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The nature of genetic divergence between the Artemia population native to 

San Francisco Bay, (SFB) USA and those from the introductions of SFB 

material in the Kenyan coast two decades ago were investigated using the 

mitochondrial DNA (mtDNA) and heat shock protein 70 (Hsp70) gene 

molecular markers. The DNA was extracted from 80 single Artemia cysts 

using the Chelex protocol. The 1,500 bp fragment of the 12S - 16S region of 

the mtDNA and a 1,935 bp fragment of the Hsp70 gene were amplified 

through Polymerase Chain Reaction (PCR) followed by Restriction 

Fragment Length Polymorphism (RFLP) digestion using appropriate 

endonucleases. The mtDNA analysis indicated higher haplotype diversity 

(0.76 ± 0.07) in Artemia from Fundisha saltworks while the rest of the 

samples were monomorphic. A private haplotype (AAABBA) in Fundisha 

samples confirmed a molecular evidence of a systematic genetic 

differentiation albeit in an insignificant manner (P > 0.05). There was 

molecular evidence of coexistence of SFB and GSL Artemia strains in 

Fundisha saltworks. The monomorphic DNA fingerprint in Kensalt Artemia 

cysts was probably caused by non-sequential Artemia culture system and 

limited mtDNA fragment size analysed. The Hsp70 gene RFLP fingerprint 

did not show any unique gene signatures in the Kenyan Artemia samples 

suggesting that other factors other than Hsp70 were involved in their superior 

thermotolerance. Further genetical studies based on the larger mtDNA 

fragment using robust genetic markers are recommended. Ecological studies 

of the heat shock protein family and the stress response would be more 

relevant than the qualitative RFLP technique.  

 
Copy  Right, IJAR, 2014,. All rights reserved 

 

 

Introduction 
The brine shrimps Artemia are small crustaceans adapted to live in stressful environmental conditions of hypersaline 

habitats such as salt lakes, coastal lagoons and solar saltworks, where they feed primarily on phytoplankton and 

bacteria (Persone and Sorgeloos, 1980; Toi et al., 2013). Being osmotolerant animals, Artemia can withstand 

habitats whose salinity levels range between 10 - 340 g L
-1

 with fluctuating ionic composition and temperature 

profiles (Van Stappen, 2002). Artemia adaptation to these conditions has occurred at molecular, cellular, 

physiological and population level making Artemia fit to survive and reproduce effectively in such insulting 

environments (Gajardo and Beardmore, 2012). Artemia has high genetic variability (Kappas et al., 2004) that makes 

them model animals for studying evolutionary processes such as genetic differentiation, which indeed, is the focus 

of this paper. The most discussed reproductive adaptation mechanism of the genus Artemia is the existence of two 

distinctly short cycles of development (Clegg et al., 2004; Kappas et al., 2004). During favourable environmental 
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conditions, an ovoviviparous reproduction cycle occurs where the adult females produce the free swimming naupli 

(Anderson et al., 1970). However, during stressing environmental conditions, an oviparous reproductive cycle 

prevails and the adult female Artemia produces metabolically inactive cysts as the parental animals dies (Dutrieu, 

1960; Van Stappen, 1996). When conducive environmental conditions return, the cysts hatch into free swimming 

nauplii in a process that lasts for about 20 hours, thus completing the cycle (Pearson and Sorgeloos, 1980; Van 

Stappen, 1996).  

The ability of the brine shrimp Artemia to inhabit hypersaline environments gives them a wide global geographical 

representation (Persoone and Sorgeloos, 1980). In fact, as Triantaphyllidis et al. (1998) put it; the only place where 

Artemia cannot be found is Antarctica. So far, discrete Artemia populations have been identified in about 600 

natural salt lakes and saltworks and further survey efforts are still on course to identify more Artemia biotopes all 

over the world (Van Stappen, 2002). 

For a long time, Artemia morphometric features have been used to discriminate between different populations 

despite many human errors (Naceur et al., 2010). Today, Artemia phylogeny can be easily verified and cyst samples 

scientifically authenticated thanks to molecular techniques (Bossier et al., 2004; Van Stappen, 2008). According to 

Avise (2004), molecular techniques provide full access to unlimited pool of organism’s genetic variability. The 

extensive study of inter- and intra-specific diversity of Artemia has been made possible due to a variety of nuclear 

and mitochondrial DNA markers for instance ITS-1, Hsp26, COI, 12S and 16S mtDNA (Perez et al., 1994; Hou et 

al., 2006) and tools such as Restriction Fragment Length Polymorphism (RFLP) (Bossier et al., 2004; Gajardo et al., 

2004; Eimanifar et al., 2006), Random Amplified Polymorphic DNA (RAPD) (Sun et al.,1999a; Camargo et al., 

2002), Amplified Fragment Length Polymorphism (AFLP) (Sun et al., 1999b) using either single or pooled 

individuals or cysts samples (Kappas et al., 2004). Other tools include microsatellites and Single Strand 

Conformation Polymorphism (SSCP) (Blouin et al., 1996).  

In the RFLP molecular technique, the targeted DNA genome size is first PCR amplified before digestion with 

restriction enzymes. The digested product is then separated according to their size by agaorose gel electrophoresis 

(Eimanifar et al., 2006). The mitochondrial genome of A. franciscana is estimated to be 15,822 nucleotides long 

(Valverde et al., 1994). The mtDNA is highly conserved compared to nuclear DNA, making it a robust marker for 

tracking animals’ ancestry (Krieg et al., 2000). Eimanifar et al. (2006) found genetic nucleotide divergence within 

Artemia populations found in different ecological zones of Lake Urmia using the RFLP method. Agh et al. (2009) 

showed that bisexual A. urmiana and parthenogenetic populations in Iran are genetically close based on RFLP of 

their 1,500 bp mtDNA fragment. Manaffar (2012) also conducted an RFLP analysis of the 1,500 bp mtDNA 

fragment on A. urmiana cysts and detected high polymorphism among cysts from different stations in Urmia Lake. 

Through RFLP analysis of a 1,500 bp mitochondrial rDNA fragment, Bossier et al. (2004) developed a methodology 

to authenticate Artemia cyst samples. Kappas et al. (2004) investigated how A. franciscana native to SFB colonised 

unfamiliar Vietnam environments through RFLP technique based on the 2,963 bp long mtDNA target sequence. 

Unique genetic signatures were observed in the mtDNA genome of the Vietnam Artemia strain suggesting a process 

of strong selective pressure in them (Kappas et al., 2004). 

There is much information regarding Artemia’s ability to synthesize heat shock proteins, such as Hsp26 and Hsp70 

(Clegg et al., 2001; Crack et al., 2002; Willsie and Clegg, 2002). Artemia cysts contain substantial amounts of heat 

shock proteins because they are the surviving agents in stressful environments (Clegg et al., 1999; Van Stappen, 

2002). Scientific evidence has proven that the family of heat shock proteins are critical for thermal resistance 

(Frankenberg et al., 2000), desiccation tolerance (Ma et al., 2005) and reduces osmotic stress (DuBeau et al., 1998; 

Todgham et al., 2005). Therefore Hsp70 protects organisms against multidimensional environmental challenges. 

Clegg et al. (2001) found that Artemia cysts produced in hotter environments contain higher amounts of heat shock 

proteins such as artemin, p26 and Hsp70. Therefore, the stress proteins could be involved in the adaptation of A. 

franciscana from SFB growing in the much hotter environments such as salt ponds in Vietnam (Clegg et al., 2001) 

and probably Kenyan coastal areas.  

Between 1984 and 1986, a non-native A. franciscana was introduced along the Kenyan coast (Fundisha and Kurawa 

salt farms). Today, the A. franciscana has permanently colonised the Kenyan coast, where about eight saltworks 

exist today. Since 2009, Fundisha saltworks has been re-inoculated using GSL Artemia strains suggesting 

coexistence of GSL and SFB Artemia strains. This is a subject that can only be revealed through molecular studies. 

The laboratory culture experiments of Mremi (2011) and Kapinga (2012) showed that Kenyan Artemia are superior 

to their original SFB inoculants in terms of reproductivity and thermotolerance at elevated temperatures. However, 

no information is available on their genetic architecture to support these phenotypic characteristics. To date, it is not 

known whether SFB and GSL Artemia strains coexist in Fundisha saltworks. Neither do we know the genetic micro-

evolutionary divergences that have occurred in the Kenyan Artemia population. Artemia population have also been 

discovered in Tanga region (Tanzania). However, no scientific information is available about them. The 
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polymorphic analysis of the 1,935 bpHsp70 gene was considered to add more perspective on the much anticipated 

genetic adaptation levels of the Kenyan Artemia populations. The hypothesis of this study was that the genetic 

pattern of the Kenyan Artemia strains would be mutually polymorphic. The present laboratory based study aimed to 

genetically characterize the Kenyan Artemia cysts based on the mitochondrial DNA and heat shock protein 70 

(Hsp70) genes. The study also determined the purity of Artemia populations in Kensalt and Fundisha saltworks and 

established the genetic relationships between the Kenyan and Tanga (Tanzania) Artemia cysts.  

 

Materials and methods 
Source of Artemia cyst samples and study area 

A total of 80 individual Artemia cysts, 10 replicates from each of 8 samples were used in the study. The 8 samples 

included 4 samples (Fundisha, Ken1, Ken2 and Ken3) harvested between 1996 and 2012 from selected salt farms at 

the Kenyan coast, located at located at 3° 50' 0" South, 39° 46' 0" East (Study area Fig. 1). One sample from Great 

Salt Lake, Utah state in USA (GSL), another sample from San Francisco Bay (SFB) USA and one sample from Vinh 

Chau (VC), Vietnam, were used as controls. Artemia samples from Tanga (Tanzania) were also analysed as 

additional study.  All the Artemia cyst samples were available at the Laboratory of Aquaculture & Artemia 

Reference Center (ARC), Ghent University, Belgium where they were stored at 4
o
C in the cyst bank. The selection 

criteria for the Kenyan Artemia cyst followed Nyonje (2011) report. Cysts from Kensalt farm (Ken1, Ken2, Ken3), 

which were different batches of the same population, were considered because of their known reproductive 

characteristics (Mremi, 2011; Kapinga 2012) while the much hypothesised coexistence of SFB and GSL Artemia 

strains in Fundisha saltwork was the reason for considering cysts from there. The use of cysts for DNA extraction 

for mtDNA and Hsp70 analysis were preferred to individual Artemia adults to prevent loss of genetic information 

due to selective hatching (Van stappen 2008). 

 

 

DNA extraction 

DNA was extracted from single Artemia cysts using the Chelex method (Walsh et al., 1991). The cyst was isolated 

using a sterile 10 μL pipette point and transferred to a sterile eppendorf (1.7 mL) where 30 μL of milliQ water (PCR 

water) was added and left to hydrate for 1 hr. In each eppendorf tube, the cyst was crushed using a sterile pellet 

pestle (Sigma-Aldrich Z35997-1EA) before adding 30 μL of well homogenized 10% Chelex slurry (Chelex-100 - 

Biorad, Belgium). The samples were vortexed for 10 - 15 s before spinning for 1 min at 13,000 rpm in a micro-

centrifuge. The samples were incubated for 20 min at 95
o
C, vortexed again for 10 - 15 s and further spanned at 

13,000 rpm for 1 min. The quantity of the extracted DNA was measured using a NanoDrop® ND-1000 machine 

while the quality of the DNA was verified through agarose gel electrophoresis (Lind et al., 2006). 

 

PCR amplification of the 1,500 bp 12S - 16S mtDNA fragment 

The double stranded DNA amplification was performed in 50 µL reaction volumes each containing a mixture of 

36.375 µL PCR water, 5 µL 10 x Taq buffer + KCl-MgCl2, 5 µL MgCl2 (25 mM solution), 1 µL dNTP (10 mM 

each), 1 µL of primer 1 and 2 (work-solution), 0.125 µL BSA, 0.5 µL Taq-polymerase and 2 µL of approximately 5 

- 30 ng of template DNA extract, except for the negative control tube. The DNA samples were PCR amplified for 

the 1,500 bp mtDNA fragment between the 12S - 16S region (Valverde et al., 1994). A combination of the forward 

primer 12S - SP (5’-cta-gga-tta-gat-acc-cta-3’), and the reverse primer 16S - SP (5’- ccg-gtc-tga-act-cag-atc-3’) was 

used according to Bossier et al. (2004). The BioRad PCR equipment was programmed such that the first cycle of 

PCR reaction heated the mixture to 94
o
C for 2 minutes to activate the Taq polymerase enzyme. This was followed 

by 34 cycles of: 1) a denaturing step at 94
o
C for 1 min; 2) an annealing phase at 52

o
C for 45 seconds; 3) an 

elongation phase at 72
o
C for 2 min and the final elongation cycle step at 72

o
C for 4 minutes.  

PCR amplification of the Hsp70 gene 

The PCR reaction mixture of 25 µL contained 16.32 µL PCR water, 4.8 µL 10 x GoTaq buffer + KCl-MgCl2, 1.2 µL 

MgCl2 (25 mM solution), 0.48 µL dNTP (10 mM each), 0.48 µL of primer 1 and 2 (work-solution), 0.24 µL GoTaq-

polymerase and 1 µL of approximately 150 ng of template DNA extract except for the negative control tube. The 

DNA samples were assayed for PCR amplification of the 1,935 bp Hsp 70 gene fragment (Baruah et al., 2010). A 

combination of the forward primer Hsp70forward (5’-cac-cat-ggc-aaa-ggc-acc-agc-aat-agg-3’) and the reverse primer 

Hsp70reverse (5’-ata-gtt-ggg-cca-ctg-cct-gtt-cca-g-3’) were used (Baruah et al., 2010). The PCR conditions were 

modified from Baruah et al. (2010) as follows: denaturation step at 94
o
C for 5 min followed by 35 cycles of 95

o
C for 

1 min, annealing at 63
o
C for 1 min and elongation at 72

o
C for 4 min followed by a final extension step for 10 min at 

72
o
C.  
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Restriction digestion: RFLP procedure 

The amplified 1,500 bp mtDNA fragments were screened for polymorphism using six restriction endonucleases 

(AluI, HaeIII, HinfI, RsaI, XbaI and HpaII) (Bossier et al., 2004; Kappas et al., 2004). The reactions were done 

according the manufacturer’s instructions (see Tab. 1). For each reaction tube, a total reaction volume of 23.5 µL 

consisted of 16 µL PCR water, 2 µL Tango buffer, 0.5 µL of enzyme and 5 µL of PCR amplified DNA product. 

Digested products were electrophoretically separated on 2 % agarose gel in a 1 X TAE buffer solution and stained 

with 1 µL of GelRed. A voltage of 100 V was used to push the digested DNA fragments through the solidified 

agarose gel for 1 h. A 100 bp promega DNA ladder was loaded as reference. A UV transilluminator was used to 

visualise the fragments and photographed with a digital camera (Canon power shot G10).  

 

For the Hsp 70 gene, restriction enzymes were selected based on the number of cleavage sites in the 1,935 bp 

fragment of the Artemia franciscana nucleotide sequence (cDNA). Four restriction enzymes (Sau3A, Rsal, AluI and 

HinfI) with recognition sequences GATC, GTAC, AGCT and GAATC respectively were used. In each reaction 

tube, a total reaction volume of 23.5 µL contained 16 µL PCR water, 2 µL Tango buffer, 0.5 µL of enzyme and 5 

µL of PCR amplified DNA product. The incubation temperature was 37
o
C while inactivation temperature was 65

o
C 

for 20 min for Sau3A enzyme. Gel-electrophoresis was as explained above but 1kb promega DNA ladder was 

loaded as reference. The homologies of fragment patterns were established through side by side visual comparisons 

for both mtDNA and Hsp70 gene. 

 

Data analysis 

The RFLP restriction pattern fragments were manually scored.  Fragments less than 100 bp were neglected because 

of technical inconsistencies. Unique endonuclease restriction patterns were identified by using specific letters. Each 

cyst replicate was assigned a multi-letter code that described its composite mtDNA genotype haplotype. For each 

sample, the haplotype frequency (hf) was manually calculated by counting the identical haplotypes and dividing by 

the total replicates per sample (Nei, 1978). The mean haplotype frequency was calculated by adding all the 

haplotype frequency in each haplotype then dividing by the total number of samples (Nei, 1987). The haplotype 

diversity within samples was calculated based on Nei and Tajima’s (1981) formula. 

 

 

 

 

 

 

 

 

 

 

Where: H = haplotype diversity; N = Sample size; x = haplotype frequency 

 

 

The non-parametric Wilcoxon signed rank one sample t-test of SPLUS (Sportifire 2 + 8.2) statistical programme 

was used to test significant difference among the sample’s haplotype frequencies at P = 0.05 level of significance. 

The cluster dendrogram for samples was drawn using PyElph 1.4 software (Pavel and Vasile, 2012) based on the 

unweighted average pair group method (UPGMA). For the RFLP of the Hsp70 gene, the sizes of the fragments were 

only estimated by comparison with a 1kb ladder. No further data processing was done whatsoever for the Hsp70 

RFLP marker. 

 

Results 

Based on A 260 / 280 index, some samples showed high quality DNA (Tanga, SFB, GSL and VC) while others had low 

quality (Fundisha, Ken1, Ken2 and Ken3) (Table 2). Values of A 260 / 280 indexes between 1.7 and 2.0 indicate the 

presence of pure DNA (Glasel, 1995). 
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Fig. 1: Study area - map of the Kenyan coast showing the location of the salt belt and a more detailed 

impression of the salt belt showing the individual salt producing companies in a North – South Orientation. 

Fundisha saltwork is also called Crystalline 

 

Table 1: The list and recognition sequences of the restriction enzymes used in the study including incubation 

and activation temperatures as described by the manufacturer; N = C, G, T or A. 

Enzyme Recognition sequence Incubation temperature Inactivation temperature 

AluI 5’...A G C T...3’ 

3’...T C G A...5’ 

37
O 

C 65
O 

C / 20minutes 

HaeIII 5’...G G C C...3’ 

3’...C C G G...5’ 

37
O 

C 80
O 

C / 20minutes 

HinfI 5’...G A N T C...3’ 

3’...C T N A G...5’ 

37
O 

C 65
O 

C / 20minutes 

RsalI 5’...G T A C...3’ 

3’...C A T G...5’ 

37
O 

C 80
O 

C / 20minutes 

Xbal 

 

HpaII 

5’...T C T A G A...3’ 

3’...A G A T C T...5’ 

5’...C C G G...3’ 

3’...G G C C...5’ 

37
O 

C 

 

37
O 

C 

65
O 

C / 20minutes 

 

80
O 

C / 20minutes 

 

 

 

Indian Ocean 

Fundisha/crystalline 

Saltwork: 1,020 ha 

Kensalt: 3,000 ha 
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Table 2: Average quantity of DNA extracted from individual cysts from each sample including Artemia 

Reference Centre (ARC) code. The DNA quantity was measured using a NanoDrop® ND-1000 machine. 

Values are mean ± SE.  

Sample ARC code DNA (ng /µL)  A 260 / 280 

Fundisha 1780   9.55 ± 0.69 2.12 ± 0.03 

Ken1 1762 15.01 ± 0.43 1.59 ± 0.12 

Ken2 1439   7.51 ± 0.45 3.04 ± 0.32 

Ken3 1779   7.53 ± 0.63 2.99 ± 0.22 

Tanga 1773 14.38 ± 0.70 1.99 ± 0.10 

GSL 1768 27.99 ± 1.95 1.87 ± 0.02 

SFB 1574 37.25 ± 1.26 1.92 ± 0.01 

VC 1771 28.80 ± 1.75 2.01 ± 0.03 

 

 

PCR amplification of the 1,500 bp 12S -16S mtDNA fragment 

The primer combinations produced identical 1,500 bp fragments in all the 10 replicates in every sample analysed. 

Only one replicate per sample is shown (Fig. 2) 

 

Fig. 2: Example of agarose gel for PCR-amplified 1500 bp 12S – 16S mtDNA fragment for a single cyst per 

sample. L: 1500 bp ladder; NC: Negative control.  

 

RFLP analysis of the mtDNA 
The enzymes HaeIII and HpaII detected polymorphism only in the Fundisha sample (Fig. 3). The enzymes AluI, 

XbaI, HinfI and RsaI were monomorphic across all samples (results not shown). In total, approximately 1,216 

fragments were surveyed in the 1,500 bp 12S - 16S mtDNA target sequence. A total of three composite haplotypes 

were identified in the mtDNA target sequence. All the three haplotypes were present in Fundisha Artemia samples 

while the rest of the samples were monomorphic (Table 3). The most common haplotype was AAAAAA, being 

detected in all the sample populations except GSL. This haplotype attained the highest frequency (0.4286) within 

Fundisha samples.  A private haplotype (AAABBA) was discovered in Fundisha sample while the haplotype 

(AAAABA) was only shared between Fundisha and GSL (Table 3). The highest haplotype diversity (h) was 

recorded in Fundisha cyst samples (0.76 ± 0.07).  
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Figure 3: Example of agarose restriction fragment profile for the polymorphic HaeIII and HpaII enzymes on 

Fundisha individual cyst samples. PCR-amplified 1500 bp of 12S – 16S mtDNA fragment for 7 single cyst 

replicates per sample.  

 

Table 3: Haplotype genotype frequencies, mean haplotype frequency (mhf), sample size, number of 

haplotypes (nh) and haplotype diversity (h) in samples. Haplotype genotypes are denoted with capital letters, 

each one corresponding to the restriction pattern obtained by a restriction enzyme in the following order; 

AluI, Xbal, HinfI, HpaII, HaeIII and RsaI 

 

The dendogram showed two major groups (GSL and SFB) while the Fundisha cyst samples appeared to be 

intermediate (Fig.4). 

Haplotype Haplotype 

genotype 

Samples 

Fundisha Ken1 Ken2 Ken3 Tanga GSL SFB VC mhf 

H1 AAAAAA 0.4286 1.0000 1.0000 1.0000 1.0000 0 1.0000 1.0000 0.80 

H2 AAAABA 0.2857 0 0 0 0 1.0000 0 0 0.16 

H3 AAABBA 0.2857 0 0 0 0 0 0 0 0.04 

S. size  7 7 7 7 7 7 7 7  

nh  3 1 1 1 1 1 1 1  

h ± SD  0.76 ± 0.07 0.00 0.00 0.00 0.00  0.00 0.00 0.00  

Hae
III 

Hpa
II 
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Figur 4: UPGMA dendrogram of Nei's genetic distance for 8 Artemia franciscana population samples. The 

values on the horizontal lines stand for Neis genetic distances in percentage.  

Molecular analysis of the Hsp70 gene fragment 

The 1,935 bp Hsp70 gene fragment produced a non-polymorphic pattern in all the enzymes. Only the RFLP pattern 

of enzyme Rsal is shown (Fig. 5). Interestingly, even restriction enzymes such as AluI and Sau3A with 7 and 6 

cleavage sites respectively on the 1,935 bp Hsp70 gene fragment did not show any polymorphism in any of the 

samples.  

 

Figure 5: Agarose restriction fragment profile for the enzymes: Sau3A, AluI, HinfI and Rsal. The PCR 

fragment was generated using DNA extracted from pooled Artemia cysts. L: 1Kb ladder, Lanes 1: Fundisha, 

2: Ken1, 3: Ken2, 4: Ken3, 5: Tanga, 6: GSL, 7: SFB, 8: VC, 9: Undigested PCR product (2, 000 bp) control.  

 

Discussion 

The present study analysed mitochondrial DNA using the RFLP tool to detect polymorphism in the Kenyan A. 

franciscana using DNA extracted from individual cysts.  The monomorhic DNA fingerprints corresponded with zero 
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genetic distance as shown by the UPGMA dendrogram (Fig. 4), indicating lack of genetic differentiation between 

and among the Artemia samples. Lack of genetic diversity is risky in times of genetic bottleneck as the entire 

population may perish. Ecological processes such as migration can cause high Artemia population heterogeneity in 

the habitat but limited effective gene flow is observed (Hajirostamloo, 2009) because effective gene flow is much 

slower compared to the process of dispersal (Naihong et al., 2000). The process of assortative mating can prevent 

intercrossing even among coexisting Artemia species to reduce chances of speciation (Beristain et al., 2010). The 

absence of genetic polymorphism within samples could have been due to the limited 1,500 bp fragment of mtDNA 

analysed. Kappas et al. (2004) used a larger mtDNA fragment of 2,973 bp and detected significant genetic 

polymorphism within the A. franciscana introduced in Vietnam almost 2 decades ago. Since Kenya and Vietnam 

share similar Artemia inoculation history, one would have expected similar genetic evolutions. However, a larger 

fragment has high chances of showing detailed microevolutionary changes that might not be detected in a limited 

DNA fragment.  

The environmental conditions are critical factors that may influence the Artemia population patterns and genetic 

expressions (Evjemo and Olsen, 1999; Van Stappen, 2002). In Kenya, integrated salt - Artemia culture is a 

continuous process where Artemia flourishes year round. In Vietnam, the saltworks are predictably sequential and 

this favoured a faster evolution of VC Artemia strain (Kappas et al., 2004). This conforms to Manaffar’s (2012) 

observation that genetic drift in the presence of limited gene flow facilitates the speciation process. Therefore, the 

absence of periodical genetic bottlenecks in the Kenyan situation suggests that only natural selection process is 

responsible for gene loss. Natural selection requires long time to cause meaningful genetic divergence (Gajardo and 

Beardmore, 2012). Permanence and seasonality of the environment are key instruments driving considerable genetic 

differentiation of Artemia leading to specific biota with definite genetic structures (Lenz, 1987). However, the 

exclusive ovoviviparity of the New Zealand A. franciscana population (inoculated in 1950s) was due to genetic 

differentiation caused by constant year-round salinity and temperature conditions (Wear and Haslett, 1986). The 

mutations caused by high UV radiation have also been linked to genetic evolutionary changes in Artemia 

populations (Hebert et al., 2002). 

The current study might not have sufficiently assessed the samples intra-population diversity due to limited the 

RFLP technique, which is inferior to detect intra-specific polymorphism (Bossier et al., 2004; Avise, 2004). The fact 

that the single haplotype identified in Tanga samples was similar to Kensalt and Fundisha samples suggested they 

are genetically close. This provides evidence that Artemia in tanga region was introduced by Kensalt management 

who own saltworks there. 

Based on the RFLP fingerprint pattern and the number of haplotype genotypes obtained in this study, only the 

Artemia population in Fundisha saltworks was polymorphic albeit in an insignificant manner (P > 0.05). Therefore, 

if indeed there was significant genetic differentiation between Kenyan (Kensalt) Artemia and their SFB ancestors, 

then the tool used was not sufficiently adequate to detect this micro-evolutionary divergence. Nevertheless, the 

private haplotype (AAABBA) in Fundisha cyst samples suggested a systematic genetic differentiation thus 

molecular evidence of an existing subpopulation and genetic divergence from their SFB ancestors. The population- 

specific haplotype identified in Fundisha saltwork may become useful in monitoring the geographic expansion of the 

Artemia populations along the Kenyan coast. However, further studies using superior genetic tools like AFLP and 

microsatellites are needed to authenticate this finding.  There was molecular evidence of co-existence of both SFB 

and GSL Artemia strains in Fundisha saltwork, conforming to Nyonje (2011) report. This finding is consistent with 

the studies of Van Stappen (2002), who documented that coexistence of different Artemia strains or species within 

the same site is a common scientific possibility.  

The lack of genetic variation in the Hsp70 RFLP fingerprint pattern suggested that the samples analysed had the 

same Hsp70 gene structure. Feder and Hofmann (1999) reported that little variation in the Hsp70 gene could be due 

to the fact that it is evolutionary and functionally conserved. Based on Kapinga (2012) and Mremi (2011) findings, it 

was hypothesised that the Kenyan Artemia posses unique Hsp70 gene signatures.  Having rejected this hypothesis, it 

means that factors other than the Hsp70 gene are responsible for the observed adaptations (thermotolerance). Future 

studies should focus on more quantitative Hsp70 analysis such as western blot by chemiluminescence techniques 

(Schutz-Geschwender et al., 2004).  

Conclusions and recommendations 

The mtDNA sequence analysis has provided some diagnostic power in comparing SFB, GSL and Kenyan Artemia 

strains. Even though the genetic differentiation of the Kenyan Fundisha Artemia population from its SFB ancestors 

is not statistically significant, the presence of a private haplotype genotype in Fundisha saltwork could be the 

beginning of a long term micro-evolutionary process, which could lead to eventual geographic differentiation and 
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progressive speciation of A. franciscana in the Kenyan environment. It may also help to explore and monitor future 

expansion of the Artemia population. The Kenyan Kensalt Artemia population is not contaminated by other Artemia 

strains while there is co-existence of SFB and GSL Artemia strains in Fundisha saltworks. Other factors other than 

the Hsp70 family could be involved in the much cited thermotolerance superiority of the Kenyan Artemia 

populations. More robust molecular markers targeting larger mtDNA fragment should be considered concurrently 

with Hsp70 quantitative technique.  
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