 +

√
1− 4H

rK

)
(4.11)

Consider the value under the square root sign, say

∆ = 1− 4H

rK

We study three scenarios

1. When ∆ = 0 we have 4HC
rK

= 1, therefore, Hc = rK
4

. At this point E1 = E2 = K
2

.

This gives the critical harvest per unit time Hc with which the population size

remains constant provided N0 > E1 that is, N0 >
K
2

+ K
2

√
1− 4H

rK
since we have let√

1− 4H
rK

= 0, then the condition is N0 >
K
2

. For us, N0 = 1. So there should be

no harvest until Ntc ≥ K
2

that is; for K = 25 we wait until a critical Ntc ≥ 13 culms

population is reached. We will compute tc after finding the expression for Nt.

2. When ∆ < 0 the roots are complex .Since we are dealing with a system in R+ such

solution is irrelevant.

3. When ∆ > 0, E1 and E2 are real valued and distinct. Hm, Hm < Kr
4

harvesting in

moderation ensures a persistent population.

Next we determine Nt considering the favorable situation: H < Kr
4

. At equilibrium we

have
dNt

dt
=
−r
K

(Nt − E1)(Nt − E2) (4.12)

Therefore
dNt

[Nt − E1][Nt − E2]
=
−r
K
dt (4.13)

To make the LHS into partial fractions we have:

1

[Nt − E1][Nt − E2]
=
A(Nt − E2) +B(Nt − E1)

[Nt − E1][Nt − E2]
(4.14)
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We need to find A and B so that we make partial fractions.

[A+B]Nt − [E2A+ E1B]

[Nt − E1][Nt − E2]
=

1

[Nt − E1][Nt − E2]
(4.15)

Since there is no term in Nt on the RHS we have A+B = 0 hence A = −B The constant

part

−(E2A+ E1B) = 1

Placing A = −B we have −(BE1 −BE2) = 1

−B(E1 − E2) = 1, ⇒ B =
−1

−E2 + E1

, ⇒ A =
1

−E2 + E1

so we have
1

E1 − E2

(
dNt

Nt − E1

)
− 1

E1 − E2

(
dNt

Nt − E2

)
=
−r
K
dt

Integrating on both sides we have

ln |Nt − E1| − ln |Nt − E2| =
−r
K

(E1 − E2)t+ c

Therefore

ln

∣∣∣∣Nt − E1

Nt − E2

∣∣∣∣ =
−r
K

(E1 − E2)t+ c

where c is derived given the initial condition (at t = 0, and Nt = N0) Therefore

c = ln

∣∣∣∣N0 − E1

N0 − E2

∣∣∣∣
Let N0−E1

N0−E2
= A, then Nt−E1

Nt−E2
= Ae−r

(E1−E2)t
K . Hence Nt − E1 = (Nt − E2)Ae

−r (E1−E2)t
K

Nt =
E1 − E2Ae

−r (E1−E2)t
K

1− Ae−r (E1−E2)t
K

(4.16)

lim
t→∞

Nt =
E1 − E2Ae

−∞

1− Ae−∞ = E1 (4.17)

Here we note that harvesting can cause extinction.

Time to extinction is finite if Nex(t) = 0. Using equation (4.16).

Nex(t) =
E1 − E2Ae

−r(E1−E2)tex
K

1− Ae−r (E1−E2)tex
K

= 0
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This implies that

tex =
−K ln

∣∣∣ E1

E2A

∣∣∣
r(E1 − E2)

Therefore

tex =
1

r
√

1− 4H
rK

ln

∣∣∣∣E1(N0 − E2)

E2(N0 − E1)

∣∣∣∣ (4.18)

where Ei, i = 1, 2 are as in equation (4.11) and H the constant harvest amount.

From equation (4.18) it can be concluded that the larger the constant harvest the shorter

the time to extinction. Figure 4.3 shows the relationship between harvest rate and asso-

ciated time to extinction.

Figure 4.3: Harvest rate effect on time to extinction

Simulation paths of equation (4.16) at various harvest rates are given in Figure 4.4.
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Figure 4.4: Logistic growth with constant harvest

Given equation (4.16), Nt was simulated at N0 = 1, r = 1.5686, and K = 25. When there

is no harvest, it means E1 = E2 = K/2 = 12.5, A = 1 equation (4.16) becomes

Nt =
KN0

N0 + (K −N0)e−rt
. (4.19)

When there is no harvest, the culm population grows rapidly to a stable maximum

K = 25. When harvest H = 4, the population stagnates at 2 culms throughout and

at H = 7, the clump goes extinct immediately at the first harvest. This behavior is

undesirable. After all, the culms at such age have no significant use since they are

immature. The model we suggest basically uses Culm population at t=3 years as N0

under the harvesting regime so that harvesting can start with some population of mature

culms. So the delayed constant harvest equation for bamboo management is

Nt =


KN0

N0 + (K −N0)e−rt
, 0 ≤ t < d

E1 − E2Ae
−r (E1−E2)t

K

1− Ae−r (E1−E2)t
K

, t ≥ d

(4.20)

The simulation paths for various values of harvest under this new condition are given in

Figure 4.5.
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Figure 4.5: Logistic growth with delayed constant harvest

From Figure 4.5, we see that the imposed condition stabilizes the system so that nega-

tive populations do not arise. The higher the harvest the closer to 13 culms the stable

population gets. The bare maximum average harvest from our simulation is 10 culms per

clump. Anything above this number brought about an error. Indeed this is the critical

harvest

Hc =

(
rK

4

)
=

1.56868(25)

4
= 9.80425 u culms (4.21)

At this point, an equilibrium mean population of 13 culms is maintained over the years.

An investigation on extinction shows that the system is persistent as long as the harvest

is below the critical value. If we harvest 10 culms per year from each clump on average,

with the population at the start of harvesting N∗0 = 19.8 u 20 culms, time to extinction

tex = −3.46 years. This is actually the point where the curve crosses the time axis in

Figure 4.5. Thus there will be no extinction in finite time. Thus as long as the new plant

survives past the initial year of life and both the carrying capacity and below critical

harvesting is maintained, the threat of extinction is avoided.

We further noted that an increase in carrying capacity linearly increases the critical

harvest. So for high yield, one could think of enhancing water and soil fertility. This

provokes further study on the effects of this inputs on carrying capacity hence the yield.
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4.6 Harvesting a logistic population proportional to

size

In the previous section we discussed constant harvest on a logistic population. In this

case we suppose that the number harvested is a constant fraction of the population size.

Here we consider that the harvest function is Ht = qENt where q ≥ 0 is the harvestability

coefficient defined as a fraction of the population harvested by a unit of effort E,E ≥ 0

is the harvesting effort which is a measure of human activity to extract members of the

population. In our case we consider q as the probability of correctly detecting or finding

a mature culm. Equation (4.22) implies that the harvest per unit effort is a function of

the population size.
Ht

E
= qNt (4.22)

The logistic differential equation of proportional to size harvest is given by

dNt

dt
= rNt

[
1− Nt

K

]
− qNtE (4.23)

The rest of notations take previous meanings. Here we note that the larger the population

the more the effort to find mature culms.

Let the effort of harvesting be given by

E(t, Nt) = α− β

Nt

dNt

dt
(4.24)

where α, β > 0 are constants, be the effort function then the rate of change of the

population is
dNt

dt
= rNt

[
1− Nt

K

]
− λqNt

(
α− β

Nt

dNt

dt

)
(4.25)

Rearranging equation (4.25) we have

dNt

dt
=
r

c
Nt

(
1− Nt

K

)
− λqαNt

c
(4.26)

where c = (1− λqβ).

We have introduced a parameter λ to the model to take care of demand for culms. Notice

that when there is no demand for culms λ = 0, c = 1 and equation (4.26) is the usual

logistic model. Similarly if we can’t detect a mature culm (this happens between year 0

and 2 from planting) q = 0 and c = 1 thus no harvest is achieved.
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Next we study the equilibrium behavior of system (4.26). That is at dNt
dt

= 0.

Therefore

−rN2
t

cK
+
r

c

[
1− λqα

r

]
Nt = 0

N2
t −K

[
1− λqα

r

]
Nt = 0

(4.27)

From (4.27) we find that E1 = K[1 − λqα/r] and E2 = 0 are the roots. Nt[E2 = 0] is

unstable while Nt[E1] is stable if E1 > 0 that is when K[1 − λqα/r] > 0 or r > λqα.

When r = λqα, E1 = 0 as was case E2.

Next we find the solution of equation (4.26). Let K
[
1− λqα

r

]
= D then dNt

dt
= rNt

Kc
[D−Nt].

Separating the variables we have

dNt

(Nt[D −Nt])
=

r

Kc
dt (4.28)

The LHS of equation (4.28) is decomposable to partial fractions so that

1

D

[
1

Nt

+
1

D −Nt

]
dNt =

r

Kc
dt

Integrating both sides we have lnNt−ln |D−Nt| = Drt
Kc

+A for some constantA determined

by including initial conditions Nt[t = 0] = N0. We get A = ln
∣∣∣ N0

D−N0

∣∣∣. So

ln

∣∣∣∣ Nt

D −Nt

∣∣∣∣ = ln

∣∣∣∣ N0

D −N0

∣∣∣∣+
Drt

Kc
(4.29)

Taking exponents of both sides of equation (4.29) we have

Nt

D −Nt

=

[
N0

D −N0

]
e
Drt
Kc

From which

Nt =

[
N0

D−N0

]
De

Drt
Kc

1 +
[

N0

D−N0

]
e
Drt
Kc

This is simplified to

Nt =
N0D

N0 + [D −N0]e
−rDt
Kc

(4.30)

Reverting to initial notation where D = K
(
1− λqα

r

)
and c = (1− λqβ)
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The explicit solution is

Nt =
N0K

(
1− λqα

r

)
N0 +

(
K
(
1− λqα

r

)
−N0

)
e

−r(1−λqα
r )t

(1−λqβ)

(4.31)

where λ is the fraction of harvestable culms on demand, q is the probability of finding a

mature culm in the clump α and β are constants that determine effort required to harvest.

r is the intrinsic population growth rate. N0 = Nt(t = 0) and K is the environmental

carrying capacity.

Model equation (4.31) was simulated for 30 years with the growth rate r determined from

actual data as follows:

Let λ = 0 or q = 0 so that equation (4.31) is the logistic growth without harvest [see

equation (4.19)] From data, N0 = 1, K = 25,N1 = 4 culms approximately. Replacing

these in equation (4.20), and making r the subject we have

r = −1

t
ln

∣∣∣∣ 25

24Nt

− 1

24

∣∣∣∣ (4.32)

From this we get r = 1.56868 as the intrinsic growth rate.

It is desirable that no harvesting is done within the first two years since there is no mature

culm in the clump. This is also advised by Ongugo [64]. So we need to include in this

model a delay like before so that there is pure growth within that period and harvesting

commences at year 3. Our model that takes care of this scenario reads (equation (4.33)).

This is equivalent to holding q = 0 until t ≥ 3 years.

dNt

dt
=


rNt

(
1− Nt

K

)
, 0 ≤ t < d

r

c
Nt

(
1− Nt

K

)
− λqα

c
Nt, t ≥ d

(4.33)

d = 3 the harvest delay to maturity of culms. Figure 4.4 shows the simulated paths taken

by logistic growth without harvest and with harvest at various levels of q, the proportion

of mature culms in a clump. In all cases, we have assumed that demand for bamboo is

equal to all available mature culms. That is λ = 1. The equation for number of culms at
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any time t is

Nt =


KN0

N0 + (K −N0)e−rt
, 0 ≤ t < d

N0K
(
1− λqα

r

)
N0 +

(
K
(
1− λqα

r

)
−N0

)
e

−r(1−λqα
r )t

(1−λqβ)

, t ≥ d
(4.34)

Here the critical harvest is at 1 > λqα
r

which implies r > λqα. Since q is the probability

of finding a mature culm, it can be assumed that q < 1 almost surely. By Markov chain

analysis [9] gave 60% as the proportion of culms that are mature at age d = 3 years.

Further, assuming that all mature culms will be on demand λ, letting α = β = 1, we

maintain the population at equilibrium when λq = r
2

at which

Neq =
N0K

(
1− 1

2

)
N0 +

(
K
(
1− 1

2

)
−N0

)
e

−r(1− 1
2)t

(1− r
2 )

=
N0K
2

(N0 +
(
K
2
−N0

)
e

−rt
(2−r)

(4.35)

Further Yeq = λqNeq = rK
4

which means that the harvest should not deplete the popula-

tion below Neq = 16.34 culms. This is equivalent to harvesting Y (eq) = 16.34(0.6) = 9.8

culms per clump.

Figure 4.6: Yield proportional to population size Logistic model

The model shows that if harvest is taken proportional to the population size, some equi-

librium population size lower than the carrying capacity is maintained. Simulation results

shows that α can be varied within 0 < α < r
λq

while 0 ≤ β ≤ 1 is the domain for β. The

higher the α the lower the equilibrium point since the harvest is increased.

Let Neq be the equilibrium population. Table 4.1 shows the values of Neq at various
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instances of α with q = 0.6 and β = λ = 1.

Table 4.1: Equilibrium population at various levels of α
α Neq

1.050 20.9825
2.000 17.3500
6.535 0.7437
7.000 0.0000

α is the part of effort that does not depend on the population. So one does not care how

much to harvest, the whole population may be harvested leading to extinction in finite

time.

Next we investigate β and its domain. When β = 0 we have c = 1. Let λ = 1, q = 0.6

then Neq = 15.437 culms.

Next suppose we increase β to β = 5;Neq = 44.5 culms which is much greater than the

carrying capacity (K = 25). Much closer if β = 2 we have Neq = 26.915 which is slightly

higher than the carrying capacity. We therefore restrict β to the boundaries 0 ≤ β ≤ 1.

Thus our model explicitly reads

dNt

dt
=


rNt

(
1− Nt

K

)
, 0 ≤ t < d

r

(1− λqβ)
Nt

(
1− Nt

K

)
− λqα

(1− λqβ)
Nt, t ≥ d

(4.36)

with 0 < α < r
λq
, 0 ≤ β ≤ 1, N0 = 1, 0 < λ < 1, 0 < q < 1

4.7 Stochastic logistic modeling

We have already characterized the deterministic logistic model equation (4.1) whose so-

lution Nt is given in equation (4.2). We saw that it has stationary solutions at Neq = 0

and Neq = K.

Since population dynamics in nature are usually affected by environmental variations

and human activity, factors that cannot be measured and accurately modelled, stochastic

equations are inevitable. Our interest is to derive a stochastic logistic model with the

two harvesting situations: non - volatile and stochastic harvesting.
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4.7.1 Stochastic growth example

Let the birth rate r be stochastic such that rt = rt+ σWt where rt = µ a constant birth

rate. Consider a stochastic logistic growth equation given by;

dNt = (µNt −N2
t )dt+ σNtdWt (4.37)

Wt is the standard Brownian process with zero mean and variance t. The associated

Fokker-Planck equation is:

∂P

∂t
=

∂

∂Nt

[(
N2
t − µNt +

σ2

2

∂

∂Nt

N2
t

)
P

]
(4.38)

If there is a stationary state then it must satisfy

0 =
∂

∂Nt

[(
N2
t − µNt +

σ2

2

∂N2
t

∂Nt

)
P st

]
(4.39)

This is generally written as

∂

∂Nt

[(
−f +

1

2

∂

∂Nt

g(x)2
)
P st

]
(4.40)

for which we find;

P st(Nt) = LN2( µ

σ2
−1)

t e−
2
σ2
Nt (4.41)

We use the stochastic property of total probability equals unit to find the normalization

constant L.

1 =

∫
P st(Nt)dNt = L

(
σ2

2

)( 2µ

σ2
−1)

Γ

(
2µ

σ2
− 1

)
(4.42)

Where Γ(α) is the gamma function,hence

L =

(
σ2

2

)−( 2µ

σ2
−1)

Γ
(
2µ
σ2 − 1

) (4.43)

We note that for µ
σ2 ≤ 1

2
. L is not bounded so there is no stationary state for Nt > 0.

4.7.2 Stochastic logistic growth with stochastic harvesting

There are many forms of the stochastic logistic models depending on which part of the

system is assumed stochastic. Many researchers prefer using the system described by

equation (4.44) where only the linear part of the equation is associated with noise see
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for example [4, 65, 88, 85, 53, 99, 54, 83, 49, 90] and many other texts we reviewed but

did not cite in our work. No explanation as to why, or a discussion of how superior the

model is to our suggested model (4.45) is given.

dNt = rNt

(
1− Nt

K

)
+ σNtdWt, t ≥ 0 (4.44)

We claim that both the linear and density term in Nt significantly contribute to the

growth rate so that the logistic stochastic model is of the form

dNt = Nt

(
1− Nt

K

)
(rdt+ σdWt), t ≥ 0 (4.45)

Here the growth rate is stochastic. The drift can be separated from the Weiner process

so that

dNt = Nt

(
1− Nt

K

)
rdt+ σNt

(
1− Nt

K

)
dWt (4.46)

Just like in the deterministic case equation (4.1), equation (4.45) has two equilibrium

points, 0 and K. Moreover, it has been shown Jingliang and Wang [49] that equation

(4.44), that is, the solution of the SDE satisfies:

0 < lim inf
t→∞

(Nt)i < lim sup
t→∞

(Nt)i <∞ almost surely for i = 1, 2, 3, . . .

We are equally confident that (4.45) is stochastically permanent. Alvarez and Shepp

[4] showed that for Equation (4.44) Nt neither reaches zero nor infinity in finite time,

and provided > r σ
2

2
the process has been shown to have a stationary distribution. They

further showed that the probability density of Nt is

χ2
n

(
4r

Kσ2

)
Nt (4.47)

with continuous density

P (Nt) =

(
4r
Kσ2

)n
2 2−

n
2N

n−2
2

t e−
4rNt
2Kσ2

Γ
(
n
2

) (4.48)

where n
2

=
(
2r
σ2 − 1

)
They also gave the solution for equation (4.45) as

Nt =
N0 exp

((
r − 1

2
σ2
)
t+ σBt

)
1 +

(
N0

K

)
r
∫ t
0

exp
((
r − 1

2
σ2
)
s+ σBs

)
ds

(4.49)
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In our work, we determine a stochastic logistic harvesting equation in which both the

growth and harvest term are stochastic, They evolve by equation (4.45). We proceed to

solve the equation and discuss the characteristics. Since the population growth rate is

given by r, then harvest rate λ should be subtracted from the growth rate so that the

net growth rate, says ρ = r − λ. We now drop assumptions (i) and (iv) in section (4.1)

so that we have the stochastic term ρt = rt − λt. Essentially, each parameter has a drift

that is constant and a varying part with simple Weiner processes as

rt = r + σ1
dW

dt
(4.50)

λt = λ+ σ2
dW
dt

(4.51)

Here W and W are independent Weiner processes representing noise in growth and har-

vesting respectively, σ1 and σ2 are noise intensities of the two parameters respectively.

The net change in population is therefore

ρt = (r − λ) + σ1
dW

dt
− σ2

dW
dt

(4.52)

ρt = ρ+ σ1
dW

dt
− σ2

dW
dt

(4.53)

Replacing r with ρt in equation (4.46) we have

dNt = Nt

(
1− Nt

K

)
ρdt+ σ1Nt

(
1− Nt

K

)
dW + σ2Nt

(
1− Nt

K

)
dW (4.54)

We transform equation (4.54) using

ln

∣∣∣∣K −Nt

Nt

∣∣∣∣ = f(Nt, t)

Which implies

∂f

∂Nt

=
−K

Nt(K −Nt)
,
∂2f

∂N2
t

=
K(K − 2Nt)

N2
t (K −Nt)2

, and
∂f

∂t
= 0

, by Itô’s Lemma, we have

d ln

∣∣∣∣K −Nt

Nt

∣∣∣∣ =
∂f

∂t
[dt] +

∂f

∂Nt

[dNt] +
∂2f

∂N2
t

[dNt]
2 (4.55)

After replacing dNt with equation (4.54) and simplifying we have

d ln

∣∣∣∣K −Nt

Nt

∣∣∣∣ = −ρdt+
1

2
(σ2

1 + σ2
2)dt− Nt

K
(σ2

1 + σ2
2)dt− σ1dW + σ2dW (4.56)
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Note that we have used same procedure as the example equation (3.14) we solved as an

application of Itô’s Lemma (Section 3.2.8). For simplicity of expression, let (σ2
1 +σ2

2) = V
then integrating on both sides in the range [0, t) we have

ln

∣∣∣∣K −Nt

Nt

∣∣∣∣− ln

∣∣∣∣K −N0

N0

∣∣∣∣ =

∫ t

0

[((
ρ− 1

2
V
)

+
Ns

K
V
)
ds+ σ1dW − σ2dW

]
Taking exponents of both sides and simplifying we get

Nt =
KN0

N0 + (K −N0)eA(t)
(4.57)

Where

At = −
∫ t

0

[((
ρ− 1

2
V
)

+
Ns

K
V
)
ds+ σ1dW − σ2dW

)
We note that

(
ρ− 1

2
V
)

is constant with respect to time so that

At = −
(
ρ− 1

2
V
)
t−
∫ t

0

([
Ns

K
V
]
ds+ σ1dW − σ2dW

)
(4.58)

Here Ns
K

at any instance is a fraction multiplied by V which is total variance, and coupled

with noisy variations in growth and harvest rates. For sufficiently little noise, dW → 0

and dW → 0 so that

At = −
(
ρ− 1

2
V
)
t− Nt

K
Vt = −ρt+

(
1

2
+
Nt

K

)
Vt (4.59)

We can now examine the extreme regimes. Clearly limt→∞At → −∞ and equation (4.57)

maximizes at Nt = K. So however large the noise, the population does not explode to

infinity. This basically agrees with nature that however how much fertilizer, rain and

other growth accelerators we apply; there are a maximum number of individuals that an

ecosystem can carry. At the lower end. When t = 0 we have At = 0 andNt = N0. Further,

we analyze harvest and possibilities of extinction. If At is negative, the population grows

larger. While a positive At diminishes the population.

The only time At will be positive is when −ρ +
(
1
2

+ Nt
K

)
V > 0 or when −(r − λ) +(

1
2

+ Nt
K

)
V > 0 or λ > r −

(
1
2

+ Nt
K

)
V . This means that regardless the amount of “good

noise” (for example, a good amount of unexpected rainfall), large harvest can drive a

population to extinction. Let K be much larger compared to Nt such that Nt
K

= 0, then

the condition for persistence of the population is that

λ < r − 1

2
V or λ < r − 1

2
(σ2

1 + σ2
2)
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Comparing this with the deterministic equivalent, the difference is in the variance. We

also note that even without harvesting, a sufficiently large noise can drive the population

to extinction. From equations (4.57) and (4.58), derivation of harvest equations when

either harvest or growth rate are not stochastic is straight forward. The difference is only

in the variance where we let either of the two (σ2
1 or σ2

2)equal to zero appropriately. The

form of the solution is the same with change only in At. A simulation of the system at

various levels of noise is plotted in the following figures.

Simulated populations under noise intensities σ1 = 0.1, σ2 = 0.1 with various levels of av-

erage proportional harvesting rate h are given in the following set of graphs (Figure 4.7).

In our model we were able to relax various assumptions so that the system evolves as

naturally as possible. Constant growth and constant harvest rates are no-longer manda-

tory. We also imposed the delay to onset of harvesting, a factor that can be easily noted

as the graphs break abruptly at 3 years.

The graphs (in Figure 4.7) bring out the seriousness of how many culms are cut within a

time period. The higher the harvest, the worse the equilibrium status of the system. As

the harvest rate approaches growth rate, the system approaches extinction in finite time.
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Figure 4.7: Harvesting a stochastic logistic population in a real Brownian environment

Finally, maximum optimal yield was simulated at σ1 = σ2 = 0.1 noise levels. Figure

4.8 shows a maximum average sustainable yield of 15.5 culms per clump. That is at

h = 0.07, indeed this is almost half of the growth rate r = 0.1307. The variation is due

to the system noise.
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Figure 4.8: Harvesting rate and associated yearly mean harvest

The optimum harvest strategy for a fully stochastic system has been derived. We have

also shown that the maximum sustainable yield and some level of noise is averagely half

the growth rate. The critical harvesting rate is therefore given as

λ =
1

2

(
r − 1

2
(σ2

1 + σ2
2)

)
(4.60)

A graph of optimal strategy together with associated mean yearly yield (dark dotted line)

is given (Figure 4.9). The light dotted line is a no harvest trajectory. The graph brings

out a conclusion that with sufficient noise that does not cause system extinction, the

system struggle to head to carrying capacity. Since harvest is proportional to population

size, and if there is infinite demand for the culms, then with confidence we can say that

there is no absolute steady state in a noisy system other than extinction. We are only sure

that the system is bounded between Zero and K. This has been noted in the deterministic

cases as well.
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Figure 4.9: 10 simulation runs of the stochastic logistic harvest model with noise in
growth and harvesting

4.7.3 Stochastic logistic model with linear term random

We consider the model of the form

dNt = [(r − λ)Nt − βN2
t ]dt+ σ1NtdW

(1)
t − σ2NtdW

(2)
t (4.61)

in which λ is the harvesting rate per population unit. Here the net growth is only

multiplied by the linear term in Nt. We had earlier under the deterministic harvest

modeling (section 4.6) given the proportional harvesting rate as qENt = Ht. Thus here

λ = qE. We have relaxed the assumptions of constant growth rate and harvest so that

both are stochastic. σ1 and σ2 are the noise intensities for growth rate and harvest rate

respectively. Equation (4.61) can be written as

dNt = m(Nt)dt+ σ(Nt)dWt (4.62)

where

m(Nt) = [(r − λ)Nt − βN2
t ], σ(Nt) = (σ1Nt,−σ2Nt) and Wt =

(
W

(1)
t ,W

(2)
t

)T
Equation (4.62) is a continuous Markov process for which the probability density function

of the solution can be determined using the corresponding Fokker-Planck equation.

∂P (Nt, t, λ)

∂t
=
−∂
∂Nt

M(Nt)P (Nt, t, λ) +
∂2

2∂N2
t

[σ2(Nt)P (Nt, t, λ)] (4.63)
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Since the drift M(Nt) and the noise term σ(Nt) are invariant with respect to time, the

equation that satisfies the stationary distribution is

d

d(Nt)
[M(Nt)P (Nt, λ)]− ∂2

2∂N2
t

(σ2(Nt)P (Nt, λ) = 0 (4.64)

From the generalization given in the stochastic growth example (Section 4.7.1), (4.64)

has an explicit solution in the domain [0,+∞). That is

P (Nt, λ) = LN
2

(
r−λ
σ21+σ

2
2

)
−2

t e
−2

(
βNt
σ21+σ

2
2

)
(4.65)

where the normalization constant L is found using the integral

∫ ∞
0

LN
2

(
r−λ
σ21+σ

2
2

)
−2

t e
−2

(
βNt
σ21+σ

2
2

)
dNt = 1 (4.66)

When λ <
(
r − σ2

1+σ
2
2

2

)
is true we have

L =

∫ ∞
0

N

(
2r−2λ

σ21+σ
2
2

)
−2

t e
−
(

2βNt
σ21+σ

2
2

)
dNt

−1 (4.67)

So

P (Nt, λ) =
N

(
2r−2λ

σ21+σ
2
2

)
−2

t e
−
(

2βNt
σ21+σ

2
2

)

∫∞
0
N

(
2r−2λ

σ21+σ
2
2

)
−2

t e
−
(

2βNt
σ21+σ

2
2

)
dNt

(4.68)

For simplicity of expression let α = 2r
σ2
1+σ

2
2

and θ = 2
σ2
1+σ

2
2

then (4.68) becomes

P (Nt, λ) =
N

(α−θλ)−2
t e−θβNt∫∞

0
N

(α−θλ)−2
t e−θβNt)dNt

(4.69)

The expectation of sustainable yield is computed as

Ys = E(Nt, λ) =

∫ ∞
0

λNtP (Nt, λ)dNt

Ys =
λ
∫∞
0
N

(α−θλ)−1
t e−θβNtdNt∫∞

0
N

(α−θλ)−2
t e−θβNt)dNt

(4.70)
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Let θβNt = y then dy = θβdNt and Nt = y
θβ

we have

Ys =
λ
∫∞
0
y(α−θλ)−1e−ydy

(θβ)
∫∞
0
y(α−θλ)−2e−ydy

=
λ

θβ

Γ(α− θλ)

Γ(α− θλ− 1)

=
λ

θβ

λ(α− θλ− 1)Γ(α− θλ− 1)

Γ(α− θλ− 1)
=
λ(α− θλ− 1)

θβ
(4.71)

Replacing α and θ we have

Ys =
λ
(

2r
σ2
1+σ

2
2

)
−
(

2λ
σ2
1+σ

2
2

)
− 1

2β
σ2
1+σ

2
2

=
λ[2(r − λ)− (σ2

1 + σ2
2)]

2β
(4.72)

Equation (4.72) can be reorganized so that

Ys =
λ[(r − λ)− 1

2
(σ2

1 + σ2
2)]

β
(4.73)

From this we note that if (r − λ) =
σ2
1+σ

2
2

2
we have no yield. Thus, (r − λ) >

σ2
1+σ

2
2

2
or

λ <
(
r − σ2

1+σ
2
2

2

)
is a necessary condition for any harvest to be realized. Considering

conditions previously prescribed at equilibrium, (Section 4.5, condition 1 and section 4.6

with the condition that follows equation (4.35) in the deterministic case, we have the

optimal harvesting policy at λ = 1
2

(
r − σ2

1+σ
2
2

2

)
.

maxλs =

(
r

2
− σ2

1 + σ2
2

4

)
(4.74)

Substituting (4.74) in (4.73) we have a maximum sustainable yield of

maxYs =
1

4β

[
r − σ2

1 + σ2
2

2

]2
(4.75)

Its variance can be shown to be

V arYs =
σ2
1 + σ2

2

16β2

[
r − σ2

1 + σ2
2

2

]3
(4.76)

where r is the intrinsic rate and β = r
K

with K the carrying capacity. We note that the

population neither reaches some steady state nor goes extinct but cycles between some

maximum and minimum boundaries determined by the level of noise in the two rates.
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4.7.4 Stochastic logistic model with only growth rate being ran-

dom

We have considered two cases (sections 4.7.2 and 4.7.3) where both the growth rate and

harvest are stochastic. This is the most realistic scenario than other variants of the

stochastic logistic family of models. It is easily verifiable that when the randomness

assumption is not taken into account (by letting σ1 = σ2 = 0) our results coincide

with those we derived under deterministic logistic model of the Verhulst population. If

the farmer is organized and a strictly proportional yield is taken, then σ2 = 0 and the

following results hold.

i. Equation (4.62) will read

dNt = [(r − λ)Nt − βN2
t ]dt+ σ1NtdW

(1)
t (4.77)

ii. The necessary condition to avoid extinction reads

maxλs =

(
r

2
− σ2

1

4

)
(4.78)

iii. The probability distribution of the system is

P (Nt, λ) =
N

2

(
r−λ
σ21

)
−2

t e
−2

(
βNt
σ21

)

∫∞
0
N

2

(
r−λ
σ21

)
−2

t e
−2

(
βNt
σ21

)
dNt

(4.79)

iv. The maximum yield

maxYs =
1

4β

[
r − σ2

1

2

]2
(4.80)

v. Variance of yield

V arYs =
σ2
1

16β2

[
r − σ2

1

2

]3
, forr >

σ2
1

2
(4.81)

The maximum sustainable yield at various levels of noise in growth rate together with the

associated variance of yield are plotted in Figure 4.10. The higher the noise, the lower

the sustainable harvest.
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Figure 4.10: Optimum harvest at various levels of harvest

58



CHAPTER FIVE

RESULTS AND DISCUSSION

5.1 Introduction

In this chapter, computations and findings on the following aspects of bamboo growth

are reported. Growth in culm height, culm diameter, clump circumference, number of

culms per clump and crown cover. These are all important in this research since they

give a complete description of the plants under investigation. Further, multiple regression

models are fitted to data and their goodness of fit discussed. The bamboo growth variables

are modeled by linear regression analysis and prediction equations of one in relation to

another determined. Sites are analyzed to determine which species of bamboo does best

in each location. Climatic data for the study sites is analyzed and used to predict yield.

Hypotheses formulated in the study are also tested. A 5-parameter logistic model is

introduced and used in determining yield. The model simulated output is compared

with actual data for model verification. Further, the deterministic and stochastic models

discussed in chapter 4 are applied and their impact in the prediction of yield, together

with the advantage of equilibrium harvesting are discussed.

5.2 Growth in culm height

Growth in height was monitored by measuring the tallest three culms per monitored

clump. Note that not the same culms in tagged clumps were measured over time. Each

new shoot is normally thicker and grows taller than previous ones, only taking around 3

months [50] to stretch to maximum height. After this, maturity takes over two years.
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5.2.1 Bambusa vulgaris height analyses

Average heights for the two species in each site, taken at various points in time were as

summarized in Table 5.1.

Table 5.1: Mean growth in height for bambusa vulgaris in the four study sites

Here µ is the mean height (in meters) attained by bamboo at the given site. For easier

comparison, the data were fitted to polynomial regression curves of order 3. These were

found to be best fitting to the data as shown in Figure 5.1.

Figure 5.1: Growth in culm height for bambusa vulgaris at the four study sites

Equations for growth in height (m) for bambusa vulgaris species.

Rangwe:

y = 0.000082x3 − 0.008309x2 + 0.416580x− 0.778544

R2 = 0.998048 x ≥ 3 months
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Suna E.

y = 0.000101x3 − 0.009506x2 + 0.405122x− 0.661444

R2 = 0.999262 x ≥ 3 months

Kuria:

y = −0.000009x3 − 0.003190x2 + 0.325679x− 0.396447

R2 = 0.999243 x ≥ 3 months

Suba:

y = 0.000065x3 − 0.005877x2 + 0.301060x− 0.429473

R2 = 0.997529 x ≥ 3 months

In all cases the goodness of fit was plausible since, as read from values of the coefficient

of determination R2, age x in months explains over 99% of variation in height y (meters).

5.2.2 Giant bamboo height analyses

The height of a bamboo culm contributes proportionately to the harvest volume. dendro-

calamus giganteus bamboos are known to get to a maximum height of 35M while bambusa

vulgaris reaches up to a maximum of 20M [72]. Table 5.2 shows the mean height of giant

bamboo at various time intervals corresponding to monitoring times.

Table 5.2: Mean growth in height for dendrocalamus giganteus in the four study sites

The data were fitted with polynomial regression curves for easy comparison (Figure 5.2).

The ranking of sites in terms of average giant bamboo height performance was Rangwe,

Kuria, Suna E., then Suba in descending order.
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Figure 5.2: Growth in culm height for dendrocalamus giganteus at the four study sites

In each site, growth was sigmoid. The best fit model was polynomial order 3 which had

the best coefficient of determination (R2 > 0.99). The following are site specific equations

for growth in height for dendrocalamus giganteus species. In all cases the condition x ≥ 3

holds.

Rangwe:

y = 0.000294x3 − 0.017617x2 + 0.561131x− 1.109421

R2 = 0.997515

Kuria:

y = 0.000094x3 − 0.007933x2 + 0.435899x− 0.917744

R2 = 0.996893

Suna E.:

y = 0.000223x3 − 0.015552x2 + 0.508966x− 0.962877

R2 = 0.999452

Suba:

y = 0.000344x3 − 0.020744x2 + 0.532380x− 0.899151

R2 = 0.997960
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Again in all cases the goodness of fit was plausible since time(x) explains over 99% of

variation in height. The general trend for growth in height for the two species in the

study region is summarized in Table 5.3 with a graphical representation in Figure 5.17.

Table 5.3: Mean general growth in height for dendrocalamus giganteus and bambusa
vulgaris

Again, due to the genetic composition, dendrocalamus giganteus had higher heights each

monitoring time, over the study period.

Figure 5.3: Mean general growth in height for d. giganteus and b. vulgaris

The equations for general trend are:

Giant bamboo (d. giganteus)

y = 0.000239x3 − 0.015461x2 + 0.509594x− 0.972298

R2 = 0.999433, x ≥ 3
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bambusa vulgaris

y = 0.000060x3 − 0.006720x2 + 0.362111x− 0.566477

R2 = 0.999687, x ≥ 3

The trend shows a slow rise in height with time, with dendrocalamus giganteus exuding a

slightly faster growth rate than bambusa vulgaris with time. This behavior was replicated

in all the sites.

The general average height at age 36 months was 6.555 M for bambusa vulgaris and

8.679 M for dendrocalamus giganteus. The maximum single height was 17.867 M for

bambusa vulgaris found in Rangwe farm H17 code B12 owned by Joseph Nondi. The

tallest dendrocalamus giganteus culm was 17.867 M tall. This was also found in Rangwe

H12 owned by Samson Juma.

5.3 Clump diameter

This is the diameter of a whole cluster of poles emerging from one seedling. The clump

diameter was computed by measuring the circumference of a tagged cluster and multi-

plying by 1/π. Measures of clump circumference were taken at age 26 and 32 months as

shown in the following Figure.

Figure 5.4: Growth in culm and clump diameter with time.

Data on clump diameter from the four sites was analyzed to compare growth among the
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two species. In comparing giant and bambusa clump diameters, the question was if there

is significant difference in clump diameter of the two species.

Table 5.4: Mean clump diameter for the d. giganteaus and b. vulgaris species

For all 167 Giant and 244 bambusa vulgaris consistently investigated clumps for each of

the two species, the following clump diameters data were obtained.

Table 5.5: Mean clump diameter from a sample of clumps

The correlation coefficient of average clump diameter over the four sites between giant

and bambusa vulgaris clumps was 0.926, meaning that there was a strong relationship

between clump diameters among the two species at the different sites. Further a test of

hypothesis about the difference between means of the two species gives Z (computed) as

−5.18, and the critical Z (tabulated) at 5% level of significance (two sided) is 1.96

H0 : µ1 = µ2

H1 : µ1 6= µ2

where µ is mean clump diameter for d. giganteus and µ for b. vulgaris. The p-value

0.0254 was <0.05. Further, since the absolute value of the test statistic Z was greater

than 1.96, we rejected the null hypothesis and concluded that there was a significant

difference in the mean clump diameters of the two bamboo species. The negative sign

on the test statistic value shows that Giant bamboo had lesser clump diameters than the

bambusa species at the given points in time. Indeed, bambusa culms spread out faster

than giant culms [72].
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5.4 Crown diameter

Crown diameter was measured by measuring the widest and narrowest spread of each

clump and averaging. The study of crown cover is important since as the cover increases,

the possibility of intercropping diminishes. Light penetration to the ground is also hin-

dered hence inhibiting growth of any other crop within the clumps. This also affects

further shooting of bamboo hence lowering the yield.

Table 5.6: Average crown diameter for d. giganteaus and b. vulgaris

For the two species planted at the same time, the relationship between crown diameters

was investigated. A correlation analysis of the averages in Table 5.6 gave 0.962 implying

a strong positive relationship.

A test of the null hypothesis that there is no significant difference between mean bambusa

crown diameters and mean giant crown diameter against the alternative of inequality was

made:

H0 : µ1 = µ2

H1 : µ1 6= µ2

Where µ1 is mean crown diameter for d. giganteus and µ2 for b. vulgaris, gave X1 =

2.737M (d. giganteus) and X2 = 2.667M (b. vulgaris) with n1 = 167 (number of giant

clumps investigated) and n2 = 244 (number of bambusa clumps investigated). Standard

deviation for the giant clump diameter S1 = 0.703959 and that of bambusa is S2 =

0.597487.

The computed Z value was 1.05355 and the critical value at 5% level of significance 1.96.

This led to failure to reject the null hypothesis leading to the conclusion that there was

no significant difference in crown diameter between the two species.
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5.5 Culm diameter

One of the most significant measures in bamboo is culm diameter. Technically, it is

measured at breast height hence the name diameter at breast height (dbh). Dbh data

were recorded from 3 largest culms in each tagged clump. Note that culm diameter for

a particular mature culm never changes with time. It was earlier illustrated (Figure 5.4)

that new culms have larger diameters and are further from the clump center than previous

ones. The mean culm diameters for the two species over the study period are presented

in the following tables.

Table 5.7: Mean culm diameter (cm) for b. vulgaris at the four sites

The mean culm diameter at age 36 months in all sites was between 4.6 and 4.9 cm.

No signficant difference was noted in this dimension to suppose one sight as superior to

another.

Table 5.8: Mean culm diameter (cm) for d. giganteus at the four sites

For d. giganteus, mean culm diameter was different from site to site. It ranged between

6.7cm and 7.9cm thick. Data in tables 5.8 and 5.9 were fitted multiple with regression

curves for visual comparison. The plots are as shown in Figures 5.5 and 5.6, respectively.
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Figure 5.5: A polynomial fit for mean culm diameter for b. vulgaris at the four sites

Figure 5.6: A polynomial fit for mean culm diameter for d. giganteus at the four sites

In both graphs, all regression equations have the condition x ≥ 3. As was the case with

culm height, growth in culm diameter was also sigmoid. A polynomial of order three gave

a good fit with the coefficient of determination R2 > 0.99. Average culm diameters over

time for each species were tabulated as follows.
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Table 5.9: Mean culm diameter for the two species over time at the four study sites

To visualize the trend for the data, a polynomial fit for the data were plotted (Figure 5.7).

At the start, 3 to 12 months, both species had similar diametric growth rates. Thereafter,

dendrocalamus giganteus had significantly larger diameters than bambusa vulgaris at all

sites.

Figure 5.7: Mean general growth in culm diameter for b. vulgaris and d. giganteus

5.6 Comparing height and culm diameter

The heights and corresponding culm diameters of the best three culms per tagged clump

were recorded. Data for mean measures of the two parameters were as in Table 5.10.

There was a strong relationship between height and culm diameter as seen from Ta-

ble 5.11.
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Table 5.10: Height and culm diameter for giant bamboo

Table 5.11: Correlations between height and culm diameter

There was a strong linear relationship between giant culm diameter and height of each

culm. Using the regression equation, as height tends to a maximum of 30M, the culm

diameter tends to 30 cm wide. The linear regression equation for giant bamboo is:

y(culm height M) = 1.0743x(culm diameter cm) + 0.6707 R2 = 0.9612

Comparing height against culm diameter for bambusa vulgaris also showed a strong posi-

tive linear relationship with a steeper slope than that of dendrocalamus giganteus. Using

the regression equation, it is estimated that as culm height tends to 20M, culm diameter

tends to 15 cm as expected.

Figure 5.8: A linear graph of height against culm diameter for giant bamboo

x ≥ 3 for the linear equation in Figure 5.8. The linear model is however not accurate on
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extrapolation. For b. vulgaris, the following table has average height and corresponding

average culm diameter.

Table 5.12: Height and culm diameter for bambusa vulgaris

Equation for bambusa vulgaris.

y(culm height) = 1.3439x(culm diameter) + 0.3509, R2 = 0.9768

We can therefore predict height given culm diameter using the linear regression model.

From table 5.13 for bambusa vulgaris, both the intercept and gradient were significant at

5% level. The 95% confidence interval for the gradient was (1.1056, 1.5822)

Figure 5.9: A graph of height against culm diameter for bambusa vulgaris

The regression statistics are given in the following table.

Table 5.13: Regression coefficients for height against culm diameter for b. vulgaris
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From Table 5.14 for dendrocalamus giganteus, the gradient was significant at 5% level.

The 95% confidence interval for the gradient was (0.8260, 1.3225).

Table 5.14: Regression coefficients for height against culm diameter for d. giganteus

bambusa vulgaris had a steeper gradient than dendrocalamus giganteus implying that

the lateral growth in bambusa vulgaris is less prominent than longitudinal growth. The

converse was true for dendrocalamus giganteus.

5.7 Growth in number of culms

The number of culms per clump is an important measure of the productivity of a farm.

Depending on soil and weather conditions, there are varied amounts of culms a clump

carries at a given time from the date of planting.

Data on the number of culms per clump was recorded at various time points up to the

harvest time (3 years from planting). This was used to plot the following growth curves

(Figure 5.10, 5.11 and 5.12).

Figure 5.10: Growth in number of bambusa vulgaris culms per clump at the four study
sites
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The polynomial equations for growth in number of culms per clump for each site are as

follows:

Kuria W.:

y = −0.0008x3 + 0.0548x2 − 0.3308x+ 1.7409

R2 = 0.9975, x ≥ 3

Suna E.:

y = −0.0009x3 + 0.0566x2 − 0.4277x+ 2.3202

R2 = 0.9903, x ≥ 3

Rangwe:

y = −0.0002x3 + 0.0136x2 + 0.1818x+ 0.614

R2 = 0.9974, x ≥ 3

Suba:

y = −0.0003x3 + 0.0217x2 − 0.1236x+ 1.4798

R2 = 0.989, x ≥ 3

From (Figure 5.10 there was clear difference in site performance in terms of the average

number of bambusa culms per clump observed with time. The same observation was

made in the case of giant bamboo at the sites (Figure 5.11).

Figure 5.11: Growth in number of dendrocalamus giganteus culms
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The polynomial equations for growth in number of culms per clump in each site for Giant

bamboo are:

y(Kuria W) = −0.0012x3 + 0.0714x2 − 0.5158x+ 2.4173

R2 = 0.9952, x ≥ 3

y(Suna E) = −0.0013x3 + 0.0723x2 − 0.5268x+ 2.2507

R2 = 0.9874, x ≥ 3

y(Rangwe) = −0.0005x3 + 0.0222x2 + 0.1636x+ 0.4082

R2 = 0.9965, x ≥ 3

y(Suba) = 2E − 05x3 + 0.0064x2 + 0.0911x+ 1.3679

R2 = 0.9993, x ≥ 3

The general trend for both species was plotted in Figure 5.12. No clear difference was

noted in terms of the rate of production of culms for both species in the early period

of development. However later, the multiplicity of culms of b. vulgaris became more

rampant than that of dendrocalamus giganteus.

Figure 5.12: Growth in number of culms per clump for the two species

The general polynomial equations for the two species are:

y (bambusa) = −0.0005x3 + 0.0367x2 − 0.1751x+ 1.5387

R2 = 0.9963, x ≥ 3

y (Giant) = −0.0007x3 + 0.0431x2 − 0.197x+ 1.611

R2 = 0.9974, x ≥ 3

The poles in each tagged clump were counted at the end of three years from the date of

planting. This was done for all poles including mature and immature ones. Descriptive

statistics for the number of culms per clump for bambusa vulgaris at the four sites are as

shown in table 5.15.
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Table 5.15: General statistics for b. vulgaris number of culms per clump

In this and subsequent tables, confidence interval figures are mean ± the corresponding

figures in the last row. The best site for propagating bambusa vulgaris was Kuria with

an average of 23±4 culms per clump at the time of harvesting, followed by Suna E. with

18±2 culms, then Rangwe with 17±2 culms. Suba was the worst performing for the

species with only 10±5 culms. Similarly, descriptive statistics for the number of culms

per clump for dendrocalamus giganteus at the four sites is as shown in Table 5.16.

The best site for propagating dendrocalamus giganteus was Kuria with an average of 22±5

culms per clump at the time of harvesting, followed by Suna E. with 17±2 culms, then

Rangwe and Suba with 12.36±1.23 culms and 11.67±1.94 culms respectively. The maxi-

mum number of culms per clump was 34 for bambusa vulgaris while that of dendrocalamus

giganteus was 31. Both maximums were observed in Kuria.

Table 5.16: General statistics for d. giganteus number of culms per clump

5.8 Clump circumference

Three years after planting, clump circumference was also measured for each tagged clump

in each of the four study sites. Descriptive statistics for clump circumference in bambusa

vulgaris was as in Table 5.17.
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Table 5.17: General statistics for b. vulgaris clump circumference

Again the ranks in terms of clump circumference for the sites are the same as was the

case with number of culms. The best performing was Kuria with an average of 5.13±0.46

M of clump circumference at the time of harvesting. Suba was the worst performing for

the species with only 3.35±1.08M circumference. The large variability in Suba was due

to extreme performances of the growth measures. Some farms were very productive while

others were close to empty. Similarly, descriptive statistics for the number of culms per

clump for dendrocalamus giganteus at the four sites was as shown in Table 5.18.

Table 5.18: General statistics for d. giganteus clump circumference

5.9 Comparing number of culms against clump cir-

cumference

A regression analysis of number of culms per clump on clump circumference was carried

out with the following results.
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Table 5.19: Regression statistics for number of culms vs clump circumference (b. vulgaris)

The simple linear regression model had dependable explanatory power R2 = 0.76. This

implies that 76% of the clump circumference could be determined by the number of

bambusa culms in a clump. The regression model from the following output (figure 5.14)

is:

number of bambusa culms = 6.406(clump circumference)− 10.33

with clump circumference ≥ 2 m (the minimum observed from the fields)

A linear model for the dependence of number of culms per clump on clump circumference

for d. giganteus was also constructed giving the OLS linear regression equation as

number of giant culms = 6.290(clump circumference)− 3.681 (5.1)

with clump circumference≥ 1.2 m (the minimum observed for the species)

It also had good predictive power within the range of the data with R2 = 0.76 just

like the common bamboo case. Suspicious data points that could be candidates for

outliers were seen on the scatter plot (Figure 5.13). This could be explained by some

single culm popping up a distance away from the rest in the clump, which consequently

raises circumference without proportionately raising the number of culms in the clump.

The two points that lie within the prediction interval but far ahead along the line are

most probably two clumps that were planted on very fertile soil than the rest, hence

an accelerated growth in number of culms significantly different from the rest. The

points are useful since they justify extrapolation of the regression line to some further

circumference. The previous outlier on the other hand is not strictly useful since it is a

pretty rare occurrence that distorts the prediction power of our model.
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Figure 5.13: Linear regression models for number of culms against clump circumference

It is interesting to note that the gradients for the two species are approximately the same.

The difference is the intercept. When the circumference is 4.5 M, for example, there are

approximately 25 giant bamboo culms while there are only 17 Common bamboo culms.

b. vulgaris has generally more sparsely populated culms than d. giganteus, which is a

tight clumping species [50].

We should note that extrapolation of the line to estimate the number of culms for smaller

circumferences is not justified and could be fallacious. When the circumference is zero,

for example, the line could predict negative numbers of culms for both species.

The reliability of coefficients was tested and results (Table 5.20) show that both the

gradient and intercept were significant at 5% level (both p-values � 0.0001).

Table 5.20: Analysis of variance for goodness of fit

The residual plots show that residuals were generally independently identically distributed

as normal with constant variance. However there was a tendancy of heteroscedasticity in

the first plot. The more the number of bambusa culms per clump, the higher the variance.

This is explained by the running tendency of bambusa culms as the population within

a clump rises. This is prompted by search for nutrients at less populated points away

from the center of the clump. There were noticeable cases of outliers in the second plot

(giant bamboo). Although the plot is largely homoscedastistic (constant variance) giant

bamboo takes longer to mature and there is a possibility that late in the growth process,

the behavior of common bamboo would be experienced as well.
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Figure 5.14: Residual plots for estimated number of culms using clump diameter

5.10 Site analysis for difference in clump circumfer-

ence

The productivity of a plot of bamboo can be sufficiently measured by the clump density

(number of culms per clump). Clump density depends on clump circumference and

number of culms per clump. Table 5.21 shows the mean clump circumference for each

site, together with associated variance.

Table 5.21: Descriptive statistics for bambusa vulgaris clump circumference per site

Having successfully fitted a linear regression model that predicts the number of culms

given clump circumference (see Figure 5.13), it is sufficient to measure clump circumfer-

ence as a predictor for harvest volume. For each species, the mean clump circumferences

were compared by testing for equality of means. The hypotheses were stated as:

H0 : µr = µm = µk = µs

H1 : not all µj are equal.

Here subscripts correspond to names of the four sites. This is a One-Way ANOVA test

that requires the following assumptions:

1. There are k simple random samples from k populations.
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2. The k samples are independent of each other; that is, the subjects in one group

cannot be related in any way to subjects in a second group.

3. The populations are normally distributed.

4. The populations have the same variance; that is, each treatment group has popu-

lation variance σ2.

Table 5.22: Analysis of variance table for equality of mean clump circumference

Since the p-value was much less than 0.05 H0 was rejected, implying that there was

strong evidence to show significant difference in average clump circumferences for bambusa

vulgaris among the sites. The same verdict was arrived at when the number of culms per

clump was considered as the measure of productivity.

5.11 Number of culms per clump

In checking for equality of the average number of culms per clump among the sites the

following hypothesis was tested.

H0 : µr = µm = µk = µs

H1 : not all µj are equal.

Again, subscripts correspond to names of the four sites. We had the following means and

associated variances.

Table 5.23: Descriptive statistics for bambusa vulgaris number of culms per clump
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Table 5.24: Analysis of variance for multiple comparisons

H0 was again rejected with the same conclusion that there was strong evidence to show

significant difference in average number of culms per clump for bambusa vulgaris among

the sites. The one way ANOVA test justifies the conclusion that some sites were better

producers of b. vulgaris than others. Further, the equality of means of number of bambusa

against giant culms per clump was tested. The four null hypotheses were:

H0: There is no significant difference in mean number of bambusa culms as compared to

the mean number of giant culms per clump at 36 months at site S.

Table 5.25: Results from hypotheses testing

In Kuria and Suba, there was no significant difference in the number of culms per clump.

However in Rangwe and Suna E., bambusa performed significantly better than giganteus.

Z was positive in Suba meaning giganteus performed better there than bambusa. The

95% Confidence Intervals for yield per site were as in Table 5.26.

Table 5.26: 95% confidence intervals for number of culms per clump

The number of culms per clump is an important measure of the productivity of a farm.

Depending on soil and weather conditions, there are varied amounts of culms a clump

carries at a given time from the date of planting. Due to competition for nutrients and

harvesting of mature culms, a clump cannot have infinitely many culms. The carrying
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capacity of a clump varies from place to place depending on available space, soil and

weather conditions. In this study, data on the number of culms per clump were recorded

at various time points up to the harvest time (3 years from planting). Various models

were fitted to data and their goodness of fit (GOF) checked.

5.12 Weather data and yield

5.12.1 Climate data at the study sites

Secondary climatic data for the study sites was acquired from Climate-data.org website

http://en.climate-data.org/location/11136/. A summary of extracted data were tabu-

lated and climate graphs plotted as in the following tables and figures.

Table 5.27: Climate data for various places in the study region

5.12.2 Suna East (Migori County) Climate

At a mean altitude of 1366 m, Migori is dominated by tropical monsoon climate. There

is more rainfall in the early part of the year than in the later in Migori. The temperature

here averages 21.2◦C±1.9◦C. Precipitation here averages 1369 mm per annum.
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Figure 5.15: Migori climate between 1982 and 2012, Source [30]

5.12.3 Rangwe (Homabay County) Climate

At a mean altitude of 1314 m, Rangwe is also dominated by tropical climate. Rangwe has

significant rainfall most months, with a short dry season. The temperature here averages

21.6◦C±2.0◦C. Precipitation here averages 1476 mm per annum.

Figure 5.16: Rangwe climate between 1982 and 2012, Source [27]
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5.12.4 Suba (Homabay County) Climate

Sindo in Suba Sub-county is at 1143 m altitude. Her climate is classified as tropical. The

temperature here averages 22.6◦C. At an average temperature of 23.5◦C, February is the

hottest month of the year. The lowest average temperatures in the year occur in July,

when it is around 21.6◦C. About 1033 mm of precipitation falls annually. Precipitation

is the lowest in July, with an average of 36 mm.

Figure 5.17: Homabay climate between 1982 and 2012, Source [28]

5.12.5 Kuria West (Migori County) Climate

Kuria is at 1634m altitude. Her climate is classified as tropical. The temperature here

averages 19.6◦C. The variation in annual temperature is around 1.9◦C. In a year, the

average yearly rainfall is at 1418 mm.

Interesting relationships were discovered between altitude, rainfall and mean temper-

ature with high correlation coefficients. There was high positive relationship between

annual rainfall and altitude of the site. Mean daily temperature had a strong negative

relationship with both altitude and rainfall.
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Figure 5.18: Kuria climate between 1982 and 2012, Source [29]

To validate the relationship, more regions neighboring the study sites were incorporated

and the results found to be as follows.

Table 5.28: Correlation analysis for climate data

This warranted a multiple regression model for forecasting rainfall as follows:

Table 5.29: Regression statistics for altitude and daily temperature on rainfall

Table 5.30: ANOVA table for the multiple regression model
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Table 5.31: Regression coefficients and their significance

The multiple linear regression model is

Rainfall = −11109.74 + 3.46(altitude) + 365.59(mean daily temperature)

The coefficient of determination (0.699) was high but the coefficients were all insignificant

at 5% level. The correlation coefficient between predictors suggests existence of multi-

colinearity, were the predictor variables, mean daily temperature and altitude have a

high inverse correlation of −0.992. If we select the variable with stronger prediction

power (Altitude) and drop the other, we have a simple linear regression situation with

the following parameters.

Table 5.32: Regression statistics for altitude on rainfall

Table 5.33: ANOVA table for the simple regression model

Table 5.34: Regression coefficients for the simple linear regression model

The model was

Rainfall (mm) = −134.25 + 1.12(Altitude (m)) (5.2)

The coefficient of determination was 0.65 and the gradient was significant at 0.05 levels.

A residual plot for the model showed no clear violation of the assumption of homoscedas-

ticity.
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Figure 5.19: A residual plot for the regression model

Amplitude data is readily available for any position in the study site from GPS data on

the internet. This could help predict rainfall data which was not readily available for the

study sites.

5.13 Simulating weather data

Where temperature data is available, the altitude can be precisely predicted by the fol-

lowing model. Mean daily temperature was varied between 15◦C and 25◦C using the

regression equation of altitude (alt) against average daily temperature (adt)

Alt = −155.26616(adt) + 4, 667.36271

With R2 = 0.99574 and standard error 29.048677 the corresponding altitudes were simu-

lated. This equation was derived from actual data in eight places within the study region.

Regression diagnostics for the simulated data were as follows:

Table 5.35: Regression coefficients for the simple linear regression model
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Table 5.36: ANOVA table for average daily temperature on altitude

Table 5.37: Regression coefficients for average daily temperature on altitude

5.14 Comparing climate data with bamboo growth

measures

Having already determined that growth measures and climate data separately had strong

linear relationships, we sought to compare one of the growth measures, Average number

of culms per clump (Anoc), with rainfall, temperature and altitude. The multiple re-

gression equation for average number of culms for bambusa vulgaris against the weather

parameters was determined as follows.

Table 5.38: Regression statistics for average daily temperature, rainfall and altitude on
Anoc

Table 5.39: ANOVA table for average daily temperature, rainfall and altitude on Anoc
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Table 5.40: Regression coefficients for mean daily temperature, rainfall and altitude on
Anoc

The predictors altitude and temperature were strongly correlated (r = 0.99964). Further,

the coefficients are insignificant except altitude. This is a pointer to the problem of

multicollinearity. To curb the problem, one of the two highly correlated independent

variables was dropped since both predicted average number of culms (Anoc) with similar

strength. Selecting altitude, we had a 2 independent variable regression model:

Table 5.41: Regression statistics for average rainfall and altitude on Anoc

Table 5.42: ANOVA table for average rainfall and altitude on Anoc

Table 5.43: Regression coefficients for average rainfall and altitude on Anoc

A hypothesis test on the coefficients was done:

H0 : βi = 0

against the alternative

H1 : βi 6= 0, i = 0, 1, 2.

89



giving the following results

Table 5.44: Significance of regression coefficients for average rainfall and altitude on Anoc

The results implied that rainfall was not a significant predictor in the presence of Altitude.

This means that a simple linear regression model of altitude on average number of culms

was sufficient. Similar results were achieved when culm diameter, clump circumference

and for both species of bamboo was predicted by the climate variables. Use of altitude

was preferred since it is constant and is readily available for each point on the planet at

the comfort of a study table.

5.15 Some regression models for predicting yield

5.15.1 Linear regression model

A simple linear regression model of the form

y = β0 + β1t+ ε

where y is the yield (number of culms per clump), β0 is the yield at time t = 0, β1 is the

proportionate change in yield per unit increase in time t (months). ε is the random error

term. Average number of culms per site was computed and recorded at various times of

monitoring. The averages were used to fit a linear regression line. Figure 5.20 shows the

fitted line. The simple linear regression model was

y = 0 + 0.4735t (5.3)

The coefficient of determination R2 for the regression model was R2 = 0.8374. There was

a strong linear relationship between number of culms and age from planting. Obviously,

on extrapolation, the model will predict inconsistent values. For example, after 5 years

(60 months) the model predicts 28.41 culms per clump. We expect more with time,

without a maximum.
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Figure 5.20: Average Number of Culms (b. vulgaris) linear model

5.15.2 Exponential fit

The exponential model is of the form

y = β0e
β1t

Here y and β0 have similar meaning as in the linear case, β1 has an exponential relationship

with yield per unit time t (months). The exponential model is plotted in Figure 5.21.

The model equation was:

y = 1.0925e0.0867t (5.4)

The coefficient of determination R2 for the exponential model was R2 = 0.9059. This

was higher than the linear model case. On extrapolation however, the model will predict

worse off than the linear counterpart. For example, after 5 years the model predicts

198.44 culms.

91



Figure 5.21: Average Number of Culms (b. vulgaris) exponential model

5.15.3 The power function

The power model is of the form

y = β0t
β1

Here when t = 0, y = 0 regardless the value of β0 or β1. The power function is plotted in

Figure 5.22. The model equation (equation 5.5) was:

y = 0.2232t1.1941 (5.5)
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Figure 5.22: Average Number of Culms (b. vulgaris) power model

The coefficient of determination R2 for the power model was R2 = 0.9272. This is higher

than both the linear and exponential model cases. On extrapolation, say, after 5 years

the model predicts 29.65 culms. This is a more reasonable estimate than that of the

exponential model.

5.15.4 The quadratic function (polynomial of degree 2)

A polynomial regression model is of the form

y = β0 + β1t+ β2t
2 + ε

Figure 5.23 shows the fitted curve. The regression model was

y = −0.3622 + 0.3051t+ 0.0065t2 (5.6)

The coefficient of determination R2 for the regression model was R2 = 0.876. On ex-

trapolation, the model predicted higher values. For example, after 60 months the model

yielded 43.14 culms per clump.
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Figure 5.23: Average Number of Culms (b. vulgaris) quadratic model

5.15.5 The cubic function (polynomial of degree 3)

A cubic regression model is of the form

y = β0 + β1t+ β2t
2 + β3t

3 + ε

Figure 5.24 shows the fitted curve. The regression model was

y = 1.5975− 0.2333t+ 0.0409t2 − 0.0006t3 (5.7)
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Figure 5.24: Average Number of Culms (b. vulgaris) cubic model

The coefficient of determination R2 for the regression model was R2 = 0.8822. On extrap-

olation, the model predicted inconsistent values. For example, after 5 years (60 months)

the model yielded 5.24 culms per clump. This is an under estimate.

5.15.6 The 5-parameter logistic model

Having determined the number of culms per clump as a measure of productivity, there

was need to determine the best fit model which not only predicts expected number of

culms within the interval of data, but also can be used to forecast future values past the

three years of available data. The 5-parameter logistic (Richard’s) model was suggested.

P (t) = B +
T −B

[1 + 10b(tmid−t)]
s

where P (t) is the population at time t, B is the initial population, T is the carrying

capacity, b and s are constants.

Simulating the 5-Parameter logistic model

To determine the line of best fit, simulations of various slopes for the model were made
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and results plotted (see Figure 5.25).

Figure 5.25: Fitting a 5-parameter logistic model

Table 5.45 shows various values of the hill slope b and corresponding correlation of the

resultant logistic curve with the polynomial curve. The bold type coefficients were highest,

giving a hint on the appropriate value of b.

Table 5.45: Parameter estimation for logistic model

The value of the gradient that could make the logistic model run closest to the polynomial

fit was P (t, b = 0.0673). The correlation between the two curves was 0.9663 which is

highest among the rest. To ascertain the graphical results, R-software [70] was used

to simulate data for the 5-parameter logistic model. The unknown parameters were

determined as in equation (5.8). s = 1 implies that the model is symmetric at tmid.

P (60) = 1 +
25− 1

[1 + 10.0673(24−60)]
1 (5.8)
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These parameters were similar to those estimated in Figure 5.26. The goodness of fit

statistic for the regression model was GOF=0.9967. On extrapolation, the model pre-

dicted consistent values. For example, after 60 months the model yielded 25 culms per

clump. Thus depending on the maximum number T, the model will never give higher

values than T . The cumulative density function for the number of culms is plotted in

Figure 5.25.

Figure 5.26: Cumulative density of culms (y) in log time (x) for b. vulgaris

Further a bootstrap Monte Carlo simulation was carried out with interesting results.

We were able to fit the bamboo growth in number of culms to a Gamma density with

parameters G(X,α, β) = G(X, 4, 3). Figure 5.27 shows the actual data (in dots) and

Gamma distribution data (in small squares).

Figure 5.27: Gamma (4, 3) simulated fit for bootstrap Monte Carlo number of culms
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Further, a two-sample Kolmogorov-Smirnov test gave the results in Table 5.46. Codes

for the tests is appended (see appendix A.3, A.4 and A.5).

Table 5.46: Kolmogorov-Smirnoff GOF test

The Kolmogorov D statistic is the absolute max distance (supremum) between the CDFs

of the two samples. The closer this number is to 0 the more likely it is that the two

samples were drawn from the same distribution. The hypotheses read:

H0 The two samples have the same distribution.

H1 The two samples have different distributions.

The p-value returned by the K−S test has the same interpretation as other p-values. We

reject the null hypothesis that the two samples were drawn from the same distribution if

the p-value is less than the set significance level. From Table 5.46, the lowest D = 0.1000

is at b = 0.0673, the p-value 0.9251 suggests that we have no sufficient reason to reject

the null hypothesis. Thus we conclude that the selected b gives the best fit model for the

5 parameter logistic equation.

Chi square goodness of fit test also showed that the best fit value for b was 0.0673. The

p-value= 0.01815 which is less than 0.05. Thus there was no significant difference between

actual and simulated data.

The full model with its parameters is

P (t) = 1 +
25− 1

[1 + 10.0673(24−t)]
1

5.16 Fitted models and associated population pre-

dictions

In chapter 4, a number of models were discussed. We started with the classical logistic

model by Verhulst, which has over the years become a subject of many modifications

and applications. We also looked at the Beverton - Holt discrete logistic model and

suggested modifications to allow for a delay to onset of harvest (equation 4.7). We

also suggested a stochastic version of the model (equation 4.8). A logistic model with
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constant harvest (equation 4.17) and with proportional to size harvest (equation 4.21)

were characterized and the optimal harvesting strategy for bamboo found to be 9.8 culms

per clump per year. Further, Stochastic logistic harvest equations with both harvest

and growth random (equation 4.58, 4.70, 4.80) were formulated and analyzed. Simulated

trajectories were also used to analyze their behaviors. It was on average determined that a

stochastic system will behave in a similar manner as its deterministic counterpart as long

as noise was kept sufficiently low. The time scale for stochastic modeling was in months

while that of deterministic models was in years. That variation made us determine that

harvesting in shorter, almost continuous intervals will in the long ran yield more bamboo

than wait for a year to cut culms. While yearly deterministic harvesting led to averagely

9.8 culms per clump as yield, monthly harvesting led to a sustainable optimum of 15.5

culms per clump each year. Other models that were fitted in chapter 5 are summarized

in the following table.

Table 5.47: Summary of fitted models

The main growth measures that determine bamboo harvest volume were studied. These

include survival rate, average height, and average culm diameter and average number of

culms per clump. At three years from planting the population of culms was studied with

the following results achieved.
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Table 5.48: A summary of major parameter measures achieved during the research

5.17 Discussion

5.17.1 Bamboo growth parameters

The study involved determining various characteristics of two species of bamboo namely,

bambusa vulgaris and dendrocalamus giganteus. This were planted in randomly dis-

tributed farms Suna East and Kuria West sub-counties of Migori County and Suba to-

gether with Rangwe sub-counties of Homabay County in Kenya. The growth parameters

that were measured include survival proportions. It was found that b. vulgaris had a

higher probability of survival than d. giganteus in all the study sites. It was also noted

that bamboo survived more in Homabay County than in Migori (see figure 5.1).

Culm height was also studied. It was demonstrated from data that d. giganteus achieved

higher heights at all times from planting to maturity than b. vulgaris culms. At the age

of 3 years, b. vulgaris achieved heights up to 6.5 m while d. giganteus averaged 8.5m (see

figure 5.4). Clump diameter was also measured where b. vulgaris was found to spread

out more rapidly, hence achieving larger clump diameters in comparison to the tightly

clumping d. giganteus. However, it was noted that mean crown cover diameters of both

species was not significantly different.

Culm diameter was also measured and analyzed. This was done at breast height (dbh).

It was found that d. giganteus had larger culm diameter than that of b. vulgaris on

average. By the age of 3 years, b. vulgaris diameter was ranging between 4.6 and 4.9

cm while d. giganteus attained between 6.7 and 7.9 cm diameter. This variation in culm

diameter is also evident in Figure 5.7. Height and culm diameters were highly comparable

with a correlation coefficient of at least 0.97 in all sites for both species.

The most important measure that was studied at length was the number of culms in each

100



clump. This has a direct proportionality with the amount of yield of a farm. Figure

5.10 shows a comparison of reproduction of bamboo culms among the 4 study sites. On

average, Kuria West registered a higher culm population growth rate than the rest of the

sites. Suba was worst performing. Among the two species, at early age (up to 2 years),

the clump population was similar (see Figure 5.12). The variation came in towards the

third year where b. vulgaris registered averagely higher culm counts than d. giganteus.

The number of culms per clump was found to be estimated approximately by the clump

circumference. A linear model was suggested (see figure 5.13). A one way ANOVA test

(Table 5.24) showed that there was significant difference performance among the four

study sites. Table 5.26 summarizes the 95% confidence intervals for number of culms per

clump for the two species in all sites.

Weather data of the four study sites was acquired from climate-data.org freely available

online. This was used to determine relationships between weather and the productivity

of sites. A relationship between altitude and mean daily temperature was established. It

was a strong linear fit with the coefficient of determination 0.9948. Annual average rainfall

was also compared with altitude in a multiple linear regression model where it was found

to have an insignificant coefficient. Altitude was therefore selected as a representative

variable for climate.

5.17.2 Determining most suitable growth model

A number of culms per clump was fitted with various regression curves including lin-

ear, exponential, power, curvilinear (polynomial) and a 5-parameter logistic (Richard’s)

model. Only the logistic model was found not only to fit the collected data well but

maintained a reasonable path on extrapolation to forecast future population values. The

model had a low variance inflation factor (VIF) and a coefficient of determination of

0.999. It was from this finding that further studies on logistic harvest modeling was

required.

5.17.3 Bamboo growth and harvest models

In chapter 4, we considered various models, all of which were variants of the Verhulst

logistic growth model. The Beverton - Holt discrete logistic model was discussed in section

4.3 where bamboo data were fitted to the model with interesting results (see Figure 4.1(a),

(b), and 4.2(a), and (b). Our contribution in this model was the suggestion to have no

harvest in the first two years of growth and start harvesting at the end of the third year.
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We further suggested a Stochastic Beverton-Holt model of the form (equation (4.8)). This

was simulated 100 times to produce the trajectory (Figure 4.2(b). The noise was assumed

to be uniformly distributed between [−σ, σ] where σ is the noise intensity. In the same

model, with the requirement that only mature culms (3 years old) are to be harvested,

the harvest h = N(t−2)−N(t−3) was considered. For the non-volatile case, an equilibrium

average harvest of 12.5 culms per clump was suggested (see Figure 4.2(a). It was noted

that, both noise and harvesting can lead to population extinction in finite time.

In section 4.5, a logistic growth model with constant harvesting rate H was analyzed

(equation (4.9)). It was determined that the critical harvest that could keep the system

at equilibrium with maximum returns is the lower neighborhood of Hc = rK
4

. An explicit

solution for the system (see equation (4.17)) was derived. Further, it was shown that as

long as the optimum harvesting level was not passed, the system remained persistent.

Higher than optimum harvest was shown to cause extinction in finite time (see Figure

4.3). Here again a delayed onset of harvest was advised (equation (4.20)). The maximum

critical harvest was found to be 9.8 culms per clump annually (see equation (4.21)).

We also investigated a deterministic logistic model (equation (4.23)) with harvest propor-

tional to population size. Its explicit solution was derived (equation (4.31)) the growth

rate for bamboo was computed (equation (4.32)) and found to be 1.56868. As was the

case in previous models, a delayed onset of harvesting was suggested (equation (4.33)).

Harvest at equilibrium was found to be 9.8 culms per clump each year, as was the con-

stant harvest case. Finally, a stochastic logistic model was formulated. We considered a

case where the growth and harvest rates are both volatile. The yield density was com-

puted using the Fokker-Planck equation. Further, the mean and variance of yield were

computed. The resultant model was tested using actual bamboo data at various levels of

noise. It was concluded that the average behavior (drift) of the process was the same as

the deterministic case. As long as the noise levels were kept low, the system on average

was shown to be persistent within 0 and K. Assuming that harvest was systematic (with

a consistent rate of cutting each time), a single noise system was modelled (equation

(4.77) to (4.80)). No clear stable state was achievable due to the continuous stochastic

system.

5.17.4 Optimal bamboo harvesting strategy

According to Arori et. al [9] an acre of land can contain up to 220 clumps of bambusa vul-

garis spaced 5 square meters apart. Considering that approximately 80% of the seedlings

will grow to mature clumps, its expected that 176 clumps will be available. During this

research, we deduced that an equilibrium harvest strategy is to cut 9.8 culms per clump
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per year. This yields a yearly harvest of 1725 culms per acre. Suppose a market price of

Kshs. 100 per culm [56], an annual income of Kshs.172,480 will be realized. This trans-

lates to a monthly income of Kshs.14, 373.33. This is a reasonable amount considering

that very little effort is needed to maintain clumps once they mature. Besides this, if one

opts to produce bamboo items such as furniture, the income becomes much higher.

103



CHAPTER SIX

SUMMARY, CONCLUSION AND RECOMMENDATION

6.1 Introduction

In this chapter we have a summary of how the study was executed and the accomplish-

ments we were able to make. We draw conclusions from the results in relations to the

stated objectives. Further, limitations and recommendations for use and for further study

are also given.

6.2 Summary

The study involved bamboo growth and harvesting data collection and analysis. Math-

ematical population models suitable for bamboo plantations were derived. During mod-

eling both Ordinary Differential Equations (ODE) and Stochastic Differential Equations

were used. The logistic population growth model was the basis of all derived models

in order to understand bamboo growth behavior and characterize parameters such as

number of culms per diameter and clump circumference, time series data that was taken

during the experimental part of the study were analyzed.

Model fitting,where linear and non-linear models were tested for goodness of fit, was used

to determine the best model. A 5-parameter-logistic regression model was found to fit

actual data best.

Due to the finding, the logistic model was studied further by exploring equilibrium be-

havior and by involving a harvesting component. Both constant harvest rate and harvest

proportional to size was considered.

Finally, since Bamboo populations are prone to environmental disturbance, stochastic

logistic population models were formulated and analyzed.
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Optimum harvest under deterministic conditions was found to be constant at 10 culms

per clump. Under stochastic conditions the optimum harvest could vary depending on

the volatility in growth and harvesting.

6.3 Conclusion

In relation to the set objectives, the study was successful. From experimental data, at

the point of harvesting Bamboo, 36 months after planting, a clump of bambusa vulgaris

had averagely a population of 18 culms while that of dendrocalamus giganteus had 15

culms. The average height of a b. vulgaris culms was 6.55M while that of d.giganteus

was 8.68M.The culm diameter was 8.68M. The culm diameter was 4.73cm and 7.31cm

respectively. Various regression models were fitted and the best found to be a 5-parameter

Logistic model with initial population size 1 culm, carrying capacity 25 culms and an

estimated population 20 culms at age 36 months and 24 culms at age 60 months.

A logistic regression with constant harvest and with harvest proportional to population

size was formulated. In both cases, harvesting 10 culms per clump per year was found

optimum.

Finally, a stochastic logistic model with Brownian growth and harvest was formulated.

The general trend in population growth and harvesting was similar to that of non-

stochastic case. It was concluded that low noise resulted in a stable system while high

noise led to extinction.

6.4 Limitations and Recommendations

Situations under which bamboo could go extinct were analysed in each model presented.

Mainly, it was noted that without noise the harvest quantity could determine persistence

of the population or extinction in case some critical level (more than 9.8 culms per

clump) was surpassed. Later in the stochastic model, Noise levels teamed up as major

threats to population survival. The higher the noise, the higher the probability that the

system could go extinct. Suppose all culms are cut, the models will perceive the scenario

as extinction. However, for bamboo, this is not the case. New culms will shoot up

rampantly and in two to three years, another harvest will be available. How to represent

this scenario will be a good ground for further model modification.

From the reported results, the research was largely successful in meeting the set objectives.
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This was not without challenges though. During the research process retagging was

necessitated by loss of tags from the plants. Cattle and other domestic animals were

reported to have grazed on bamboo leaves hence either causing the death of clumps or

retarding growth. Poor farm management was also a serious problem.

At the modeling level, we recommend that further studies in this regime of mathematical

ecology be made to determine the effect of noise on the carrying capacity of bamboo.

Further the effects of watering and adding manure or fertilizer in clumps on the carrying

capacity is a good extension to this work.

In the course of our literature review, Anderson et al [8] noted that a logistic equation with

a simple stochastic carrying capacity has not been successfully solved. This is another

area for further research.
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[40] González-Sánchez M., Cañellas I., and Montero G. (2007). Generalized height-

diameter and crown diameter prediction models for cork oak forests in spain. Invest.

Agrar: Sist. Recur. For., 16:76–88.

[41] Grozdanovski T. and Shepherd J. J. (2007). Slow variation in the Gompertz model.

ANZIAM J., 47:C541–C554.

[42] Grozdanovski T., Shepherd J. J., and Stacey A. (2009). Multi-scaling analysis of a

logistic model with slowly varying coefficients. Applied Mathematics Letters, 22:1091–

1095.

[43] Grozdanovski T., Shepherd J. J., and Stacey A. (2010). Transitions in density de-

pendent harvesting of a logistic population in a slowly varying environment. ANZIAM

J., 51:C393–C408.

[44] Hann D. W. (1997). Equations for predicting the largest crown width of stand-grown

trees in Western Oregon. Technical report, Forestry Research Laboratory, Research

Contribution 17, Oregon State University, Corvallis.

[45] Hann D. W. (1999). An adjustable predictor of crown profile for stand-grown

Douglas-fir trees. For. Sci., 45:217–225.

[46] Hunt R. (1982). Plant Growth Curves. Technical report, Baltimore, MD: University

Park.

[47] Huth N. I., Carberry P. S., Brennan P. P. L., and Keating B. A. (2002). A framework

for simulating agroforestry options for the low rainfall areas of Australia using APSIM.

European Journal of Agronomy, 18:171–185.

[48] Islam A, A. Q. Miah A. H. and Rasul G. (2015). Growth and development of bambusa

vulgaris schrad ex wendl. planted in the coastal homesteads of Bangladesh. J Asiat.

Soc. Bangladesh Sci, 41(2):123–129.

[49] Jingliang L. and Wang K. (2015). Almost sure permanence of stochastic single

species models. J. Math. Anal. Appl., 422:675–683.

[50] Kibwage J. K., Netondo G. W., et al. (2008). Growth performance of bamboo

in tobacco-growing regions of South Nyanza,kenya. African Journal of Agricultural

Research, 3:714–722.

[51] Kigomo N. B. (2007). Guidelines for growing bamboo. Technical report, KEFRI

Guideline Series: No. 4, Kenya Forestry Research Institute.

110



[52] Lewy P. and Nielsen A. (2003). Modelling stochastic fish stock dynamics using

Markov Chain Monte Carlo ICES. Journal of Marine Science, 60.

[53] Li W. and Wang K. (2010). Optimal harvesting policy for general stochastic logistic

population model. J. Math. Anal. Appl., 368:420–428.

[54] Liu Meng W. K. (2012a). On a stochastic logistic equation with impulsive pertur-

bations. Computers and Mathematics with Applications, 63:871–886.

[55] Liu Meng W. K. (2012b). Stationary distribution, ergodicity and extinction of a

stochastic generalized logistic system. Applied Mathematics Letters, 25.

[56] Magati P. and J. Kibwage K, Seth Omondi G W. O. A. (2012). A Cost-benefit Anal-

ysis of Substituting Bamboo for Tobacco: A case study of smallholder tobacco farmers

in South Nyanza, Kenya. Science Journal of Agricultural Research & Management,

2012:ISSN 2276–6375.

[57] Marshall D. D., Gregory P. J., and Hann D. W. (2003). Crown profile equations

for stand-grown Western Hemlock trees in Northwestern Oregon. Can. J. For. Res.,

33:2059–2066.

[58] McPherson E. G., Peper J. R. S. . J., and Xiao Q. (1999). Benefit cost analysis of

Modesto’s municipal urban forest. J. Arboric, 25:235–248.

[59] Moore A. D., Huth D. H. N. H. N., and Robertson M. (2007). The common modelling

protocol: A hierarchical framework for simulation of agricultural and environmental

systems. Agricultural Systems, 95:37–48.

[60] Morteza K. and Kiaee N. (2014). Stochastic Dynamical Theta-Logistic Population

Growth Model. SOP transactions on Statistics and Analysis, 1(3):1–15.

[61] Murthy K. (2004). Crop growth modeling and its applications in agricultural me-

teorology. Satellite Remote Sensing and GIS Application in Agricultural Meteorology

workshop 7-11 July. 2004, pages 235–261.

[62] Natali H., Yatsenko Y., Goetz R.-U., and Xabadia A. (2009). A bang bang regime in

optimal harvesting of size-structured populations. Nonlinear Analysis, 71:2331–2336.

[63] Ohrnberger P. (1999). Forestry research support programme for Asia and the Pa-

cific, Bangkok, Thailand. Technical report, “The bamboos of the world”: Annotated

nomenclature and literature of the species and the higher and lower taxa IDRC, Ot-

tawa, Canada.

[64] Ongugo P. O., Sigu G. O., et al. (2000). Production-to-consumption system: A case

study of the Bamboo Sector in Kenya. Technical report, KEFRI, Kenya.

111



[65] Pasquali S. (2001). The stochastic logistic equation: Stationary solutions and their

stability. Rend. Sem. Mat. Univ. Padova, 106:165–183.
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