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Abstract

Seeking a clear understanding of the physical nature of quasiparticle excitations formed in the Jaynes-
Cummings and antiJaynes-Cummings interaction mechanisms in the quantum Rabi model, we have intro-
duced appropriate composite atom-field dynamical operators which characterize the algebraic structure
of the quantum state space of a quasiparticle excitation. We identify the dynamical operators as gen-
eralized atom-field angular momentum operators comprising state annihilation , creation, coherence,
population inversion and Casimir operators, which generate a closed generalized SU(2) Lie algebra and
satisfy the fermion anticommutation relations of a spinor. We therefore interpret the atom-field quasi-
particle excitations in the quantum Rabi interaction as quasiparticle spinors. We establish that the al-
gebraically complete quasiparticle spinor Hamiltonian automatically incorporates an intrinsic atom-field
excitation number correlation operator component, yielding generalized Jaynes-Cummings Hamiltonian
H = H + h(wo — w)a'asis_, antiJaynes-Cummings Hamiltonian H = H — h(wo + w)a'as_s; and Rabi
Hamiltonian Hr = %(H—i—ﬁ) where H , H are the standard Jaynes-Cummings and antiJaynes-Cummings
Hamiltonians. A quasiparticle spinor, identified as JC-spinor or antiJC-spinor, may be interpreted as a
generalized spin—% particle specified by an infinite spectrum of integer and half-integer quantum numbers
and an infinite spectrum of photon-carrying spin-up and spin-down qubit states for field mode photon
numbers n = 0,1,2,3,...,00. The Hamiltonian generates a general time evolving entangled state vector
describing Rabi oscillations between the qubit state vectors. Expressing the time evolving state vector
as a superposition of entangled state eigenvectors reveals a frequency-shift phenomenon associated with
the atom-field excitation correlation energy. Considering the atom initially in a spin-up and spin-down
superposition state or the field mode initially in a coherent state, the dynamical evolution of the state
population inversion, coherence and the fluctuations is characterized by quantum collapses and revivals
due to interference of oscillations with different Rabi frequencies.

1 Introduction

Quantized light-matter interactions are well understood to generate quasiparticle excitations generally iden-
tified as polaritons. The most basic model of fully quantized light-matter interaction is the quantum Rabi
model, where a two-level atom interacts with a single mode of quantized electromagnetic field, which we re-
visit in this article to determine the physical nature of the quasiparticle excitations generated in the process.
The standard quantum Rabi Hamiltonian is obtained in the form

1
Hp = hw <&T& + 2> + hwos, + hg(a+a)(sy +s-) (la)

where w , @, a' are the field mode angular frequency, annihilation and creation operators, while wg , s_ , s, , s
are the atomic angular frequency, state lowering , raising and population inversion operators, respectively.
The complete specification of the atomic state operators includes the 2 x 2 identity matrix I and the (Pauli)
matrices o, = s+ +s_ , 0, = —i(sy — s_), which we characterize as the atomic spin coherence operators.

Noting that the field mode enters the interaction Hamiltonian in clockwise and anticlockwise rotating
component forms, we apply normal and antinormal operator ordering to decompose the Rabi Hamiltonian
in a two-component symmetrized form [1, 2, 3]

HR:%(H+H) (10)



where the normal-order component H coupling the atom to the clockwise rotating field mode component is
the standard Jaynes-Cummings Hamiltonian taking the form

H = hwa'a + hwos, + 2hg(a's_ +asy) (1c)

while the antinormal-order component H coupling the atom to the anticlockwise rotating field mode compo-
nent is the standard antiJaynes-Cummings Hamiltonian taking the form

H = hwaa' + hwos, + 2hg(as_ +a'sy) (1d)

noting that the doubling of the coupling parameter g — 2¢g arises through the symmetrization of the Rabi
Hamiltonian Hp. Hence, using 2¢g in H , H in the present context maintains consistency with the standard
definition of the quantum Rabi model.

Interestingly, even though the Rabi Hamiltonian is composed of the two rotating and antirotating com-
ponents, only the rotating Jaynes-Cummings component H in equation (1¢) has been known to generate the
quasiparticle excitations characterized as polaritons, which have been widely studied in quantum optics [ 4
, 5,6, 7]. The counterpart quasiparticle excitations generated by the antirotating antiJaynes-Cummings
component H, which the present author has characterized in earlier work as antipolaritons [ 1, 2, 3],
largely remained unknown until the discovery of a conserved excitation number operator for the antiJaynes-
Cummings interaction mechanism in [ 1, 2, 3], leading to exact solutions of the general dynamical evolution
generated by the antiJaynes-Cummings Hamiltonian.

We observe that in [ 2 , 3 ], we reorganized the Jaynes-Cummings Hamiltonian H in equation (1c¢) as a
polariton qubit Hamiltonian in the form

H—Tuu(]\A]—l-;)—l-Qﬁg/l ; N=ala+s,s_ ; A=as, +als_ +as, ; a:% (Le)

where N, A are the polariton qubit excitation number and interaction state transition operators, respectively.
Similarly, we reorganized the antiJaynes-Cummings Hamiltonian H in equation (1d) as an antipolariton qubit
Hamiltonian in the form

_ -~ 1 -~ -~ -~
H:hw(N—2)+2th ; N=aa"+s_s; ; A=as, +as_ +a'sy ; a:%ﬁ (1f)
g

where N , A are the antipolariton qubit excitation number and interaction state transition operators, respec-

tively. We note that squares of the interaction state transition operators A , A provide the corresponding
excitation number operators N , N according to

~2 2 1
a? A =N +-a° (1g)

=K
* 4

A~ =

The state transition operators A , A generate the respective polariton and antipolariton qubit state vectors.
Simple addition and subtraction of the qubit state vectors weighted by normalization factors provide the re-
spective polariton and antipolariton state eigenvectors and energy eigenvalues. The emerging physical picture
is that, beyond their basic definition as atom-field quasiparticle excitations, polaritons and antipolaritons in
the quantum Rabi model may be interpreted as photon-carrying two-state physical entities characterized by
conserved excitation number and state transition operators, with quantum state spaces specified by qubit
state vectors, state eigenvectors and energy eigenvalue spectra.

It is now evident that the atom-field quasiparticle excitations generated in the quantum Rabi model
comprise polaritons generated in the Jaynes-Cummings interaction mechanism where the atom couples to
the clockwise rotating field mode component and antipolaritons generated in the antiJaynes-Cummings in-
teraction mechanism where the atom couples to the anticlockwise rotating field mode component. While the
reformulation of the standard Jaynes-Cummings and antiJaynes-Cummings Hamiltonians H , H in equations
(1e) , (1d) into the respective polariton and antipolariton qubit Hamiltonian forms in equations (1le) , (1f)
successfully provides well defined quantum state spaces specified by qubit state vectors, state eigenvectors
and energy eigenvalue spectra, the interpretation of the polaritons and antipolaritons as quantized two-state
physical entities is limited by the property that the qubit Hamiltonian forms in equations (1e) , (1f) provide

only the respective excitation number and state transition operators ( N, A ), (N, A) as the dynamical



operators of a polariton or an antipolariton qubit. But, the important algebraic property that the excitation
number and state transition operators as defined in equations (le)-(1g) commute with the respective Hamil-
tonians H , H means that their constant mean values cannot be used as order parameters for describing the
dynamical evolution of the respective polariton or antipolariton qubit. In addition, just thf) two dynamical

operators, namely the excitation number and state transition operators ( N , A yor ( N, A), alone cannot
characterize the complete closed algebraic structure of the quantum state space of the polariton or antipo-
lariton qubit. It follows immediately that the physical characterization of a polariton or an antipolariton
only by its excitation number and interaction state transition operators is algebraically incomplete and we
must therefore look for the appropriate dynamical operators which, besides generating the complete closed
algebraic structure of the quantum state space of a polariton or an antipolariton, also provide suitable order
parameters for describing the internal structure and dynamical properties of the polariton or antipolariton
as a quantized physical entity.

It is important to note that in [ 4 , 5] and related articles, Hartmann, Brandao and Plenio have developed
models of many-particle interactions in coupled arrays of cavities where the quasiparticle excitations identified
as polaritons are interpreted as bosonic particles characterized by annihilation and creation operators defined
as linear combinations of the basic atomic and field mode state lowering (annihilation) and raising (creation)
operators in the form p = As_ + Ba , p' = As; + Bal where are real physical parameters A , 3. In this
interpretation, the polariton excitation number operator is defined as N, = pp and the polariton Hamiltonian
is obtained in the form H, = hQptp. We observe that substituting the annihilation and creation operators
P, pt reveals that the bosonic polariton Hamiltonian H, = RQpTH in [ 4, 5 ] takes precisely the form of
the Jaynes-Cummings Hamiltonian in equation (1¢), with appropriate reorganization of physical parameters
to match. The property that the annihilation-creation operator commutation bracket derived in [ 4 , 5 ] is
obtained in approximate form [ $ , p' ] ~ 1 means that the algebraic structure generated by the bosonic
polariton excitation number, annihilation and creation operators pip , p, p' is only approximate. The bosonic
polariton interpretation developed in [ 4 , 5 | may therefore not provide the physical picture of the internal
structure of the atom-field quasiparticle excitations interpreted as quantized physical entities in the general
context we seek in the present work.

In this article, we advance our understanding of the internal structure and dynamical properties of quasi-
particle excitations formed in atom-field interactions beyond the basic polariton and antipolariton qubit
interpretation which we developed earlier in the quantum Rabi model in [ 2 , 3 ]. Considering the same
Jaynes-Cummings and antiJaynes-Cummings atom-field interaction mechanisms, we now introduce a com-
plete set of dynamical operators to determine the closed algebraic structure of the quantum state space and
the physical nature of the resulting quasiparticle excitations. In contrast to the bosonic model in [ 4 , 5 |,
we define the quasiparticle excitation state lowering and raising operators as composite hermitian conjugate
products of the basic atom and field mode state lowering and raising operators s_ , sy , @ , a'. The algebraic
relations of the state lowering and raising operators provide the desired identity, state population inversion
and coherence operators, where we identify the identity operator as the standard conserved excitation num-
ber operator in the Jaynes-Cummings or antiJaynes-Cummings interaction. We complete the specification
of the dynamical operators by introducing the Casimir operator defined in standard algebraic form, which
commutes with all the other dynamical operators and is therefore a constant of the motion of the general
atom-field quasiparticle excitation Hamiltonian. The algebraic structure generated by the dynamical opera-
tors is a closed Lie algebra of the SU(2) symmetry group, precisely similar to the algebraic properties of a
two-state atomic spin operators, thus leading to the interpretation of the the general atom-field quasiparticle
excitation as a spinor, in complete contrast to the bosonic polariton interpretation in [ 4 , 5 ]. The general
form of the Hamiltonian which generates the quasiparticle excitation spinor is equivalent to the respec-
tive generalized Jaynes-Cummings or generalized antiJaynes-Cummings Hamiltonian, which now includes an
atom-field excitation number correlation operator component. Because of their closed spinor algebraic prop-
erties, we call these atom-field quasiparticle excitations Jaynes-Cummings spinors or antiJaynes-Cummings
spinors, depending on the atom coupling to the clockwise or anticlockwise rotating field mode component.
We shall refer to a Jaynes-Cummings spinor simply as a JC-spinor and an antiJaynes-Cummings spinor as
antiJC-spinor.

To develop the basic quantum state space of the composite atom-field spinor, we consider that in the
Jaynes-Cummings or antiJaynes-Cummings interaction mechanism which forms a JC-spinor or an antiJC-
spinor, a two-level atom initially in spin-up (excited) state |+) or spin-down (ground) state |—) is coupled to a
quantized clockwise or anticlockwise rotating electromagnetic field mode in a number (Fock) state |n). If the
atom starts in an initial spin-up state |+), then we identify the quasiparticle excitation formed as a spin-up



JC-spinor or spin-up antiJC-spinor with initial n-photon spin-up state vector |¢4,), while an interaction
starting with the atom in initial spin-down state |—) forms a spin-down JC-spinor or spin-down antiJC-
spinor with initial n-photon spin-down state vector |¢_,). The initial n-photon spin-up and spin-down state
vectors |¢4p) , [t—n) are defined in the product form

[hin) =H)n) =1+n) 5 [Y_n)=|")n)=|-n) (1h)

To determine the algebraic operations of the dynamical operators on the quantum states of the JC-spinor or
antiJC-spinor, we apply the standard atom and field mode operations

stlH) =0 5 si[=)=1[+) ;5 s =17 ; s |-)=0; szli>:i%\i>

alln) =vn+1|n+1) ; an)=+vnln—1) ; a'an)=nln) (14)

For clarity, we develop the spin-up and spin-down JC-spinor and antiJC-spinor quantum state spaces sep-
arately in sections 2 , 3. We shall find that for each spinor, JC or antiJC, the respective spin-up and
spin-down state spaces are orthogonal and independent, so that the full quantum state space of a JC-spinor
or an antiJC-spinor is best composed as a simple superposition of its spin-up and spin-down state spaces
where the atom starts in an initial superposition state uy|+) + u_|—) so that the initial state vector |¢) of
the JC-spinor or antiJC-spinor is a simple superposition of the initial n-photon spin-up and spin-down state
vectors |¢4p) , [t)—n) obtained in the product form

) = (us[H) +u D) = ) =uplpn) +ufPn) (15)

where uy are the respective atomic spin-up and spin-down state probability amplitudes. The algebraic
property that the composite atom-field n-photon state vectors |¢4,) , |#)_,) are orthonormal provides the
initial superposition state vector |¢) normalization relation

lur P +u-P=1 5 (Ply) =1 (1k)

We provide details of the dynamical operators and algebraic structure of the quantum state space of the
JC-spinor in section 2 and the antiJC-spinor in section 3 below.

2 The Jaynes-Cummings spinor

In this section, we introduce and study the dynamical properties of a composite atom-field quasiparticle
excitation generated in a Jaynes-Cummings interaction mechanism where the atom couples to the clockwise
rotating field mode component. According to the form of the basic Jaynes-Cummings Hamiltonian H in
equation (1c¢), the Jaynes-Cummings interaction mechanism which generates the quasiparticle excitations is
governed by the interaction Hamiltonian component H; = 2hg(afs_ + asy). In the physical interpretation
we are developing in the present work, we identify the quasiparticle excitation generated in the atom-field
Jaynes-Cummings interaction mechanism as a Jaynes-Cummings spinor, which we shall refer to simply as
a JC-spinor, thereby distinguishing it from the conventional interpretation of the atom-field quasiparticle
excitations as polaritons in standard quantum optics [ 2-7 ].

It follows from the algebraic form of the Jaynes-Cummings interaction Hamiltonian H; = 2hg(ats_+as,)
that the JC-spinor may be interpreted as a composite quantized atom-field physical entity characterized by
state lowering and raising operators J_ , J; obtained as products of the basic atom and field mode state
lowering and raising operators (s_ , sy), (@, af) in the form

J_ =als_ ; Jy =as4 (2a)

Adding and subtracting J_ , J4 provides hermitian symmetric and antisymmetric coherence dynamical
operators X, , X, in the form

So=Jy+J. 5 S, =—i(J—J ) (2b)

Using the basic atom and field mode operator algebraic relations (I = 2 x 2 identity matrix)

aa’ —ata=1 = aal=1+a'a ; S-St +sys—=1 = s_sp=1—s4s_ (2¢)



we take normal and antinormal order products of J_ , J, to obtain
JoJ_=sys_ +alas s J_Jy=da'a—alasys_ (2d)

which we add and subtract to obtain hermitian diagonal symmetric and antisymmetric dynamical operators
I, Y, in the form . R
I=J.J +J_Jy = I=da'a+s,s_

S.=JyJ —J.J. =  X.=s,s —ala+2atas,s_ (2¢)

where we interpret I as the J C-spinor identity operator, which we identify as the excitation number operator
N defined within the polariton interpretation in equation (le). The physical interpretation of the operator

3, in equation (2e) follows below.
To determine the algebraic properties of these dynamical operators, we introduce basic operators Jy , J,
, Jy , J. consistent with the definitions of the state lowering and raising operators J_ , J; obtained as

Jo = I ; Jp = 293 ; Jy: iy 5 Jp = zA:z (2f)

DN |
| —
N |

1
2
Substituting ¥, , f]y , I, %, from equations (2b) , (2¢) then gives suitable forms

1 1
Jo=g(d-tJody) 5 Jo= gl do—JoJe) = Jpdo=dotde o Jode=do—

1 1
szi(J++J,) ; Jy:*§(=]+*<]7) (29)

where in defining Jy , J,, we take note of the explicit forms in equation (2e).
Using standard algebraic property of atomic spin state lowering and raising operators s_ , sy gives a
corresponding algebraic property of the JC-spinor state lowering and raising operators J_ , J; in the form
2 2 2 2
2 =0 ; 55 =0 = J2=0 ; Ji=0 (3a)

which we apply to determine the following algebraic relations for the quadratic operators J?2 , Jj , J? with
respect to Jy using the definitions in equation (2g) in the form

1 1
2 _ . 2 _ . 2 _ 72
Jo = §J0 ; Jy = §J0 ; J; =J§ (3b)
We introduce the JC-spinor Casimir operator J? defined in standard form by
2 _ g2 2 2
Jr=Jy+J, + J; (3¢)

which on substituting J, , J, , Jo from equation (2g) or using the quadratic operator algebraic relations
obtained in equation (3b) takes the form

1
=T+ I T+ =R+ 2 = P =dh+ ) (3d)

noting that substituting 2.J = I from equation (3b) provides the equivalent relation %2 + f]g +32=[(I+42)
usually obtained in the corresponding algebraic relations of the quantum mechanical Stokes operators in
studies of polarization properties of quantized electromagnetic field modes [ 8 , 9, 10 |].

The definition of J, in equation (2g) easily provides an important algebraic relation

[Je, Jo]=2J. (4a)

This commutation bracket relation of the state lowering and raising operators J., compared to the corre-
sponding atomic spin commutation bracket [sy , s_] = 2s, where s, is the atomic spin state population
inversion operator, leads us to interpret the dynamical operator J, defined explicitly by equations (2e) ,
(2f) as the JC-spinor state population inversion operator, which will be established through its algebraic
operations on coupled qubit state vectors in subsection 2.2 below.



Using the definitions of Jy , J, , J, , J, , J? in equations (2g) , (3d), we apply the algebraic property of
J_ , J+ in equation (3a) to obtain the following closed algebraic relations, including equation (4a) :

[Jo, J-1=0 ; [Jo, J&]=0 ; [Jo, Ju]=0 ; [Jo, Jy]=0 ; [Jo, J:]=0 (4b)
(J.,J_}=0 i {J.,Je}=0 3 {J., J}=0 ; {J., J,}=0 : {Jo, J,}=0 (4

[J2,J_]1=0 ;5 [J?, J4]=0 ; [J*, &) ; [J*, J]=0 ; [J*, J,]=0 ; [J?, J.]=0 (4d)

Jo, J)=2. ; |, J=J0 ; [J.,J)=-J1
o J)=il. 5 [Jy, L=l ;  [J, Jo) =i, (4e)
noting that the evaluation of the algebraic relations in equations (4b)-(4d) using equation (3a) is straightfor-
ward, while equation (4e) includes a step applying equation (2g) according to

e T = (T )T T T3) = (o J2) T+ T4 (o — o) = 5 (2T o+ -, J.])
e ] = = () (T ) = =5 (o = T2 4 T (o 4 ) = — 2y s . J]) (4)

where I = 2.Jy as defined in equations (2e) , (2f) is the JC-spinor identity (or conserved excitation num-
ber) operator, which commutes with Jy. We observe that equation (4d) establishes the standard algebraic
property that a Casimir operator commutes with all the operators which generate the closed algebra of a
symmetry group. We now note that the full set of closed algebraic relations in equations (3a)-(3d) , (4a)-(4e)
constitute a generalized closed SU(2) Lie algebra and the associated anticommutation relations of a spinor
characterized by dynamical operators J+ , Jo , J , J , Jy and a Casimir operator J 2. We identify this spinor
as the JC-spinor, which arises as an atom-field quasiparticle excitation in a Jaynes-Cummings interaction
mechanism. The JC-spinor dynamical operators are interpreted as generators of a generalized SU(2) Lie
algebra.

For ease of comparison with the closed SU(2) Lie algebra of the basic two-state spinor (spin—% particle),
we present the standard closed SU(2) Lie algebra generated by the atomic spin operators sg , s; , St , S—
easily obtained in the form

I=sys_+s_sy ; sy= 5[ ; $4+5_ =380+ S ; S_84y =80 — S
s2=0 3 s1=0; 5 [so,sl=0 5 A{st,s}=0 ;5 k#Fl=— +ay2
1 i 1 1
sm:5(5++5_) ; sy:f§(5+75_) ; 551580 ; 5@2,1550 ; 53:53 (5a)

to obtain the closed algebra of the atomic spin operators in the form

[ s+, s— ] =2s, ; [$2, s+ ] =s41 ; [$,, s— |=—s_1I

[ 52, 8y | =1is. ; [ sy, s. ] =1is,I ; [ 52, Sg | =1is,I (5b)
where we note that for the atomic spin case, the identity operator I is the 2 x 2 identity matrix giving

sl = sg , k = £, x,y, which provides the familiar form of the closed SU(2) Lie algebra generated by the
atomic spin operators. The atomic spin Casimir operator s? is obtained in the form

1
82:si+s§+s§:§(s+s_—|—s_s+)+sz:so+s§ = 52 =s0(s0+1) (5¢)

which satisfies the standard algebraic relations for the atomic spin Casimir operator obtained in the form
[s°,50]=0 5 [s*,s:]=0 ; [s,s]=0; [s,s]=0; [s, s]=0(5)

The closed SU(2) Lie algebra and the associated anticommutation relations of the basic two-state spinor
obtained above in the set of equations (5a)-(5d) agrees precisely in form with the closed algebraic properties
generated by the JC-spinor dynamical operators in the set of equations (3a)-(3d) , (4a-(4e), thus confirming
their interpretation as generalized closed SU(2) Lie algebra of a spinor.

To complete the interpretation of the JC-spinor as a quantized physical entity with internal structure and
dynamical properties, we proceed to determine its Hamiltonian and quantum state space in the next two
subsections.



2.1 The JC-spinor Hamiltonian

To determine the algebraic form of the JC-spinor Hamiltonian, we consider that the conserved excitation
number operator is defined in symmetrized form in terms of the normal and antinormal order products of the
lowering and raising operators J_ , J, which constitute the identity and state population inversion operators
Jo , J. according to equations (2d) , (2g). It follows from equation (2d) that in the atom-field Jaynes-
Cummings interaction mechanism which forms a JC-spinor, the normal order form J,.J_ = s, s_ +afas s_
provides the effective atomic spin excitation number operator, while the antinormal order form J_J; =
a'a —a'as,s_ provides the effective field mode excitation number operator, each modified by the atom-field
excitation number correlation operator +afas, s_ arising from the atom-field mode coupling as appropriate.
The effective free evolution Hamiltonian of a JC-spinor is then obtained as the sum of the effective atomic
spin component hwgyJ4J_ and the field mode component fiwJ_ Jy in the form AwJ_J, + hwyJyJ_, while the
interaction Hamiltonian is obtained in the general form as a linear combination of the coherence components
in the form a,%, + ayfly. We therefore define the JC-spinor Hamiltonian A in terms of the dynamical
operators in the general form

H = hwJ_Jy + hwot J_ + h(apS, + a,3,) (6a)

where w , wy are the field mode and atom angular frequencies for the free evolution energy of composite
atom-field system, while a, , a, are real physical parameters defining the atom-field interaction which forms
the JC-spinor.

Substituting £, = J4 +J_ | 3, = —i(Jy — J_) from equation (2b) into equation (6a) and symmetrizing
the first two terms according to 2(aA 4+ bB) = (a + b)(A+ B) + (b — a)(B — A) then substituting Jy , J, as
defined in equations (2¢) , (2f) provides the Hamiltonian in the form

H =hdJy + hoJ, + 2hgle 0T, + 7)) ; d=wo+w ; d=wy—w (60)

where we have introduced blue and red sideband frequency detunings § = wo +w , § = wy — w and we have
redefined interaction parameters to coincide with the parameter definitions in the basic Jaynes-Cummings
Hamiltonian H in equation (1c¢) for ease of comparison in the form

; a
ap Fiay = |ay Fia,|eT? ; lagz Fiay| = 2g ; tanf = 2 (6¢)
Qg
The JC-spinor Hamiltonian H in equation (6b) takes the standard form of a spinor Hamiltonian satisfying
the expected closed SU(2) and anticommutation algebraic properties.
It follows from the commutation relations in equations (4b) , (4d) that the operators Jy , J? commute
with the Hamiltonian H according to

[Jo, H]=0 ; [J?, H]=0 (6d)

which means that Jy , J? are conserved dynamical operators of the JC-spinor. These operators can be used to
determine the entangled state vectors which specify the quantum state space of the JC-spinor. Indeed, in the
standard quantum optics literature, the operator Jy, identified as the conserved polariton excitation number
operator N=1= 2Jy, has been used to determine entangled state eigenvectors and energy eigenvalues
through diagonalization of the Jaynes-Cummings Hamiltonian H defined here in equation (1¢) with 29 — g.
But the Casimir operator J2 as defined in equations (3c) , (3d), has never featured before in quantum
optics, since it has only arisen here as a new conserved dynamical operator of the JC-spinor interpretation
developed in the present article. The emergence of the Casimir operator J? and the state population inversion
operator J, determined algebraically and defined in equations (2¢)-(2¢) , (4a) provides a standard approach
for determining generalized JC-spinor state eigenvectors and eigenvalues through the generalized SU(2) Lie
algebra.

2.1.1 Generalized Jaynes-Cummings model : atom-field excitation correlation energy

We now determine the physical nature of the dynamics generated by the JC-spinor Hamiltonian . Substi-
tuting JyJ_ , J_J; from equation (2d) into equation (6a), setting ay, = 0 , a, = 2¢g and introducing the
definition of J¢ from equation (2a), we obtain the Hamiltonian in the form

ay=0 ; a,=2g : H=rhw(aa—alasys )+ hwo(sys_ +alasys ) +2hg(a’s_ +asy)  (7a)



which we reorganize in the form
H = hwa'a + hwos s +2hg(als_ +asy) + h(wg —w)alasys. = H=H+h(wo—w)alas,s_ (7b)

where H is the basic Jaynes-Cummings Hamiltonian in equation (1c¢), noting the algebraic relation s;s_ =
so+ s, = s, + % after writing I = 1. It is clear in equation (7b) that the JC-spinor Hamiltonian #H
is a generalization of the basic Jaynes-Cummings Hamiltonian to include an atom-field excitation number
correlation operator component h(wy — w)afas, s_, which generates an atom-field excitation correlation
energy. Notice that the atom-field excitation correlation energy depends on the detuning frequency § =
wp — w and vanishes at resonance frequency w = wg, thus meaning that experiments performed under exact
resonance conditions cannot detect the atom-field excitation correlation energy. We establish below that the
general dynamics generated by the JC-spinor Hamiltonian A, which we now identify as a generalized Jaynes-
Cummings Hamiltonian, is characterized by alternate field and atom blue or red frequency-shifts associated
with the excitation number correlation energy.

It is important to note that the atom-field excitation number correlation operator component 7i(wg —
w)atasys_ which extends the basic Jaynes-Cummings Hamiltonian H to the generalized form H of the JC-
spinor in equation (7b) is not externally introduced, but arises naturally from the algebraic property of normal
and antinormal operator ordering of the products of the state lowering and raising operators J_ , J taken in
equation (2d) to define the identity and state population inversion operators Jy , J, according to equations
(2€)-(2g). We may therefore treat the atom-field excitation number correlation operator, which modifies
the atom and field mode excitation number operators according to equation (2d), as an intrinsic dynamical
property of the algebraic structure of the atom-field interaction mechanism, which does not directly manifest
itself externally, thus generally missing in standard atom-field interaction models such as the quantum Rabi,
Jaynes-Cummings, antiJaynes-Cummings, Dicke models, etc. We observe that in [11], such an atom-field
excitation number correlation operator component has been introduced externally as a Kerr-type interaction
Hamiltonian to account for phase-shift (frequency-shift) phenomena in atom-field interactions.

2.2 The JC-spinor quantum state space

Having determined all the dynamical operators, including the Casimir operator and Hamiltonian, we now
complete the characterization of the internal structure of the JC-spinor by determining the state vectors and
energy spectrum which specify the quantum state space of the system. As we explained earlier in section
1, we achieve clarity by developing the spin-up and spin-down JC-spinor quantum state spaces separately
in subsections 2.2.1 and 2.2.2 below. We present the basic algebraic operations of the JC-spinor dynamical
operators on the initial n-photon spin-up and spin-down state vectors |¢4,,), which generate the respective
coupled qubit state vectors, state eigenvectors and eigenvalues. The state energy eigenvalues reveal alternate
atom and field mode blue or red frequency-shifts in the upper or lower spectrum.

2.2.1 Spin-up JC-spinor

As we have stated above, the initial state vector of the spin-up JC-spinor is the n-photon spin-up state vector
|1r,) defined in equation (1h). Applying the state lowering and raising operators J¢ on [¢,) in equation
(1h), using equation (1¢) and introducing the corresponding transition state vector |¢)_,11) to define the
coupled initial spin-up JC-spinor qubit state vectors in the form

[Vin) =] +mn) ; [Y—nt1) =] —n+1) (8a)

we obtain the coupled initial qubit state algebraic operations

J|oin) =V 24n [V—nt1) 5 Jel—nt1) = V24n [V4n) 5 JrlYin) =0 5 J_|Y_pny1) =0

1
[ (";r ) h—01.2.3.4 . (8b)
where we have introduced a quantum number j,,, as defined above, which takes half-integer or integer values
for even or odd values of the field mode excitation (photon) number n = 0,1,2,3,4,.... We call the quantum

number j;, the spin-up JC-spinor quantum number.



Using the algebraic operations in equation (8b), we obtain eigenvalue equations generated by Jy , J. , J2
as defined in equations (2g) , (3d) in the form

JO|¢+n> = j+n|w+n> 5 ']0|¢—n+1> = j+n|¢—n+1>
JZ|¢+n> = ]+n‘w+n> 5 Jz|"/}f’ﬂ+1> = _j+n|wfn+1>
T [Ysn) = jun(Gan + D) tsn) ; T —ns1) = Jn(Gon + D]v—nt1) (8¢)

The physical interpretation of J, as the JC-spinor state population inversion operator is clearly demonstrated
in the eigenvalue equations it generates on the coupled initial qubit state vectors |11,) , [¥/—n+1) in equation
(8¢), with corresponding upper or lower eigenvalues +j,, such that we may interpret |¢4,) as the upper
and |Y_,+1) as the lower initial qubit states of the spin-up JC-spinor. It is important to note that the
eigenvalue equations generated by the Casimir operator J? take precisely the form of the standard quantum
mechanical total angular momentum Casimir operator eigenvalue equations with quantum number j,,, taking
both integer and half-integer values according to the definition in equation (8b).

2.2.2 Spin-down JC-spinor

The initial state vector of the spin-down JC-spinor is |1)_,) defined in equation (1h). Applying the state
lowering and raising operators Jx on |¢4,) in equation (1h), using equation (1¢) and introducing transition
state |t4,—1) to define the coupled initial spin-down qubit states in the form

[pn)=[=n) 5 [yn)=|+n-1) (9a)

we obtain coupled initial qubit state algebraic operations

J,WJ,“> =0 ; J+|w+n71> =0 ; J+|1/)fn> =V2j-n |1/J+n71> 5 Jf|'l/)+n71> =V2j-n |¢*n>

j,nzg C n=0,1,2,3.4, ... (9b)

where, here again, we have introduced a quantum number j_,, as defined above, which takes zero, integer or
half-integer values for zero, even or odd values of the field mode excitation (photon) number n =0, 1,2, 3,4, ....
We interpret the quantum number j_,, as the spin-down JC-spinor quantum number.

Using the algebraic operations in equation (9b), we obtain eigenvalue equations generated by Jo , J, , J>
as defined in equations (2¢g) , (3d) in the form

JOW}fn> = anwjfn) ; JO|'(/)+n71> = jfn|w+n71>
Jz|'¢)—n> = 7j—n|w—n> ; Jz|1/}+n—1> = j—n|w+n—1>
J2|w—n> = j—n(j—n + 1)|¢—n> ; J2|w+n—1> = j—n(j—n + 1)|w+n—1> (90)

Here again, the physical interpretation of J, as the JC-spinor state population inversion operator is clearly
demonstrated by the eigenvalue equations it generates on the coupled initial state vectors (|9_,) , |[¥1n—1))
in equation (9¢), with corresponding lower or upper eigenvalues Fj_,,, characterizing |¢)_,) as the lower and
[th4+n—1) as the upper state vector of the spin-down JC-spinor. The eigenvalue equations generated by the
Casimir operator J?2 in equation (9¢) take the form of the standard angular momentum eigenvalue equations
with quantum number j_,, taking zero, integer or half-integer values according to the definition in equation
(90).

The basic qubit state vectors and algebraic operations in equations (8a)-(8¢), (9a)-(9¢), together with the
algebraic properties in equations (3a)-(3d) , (4a)-(4e), can be used to determine all the dynamical properties
of the JC-spinor, which we now present in subsection 2.3 below.

2.3 Dynamical evolution of the JC-spinor

We now determine the internal dynamics of the JC-spinor generated by the Hamiltonian H expressed in final
form in equation (6b). As we stated earlier in section 1, it is evident in subsections 2.2.1 , 2.2.2 above that
the complete quantum state space generated by the JC-spinor Hamiltonian H is composed of two orthogonal
independent quantum spaces, depending on the initial spin-up or spin-down state of the atom, namely, the
spin-up JC-spinor quantum space specified by the coupled pair of qubit state vectors (|in) , |¥—nt1))



defined together with algebraic operations in equations (8a)-(8¢) and the spin-down JC-spinor quantum
space specified by the coupled pair of qubit state vectors (|t)—,) , |[4n—1)) defined together with algebraic
operations in equations (9a)-(9¢), which are orthogonal according to the relations

Wunlbn) =0 5 (Wynlin-1) =0 5 (Ynp1lbn)=0 ; (Yni1|¥4n-1)=0 (10a)

Hence, instead of studying the internal dynamics of spin-up and spin-down JC-spinors separately, we find it
more effective to consider the basic JC-spinor formed in initial n-photon spin-up and spin-down superposition
state |1) obtained as a product of the initial atomic spin superposition state u|+) + u_|—) and the initial
field mode number state |n). The initial JC-spinor state vector |1} is therefore a superposition of the n-photon
spin-up and spin-down state vectors |¢4,) , [#)_,) as defined in equation (17).

Dynamical evolution of the JC-spinor described by the general time evolving state vector |¥(¢)) is governed
by time evolution operator U (t) generated by the Hamiltonian A through the time-dependent Schroedinger
equation

0wy = ww) (100

Noting that, in general, the interaction parameters a, , a, which characterize the Hamiltonian in equation
(6a) , (6b) may be time-dependent or time-independent, we choose the time-independent case and consider
the Hamiltonian H to be time-independent, postponing the time-dependent form for studies of specified
cases.

For the time-independent Hamiltonian H in equation (6b), the general time evolving state vector |¥(t))
of the JC-spinor initially in the superposition state |¢) is easily obtained through a simple integration of the
time-dependent Schroedinger equation (10b) in the form

) . —1 i S C 6
W) =UD) 5 UE)=e 7H = U(t) = e 29t (@Tate el midtdo a=g, (10)

where we have applied the commutation property [Jy , aJ, +e ?J; + ¢€?J_] = 0 to factorize the time
evolution operator U(t) in appropriate form for ease of evaluation. Substituting the initial state vector [¢)
from equation (15) into equation (10c) provides |¥(¢)) as a superposition of the time evolving spin-up and
spin-down JC-spinor state vectors |¥ 1, (1)) , |¥_,(t)), respectively, in the form

W) = ui|Tyn@®) +u T n@) 5 V(@) =UDVm) 5 [Tont) =UD)|P-n)  (10d)

Substituting U (t) from equation (10c) into equation (10d) and applying the Jy eigenvalue equations from
(8¢) , (9¢), we express the time evolving spin-up and spin-down JC-spinor state vectors |V, (t)) , [U_n (%))

in the form _ _ _
|\I/+n(t)> — e—i6j+7lte—2igt (an-i-e”eJJr—&-e’eJ,) ‘w+n>

|\Ij—n(t)> _ efigj,ntefm'gt (ado4+e g, 40T ) |¢—n> (106)

Expanding the interaction time evolution operator in even and odd power terms, writing (—i)2* = (=1)* |
(—i)#+1 = —i(—1)* and using the algebraic relations from equations (3a) , (3b) , (4c) giving

(. +e 0T, + 9T )% = (a2J2 4 2Jy)F

(], +e 0T, + 0T )2k = (22 +210)% (], + e T, +€T.) ; k=0,1,2,.. (10f)

we apply the respective qubit state algebraic operations generated by Ji , Jy in equations (8b) , (8¢) , (9b)
, (9¢) and introduce standard trigonometric function expansions to obtain the time evolving spin-up and
spin-down JC-spinor state vectors in equation (10e) in the explicit form

g (1)) = €708 ( (cOS(Ropnt) — i Chn SIN(Roynt) Ythin) — i $4ne” SID(Ropnt)[t0—ps1))

[T_,(t) = e*igj*"t( (cos(R_nt) +i c_psin(R_,t) )t_p) — i s_ne O sin(R_,t)|1h1n_1)) (109)

where we have introduced the respective Rabi oscillation frequencies R4, and interaction parameters c4,, ,
S+4n Obtained as

2ga 2927 d
Ran =2g /Oézjin‘FjSn : cin:% : Sin:w D o= — (10h)
R:tn R:I:n 29

10



where the frequency detuning § = wg — w has been defined in equation (6b). We easily determine orthonor-
malization relations of the general time evolving JC-spinor state vectors in the form

<\Il+n(t)|qj+n(t)> =1 <\1/+n(t)|\1’—n(t)> =0 ; <‘I’—n(t)|\ll+n> =0 ; <\1/—n(t)|\1/—n(t)> =1

P +lu-P=1 5 (E@)L() =1 (104)

Substituting |¥ 1, (t)) from equation (10g) into equation (10d) provides the general time evolving state vector
|¥(t)) of the JC-spinor. We can now use the time evolving state vector |¥(t)) to determine the dynamical
and statistical properties of the JC-spinor, noting that setting u_ = 0 or uy = 0 in equation (10d) gives
separate descriptions of the spin-up or spin-down JC-spinor provided by the respective time evolving state
vectors | U, (1)) , [P_n(2)).

2.3.1 JC-spinor state eigenvectors, energy eigenvalues and frequency-shifts

We determine an important dynamical feature of the JC-spinor by using the trigonometric relations 2 cos(R 4,,t) =
eRant 4 o= Rant  2igin(Ry,t) = eRant — e=Rant {0 reorganize the time evolving spin-up and spin-down
state vectors |¥4,(¢)) in equation (10g) in the equivalent form

Wi () = € FELRLWE ) 4 e~ FEnt| W) (11a)

where we have introduced the respective spin-up and spin-down JC-spinor state eigenvectors and energy
eigenvalues (|V1,.), €1.), (|¥L,) , £L,) obtained in the form

1 ; <.
|\Pin> = 5( (1 + C:I:n)|¢:tn> + Sineile‘w$ni1> ) ) E:Jl:rn = h( 5]:ﬁ:n + 7?':I:n)
_ 1 ; _ -
950) = 5 (A F con)bn) = swne™ opner) ) 5 Exy = h( 3jin = Ren) (110)

These are eigenvectors of the JC-spinor Hamiltonian H satisfying eigenvalue equations
MWL) =€, [9L,) 5 H|TL,) = EL.[P5,) (11¢)

In equation (11b), we express the Rabi frequency R4, defined in equation (10h) in the form

2
Rin = 29ajtnrin ; Agn =41+ > (11d)
% J+n
and substitute 6 = wy + w , 2go = wy — w to reorganize the energy eigenvalues in the final form
gl_n =Njen( Wl — Axpn) Fwo(l + Axpn) ) ; &L, = Bjan( w14+ Asn) +wo(l — Axp) ) (11e)

which reveals that the dynamical evolution of the JC-spinor is characterized by alternate atom and field mode
frequency-shifts towards the blue or red sidebands in the upper or lower energy spectrum. The frequency-shift
is associated with the atom-field excitation correlation energy generated by the excitation number correlation
operator component h(wy — w)a'as, s_ of the JC-spinor Hamiltonian. Since it depends on the atom-field
mode frequency detuning § = wy — w, the excitation number correlation operator vanishes at resonance
w = wy, such that the frequency-shift phenomenon is not observable under resonance conditions.

2.3.2 JC-spinor state population inversion and fluctuations

We determine the JC-spinor state population inversion Z(t) and mean square population inversion Z2(t) as
the mean values of the state population inversion operator .J, and its square J2 in the general time evolving
state |¥(t)) obtained as

Z(t) = (WOILIw@®) 5 22 = (P(O)]J2]¥()) (12a)

Using [P, (t)) from equation (10g), we substitute |¥(¢)) from equation (10d) into equation (1la), expand
as appropriate, then use the J, algebraic relations from equations (8¢) , (9¢) and apply the standard |¢+,) ,

11



|thn+1) orthonormalization relations to obtain the population inversion and mean square population inver-
sion in the final form

20 = [usPZon() + [u-PZon(t) 0 Z2(8) = [us? Z2,(8) + Ju_ | ZZ,.(¢) (12b)

where we have identified the spin-up and spin-down JC-spinor state population inversion Zi,(t) and mean
square population inversion Z%, (t) determined in the respective time evolving states ¥4, (¢)) in the form

Zin(t) = (Uin(O)| L0 (t)) 3 Z3,(t) = (Tan(t)[J2[Tan(t)) (12¢)

Substituting |¥y,(t)) from equation (10g) into equation (12¢), using equations (8¢) , (9¢) and applying the
appropriate orthonormalization relations as explained above, we obtain the spin-up and spin-down JC-spinor
state population inversion and mean square population inversion in the explicit form

Zan(t) = £jan( cos®( Rant) + (¢, — $3,)8i0°(Rant) ) 5 Z24,(H) = 55, (12d)
We obtain the JC-spinor state population inversion fluctuations from the variance according to the definition
(AZ()? = Z2(t) — (Z(t)) (12e)

which on substituting the explicit forms of Z(t) , Z2(t) obtained in equation (12b) and reorganizing as
appropriate using the relation |uy|? + |u_|? = 1 takes the form

(AZ(1)* = [ur P(AZ1n (1) + [u—P(AZ-n()? + |us P lu—*(Z1n(t) — Z-n(t) ) (12f)

where the spin-up and spin-down JC- spinor state population inversion fluctuations (AZ,(t))? are obtained
from the respective variances

(AZ2n(1))? = Z2,(8) = (Zea(t))? (129)

which on substituting the results from equation (12d) take the explicit form
(AZyn(t)? = 3, (1= (cos®(Rant) + (i, — 5%,) sin*(Rupt))? ) (12h)

Substituting the explicit results from equations (12d) , (12h) into equations (12b) , (12f) as appropriate, we
obtain the JC-spinor population inversion Z(t) and population inversion fluctuations (AZ(t))? in the general
time evolving state |¥(t)) in explicit form.

Setting the probability amplitudes vy = u_ = we have plotted the population inversion Z(t) against

1
ﬁv
scaled time 7 = ¢t in Fig.1 , Fig.2 for photon numbers n = 1,16 as specified together with the parameter

values o = %31 , 8 = 0 which we have chosen arbitrarily, noting that § = 0 coincides with the coupling

parameter definitions in the quantum Rabi Hamiltonian in equations (la)-(1d) :

12
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Figure 1: JC-spinor population inversion Z(7) , T=gt: a= 12 ;0=0;n=1
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Figure 2: JC-spinor population inversion Z(7) , T =gt: a= %31 ;0=0; n=16
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In general, the dynamical evolution of the JC-spinor state population inversion in Fig.1 , Fig.2 takes
a regular pattern, rising and falling between peaks, which may be interpreted as quantum collapses and
revivals due to interference effects associated with the competing Rabi oscillation frequencies R4, , R_, in
the spin-up and spin-down components of the dynamical evolution of the spinor. We observe that the pattern
of evolution in Fig.1 , Fig.2 is similar to the evolution of the atomic spin state population inversion or the
field mode photon number obtained in [12 , 13], where the field mode is initially in a thermal or coherent
state, with the atom starting in either spin-up (excited) or spin-down (ground) state.

As in [12, 13], we demonstrate the phenomenon of quantum collapses and revivals in the JC-spinor in a
more pronounced manner by considering a spin-up JC-spinor with the atom initially in spin-up state |4+) and

the field mode initially in a coherent state |8) = e~ 21AI° Yo \F|n> such that the initial state of the spin-
up JC-spinor is |¢4p,) = e~ 3187 > %W)_m). The time evolving state vector of the spin-up JC-spinor

generated by the Hamiltonian # is then obtained in the form |V, (t)) = e 2 3181° > \F\\IlJrn(t)), where

|, (t)) has been determined explicitly in equation (10g). We obtain the spin-up JC-spinor state population
inversion in the final form

Z1pn( —lar? Z & Z+n (124)

where Z,(t) has been evaluated explicitly in equation (12d). We have plotted the population inversion
Z4 3, (T) against scaled time 7 = gt in Fig.3 for the detuned case with parameter o = and Fig.4 for the
resonance case « =0 (§ = 0).

131
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The phenomenon of quantum collapses and revivals is now enhanced in the dynamics starting with the
field mode initially in a coherent state. We notice that the dynamical evolution in the interaction with finite
frequency detuning specified by « # 0 in Fig.3 is characterized by a regular pattern of collapses and revivals
over the time duration, while the pattern of collapses and revivals in the resonance dynamics specified
by a = 0 in Fig.4 is somehow irregular, turning into fractional revivals and then chaotic over long time
durations. We observe that at resonance, the atom-field excitation correlation interaction energy vanishes
and the dynamical evolution under resonance in Fig.4 describes the standard Jaynes-Cummings interaction
commonly characterized by quantum collapses and revivals which develop into fractional revivals and chaotic
behavior over long time periods. On the other hand, the consistent regular pattern of collapses and revivals
in the non-resonant dynamical evolution in Fig.3 may be attributed to the stability maintained through the
atom-field excitation correlation interaction energy in the generalized Jaynes-Cummings interaction in the
JC-spinor.

For direct comparison, we have determined the individual atomic spin state population inversion s, ()
and the field mode photon number n(t) in the general time evolving state |¥(¢)) in equations (10d) , (10g)
in explicit form

s:(1) = JusPsI(8) + Ju—?s2(1) = s2(E) = i%(COSQ(Rint) +(chn — sin)sin®(Rant) ) (13a)

n(t) = |uy [P, (t) + [u_*n_,(t) : Nan(t) =n+ 53, sin?(Rint) (13b)

Comparing equation (13a) with equation (12d) reveals that the JC-spinor and the atomic spin state popu-
lation inversions Z4.,,(t) , sT"(t), take exactly the same form, which on combining the definitions of ji,, in

equations (8b) , (9b), are seen to be directly related according to

. 1 11 L1y 4y
fon =303 E0) ¢ Zeal) = (w51 )50 (13¢)

It follows immediately that the pattern of time evolution of the atomic spin state population inversion
s.(t) is exactly the same as the time evolution of the JC-spinor state population inversion Z(¢) in Fig.1 ,
Fig.2, agreeing with the results obtained in [12] using the atomic spin reduced density operator in a Jaynes-
Cummings interaction.

Setting uy =u_ = % in equation (13b), we obtain the general time evolving field mode photon number

n(t), which we have plotted in Fig.5 , Fig.6 for initial photon number n = 1, 16 with specified parameter value
a = ﬁ The regular pattern of dynamical evolution of the field mode photon number reveals quantum
collapses and revivals, noting that for initial photon number n = 16, Fig.6 agrees precisely with results
obtained in a study of the dynamics of the full quantum Rabi model in [13].

14



PHOT
141

1 f \ ﬂ f \ ‘(\‘ |

/|
121 | r\‘

4 ol
LO‘A\N M‘(H M/‘ iR

of L]

|
o8l | |

]
o7f U ‘/ u U ‘U v U | \d U‘

PHO
1615

1605}
16.00

‘ M
“‘\
i

w i
‘

\
A
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Comparing Fig.1 , Fig.5 reveals that the pattern of evolution of the photon number occurs in reverse
sense relative to the pattern of evolution of the population inversion, demonstrating the expected alternate
photon emission-absorption by the atom and field mode. It is important to note that, in contrast to the
population inversion in Fig. 1 , Fig.2 oscillating between positive and negative values, the photon number
in Fig.5 , Fig.6 evolves only through positive values. We observe that for large values of the parameter «,
the general JC-spinor state population inversion Z(t) turns positive, evolving only through positive values,
while the individual atomic spin state population inversion s, (¢) maintains evolution through positive and
negative values, but with negative values getting asymptotically close to zero. We have not displayed the
large a patterns of evolution here, but the interested reader may easily use the explicit expressions we have
determined here to demonstrate these features in Mathematica or any other time evolution plots.

We determine the effect of the JC-spinor state population inversion fluctuations (AZ(t))? by introducing
the signal-to-noise ratio I'(¢) defined here by

Z*(t)
(AZ(t))?

Using the results obtained in equations (12b) , (12d) , (12f) , (12h), we obtain the signal-to-noise ratio I'(t)
in explicit form, which by setting uy =u_ = \1[, we have plotted against scaled time 7 = gt in Fig.7 , Fig.8

(t) = (13d)

for initial field mode photon numbers n = 1,16 as specified together with the parameter values o = 1_%,,1 ,
0=0.

15



JC— SIGNOISE- SPINORPOPINV
141

[T
o

o
@

\
HU ‘ (

o o
)

o
S

Figure 7 JC spinor population inversion signal-to-noise ratio I'(7) = Z%(7)/(AZ(1))? , T =gt : «a =

Figure 8: JC-spinor population inversion signal-to-noise ratio I'(t) = Z%(1)/(AZ(7))? , T =gt : « =
0=0;n=16

131’

JC— SIGNOISE- SPINORPOPINV

010

it
S

0.08 -

AAA

8

R

3

HA”

131’

The dynamical evolution is characterized by quantum collapses and revivals signaled by rising and falling
peaks with short time oscillatory ripples between the collapses and revivals, clearly evident in the initial single
photon (n = 1) case in Fig.5. Comparing the peaks in Fig.7 , Fig.8 reveals that in the fast oscillating higher
initial photon number n = 16 case in Fig.8, the peak of the signal-to-noise ratio decreases with increasing
initial field mode photon number, meaning that fluctuations increase with increasing initial field mode photon
number.

2.3.3 JC-spinor coherence and coherence fluctuations

The coherence X(t) , Y(t) and mean square coherence X2(t) , Y2(t) of the JC-spinor in the general time
evolving state |¥(¢)) are determined as the mean values and mean square values of the respective coherence
dynamical operators J, , J, in equation (2¢g) according to

X(O) = (PO LIV@) 5 X3t) = (L)
Y ()= (WOIeE) 5 Y2() = (L)) 5]19(1) (14a)

Using |¥1,(t)) from equation (10g), we substitute |¥(¢)) from equation (10d) into equation (14a), expand
as appropriate and use the Jy algebraic relations from equations (8b) , (9b) giving

Tlpen) =\ W) 5 el = 22 )
Tl = £/ B ) 5 Tylepnsn) = iy 22 g (146)

we apply the |[14) , [t)5n+1) orthonormalization relations as appropriate to obtain the coherence and mean
square coherence in equation (14a) in the final form

X () = Ju P X (t) + fuPX () 5 X2(8) = Jus [ X3, (0) + [u|® X2,,(8)

Y (t) = [us PYin(t) + lu PYon(t) 5 Y2(t) = |up | Y2, () + [u_|? Y2, (1) (14c)
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where we have identified the spin-up and spin-down JC-spinor coherence X1, (t) , Yi,(t) and mean square

coherence X3, (t) , Y2, (t) determined in the respective time evolving states ¥4, (t)) in the form
Xan(t) = (Tan (L[ Ten(t) 5 XEn () = (Tan(®)|J7[Pn (1))

Yin(t) = (Vin ()| Ty [Tn(t)) 5 Y2, (8) = (Lan ()] T3 [Vein (8) (14d)
The coherence fluctuations in the state |¥(t)) are obtained as variances according to
(AX(1))?=X2(t) = (X(1)? 5 (AY(1)*=Y2(t) - (Y(1))? (14e)

which on substituting the results from equation (14c¢) and reorganizing as appropriate using the relation
|ui|? + |c_|? = 1 take the form

(AX (1) = [us P(AX 10 (1) + [u-P(AX () + Jus [*lu—*(Xin (t) = X (1))?

(AY())? = Jug (A (1)) + u— [ (AY=0 (6))* + g [ u— [ (Vi () — Yo (1))? (14f)

where (AX 41, (t))?, (AY4,(t))?, are the spin-up and spin-down JC-spinor coherence fluctuations obtained as
the variances

(AX1n(t)® = X3,(8) = (Xen(0)® 5 (AYan(1)? = Y2, (1) — (Y (1)? (149)

We now determine the explicit forms of the spin-up and spin-down JC-spinor coherence and coherence fluc-
tuations. Substituting | ¥4, (t)) from equation (10g) into equation (14d), using equation (14b) and applying
the appropriate orthonormalization relations, we obtain the spin-up and spin-down JC-spinor coherence and
mean square coherence in explicit form

Xan(t) =4/ % Sian ( SInOSin(2R L, t) + ey cosO(1 — cos(2R4nt)) ) ; PEMOES HTH
Yi(t)=F HTn Sian (cosOSin(2R1nt) — capn sinf(1 — cos(2R4nt)) ) ; Y2, (t) = HTH (14h)

which we substitute into (14g) to obtain the spin-up and spin-down JC-spinor coherence fluctuations in
explicit form

(AXn(8))? = 555 (1= s3,( sinbsin(2Roant) + ey cos8(1 — cos(2Rnt)) )* )

(AYin(t))2 = JiTn( 1-— sin( cos 0 8in(2R4pnt) — cap sin (1 — cos(2R 4 t)) )2 ) (144)

Substituting the explicit results from equations (14h) , (144) into equations (14c) , (14f) as appropriate, we
obtain the JC-spinor coherence X (t) , Y (¢) and coherence fluctuations (AX(¢))? , (AY (¢))? in the general
time evolving state |¥(¢)) in explicit form.

Setting the probability amplitudes vy = u_ = %, we have plotted the coherence X(t) , Y (t) against
scaled time 7 = gt in Fig.9 , Fig.10 and Fig.11 , Fig.12, respectively, for photon numbers n = 1, 16 as specified
together with the parameter values o, 6 =0 :
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It is clear in Fig.9-Fig.12 that dynamical evolution of the JC-spinor coherence X (t) , Y () is characterized
by a regular pattern of quantum collapses and revivals similar to the evolution profile, but in reverse order
relative to the population inversion in Fig.1 , Fig.2. An interesting feature which we have not displayed in
a plot is that the z-coherence X (t) vanishes at resonance w = wy (o = 0), while y-coherence Y (t) and the
population inversion Z(t) remain finite.

Coherence fluctuations are useful in determining the quantum nature of a system. For the JC-spinor,
simultaneous measurement of the coherence X (t) , Y(¢) in the general time evolving quantum state |¥(¢)) is
governed by the Heisenberg uncertainty principle, which according to the respective coherence operator J, ,
Jy, commutation relation [J, , J,] = iJ,, takes the final form

(AX ()2 AY (1) = ;221 (14))

where the coherence fluctuations (AX(¢))? , (AY(¢))? and the state population inversion Z(t) have been
determined in explicit form above. Setting uy = u_ = % as appropriate in each case, we demonstrate

the Heisenberg uncertainty principle in a common plot of the uncertainty product (AX(7))?(AY (7))? and

population inversion square iZ 2(7) against scaled time 7 = gt in Fig.13 , Fig.14 for initial field mode photon
numbers n = 1, 16 as specified together with the parameter values a, § =0 :
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Figure 13: JC-spinor Heisenberg uncertainty principle (AX(7))2(AY (7))? > 1Z2%(7) , 1 =gt : a =
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Figure 14: JC-spinor Heisenberg uncertainty principle (AX(7))2(AY (7))? > 1Z%(1) , T =gt : o =

131,0 n =16

We observe that the time evolution of the uncertainty product (AX(7))2(AY (7))? plotted in blue and
the state population inversion square iZz(T) plotted in red each follows a regular pattern characterized
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by quantum collapses and revivals. It is clear in Fig.13 | Fig.14 that over the duration of time evolution,
the corresponding profiles in each pattern essentially fit into each other and the uncertainty product values
(blue) are always larger or equal to the corresponding population inversion square values (red), precisely in
agreement with the Heisenberg uncertainty relation in equation (147). In particular, for initial field mode
photon number n = 1 case in Fig.13, the peaks of the uncertainty product are always higher than the
corresponding peaks of the population inversion square, but the lower values of the uncertainty product
coincide precisely with the upper values on the peaks of the population inversion square, thus accounting
for the equality in equation (14j), while for the higher initial field mode photon number n = 16 case in
Fig.14 where the evolution takes reverse order, the values of the uncertainty product are much larger than
the corresponding values of the population inversion square, meaning that for such large initial field mode
photon numbers, the Heisenberg uncertainty principle is strictly characterized by the inequality in equation
(14j), thus agreeing with the earlier interpretation that fluctuations increase with increasing initial field mode
photon number in the dynamical evolution of the JC-spinor.

Up to this stage, we have provided the algebraic structure and the basic dynamical features of the JC-
spinor. We proceed to complete the development of the spinor interpretation of quasiparticle excitations
generated in the quantum Rabi model of light-matter interactions by introducing the appropriate dynamical
operators to determine the algebraic structure and dynamical features of spinors generated in the gener-
alized antiJaynes-Cummings interaction mechanism where the atom couples to the anticlockwise rotating
component of the quantized field mode, which we refer to as the antiJaynes-Cummings spinors, in short
antiJC-spinors.

3 The antiJaynes-Cummings spinor

In this section, we introduce and study the dynamical properties of a composite atom-field quasiparticle
excitation generated in an antiJaynes-Cummings interaction mechanism where the atom couples to the anti-
clockwise rotating field mode component. According to the form of the basic antiJaynes-Cummings Hamilto-
nian H in equation (1d), the antiJaynes-Cummings interaction mechanism which generates the quasiparticle
excitations is governed by the interaction Hamiltonian component H; = 2hg(as_ + afsy). In the physi-
cal interpretation we are developing in the present work, we identify the quasiparticle excitation generated
in the atom-field antiJaynes-Cummings interaction mechanism as an antiJaynes-Cummings spinor, which
we shall refer to simply as an antiJC-spinor, thereby distinguishing it from the conventional interpretation
of the atom-field quasiparticle excitations as polaritons in standard quantum optics [4-7] or specifically as
antipolaritons in [2 , 3].

It follows from the algebraic form of the antiJaynes-Cummings interaction Hamiltonian H; = 2hg(as_ +
ats;) that the antiJC-spinor may be interpreted as a composite quantized atom-field physical entity char-
acterized by state lowering and raising operators J_ , J4 obtained as products of the basic atom and field
mode state lowering and raising operators (s_ , s.), (@, a') in the form

J- =as_ ; Ty =alsy (15a)

with hermitian coherence dynamical operators %, |, iy defined in terms of J_ , J4 in symmetric and
antisymmetric forms

S.=Te 4T 5 S, =i T -J) (150)

Using the basic atom and field mode operator algebraic relations in equation (2¢), we take normal and
antinormal order products of J_ , J; to obtain

TJoJ- =ala—atas_s, J-Jy=5_54+alas_s, (15¢)

which we add and subtract to obtain diagonal symmetric and antisymmetric dynamical operators I , ¥, in
the form . .
I=0.0-+J-J4 = IT=a'a+s sy

S.=JJ -J.J =  S.=dala—s s, —2alas s, (15d)

where we interpret I as the antiJC-spinor identity operator, which we identify as the antipolariton excitation

number operator N (I = N — 1) defined earlier in equation (1f).
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We introduce basic operators Jy , J» , Jy , J. consistent with the definitions of the antiJC-spinor state
lowering and raising operators J_ , J+ in the form

~l>
N[E
b
52

N |

Y 5 J. =

N | =

T ; jy:

N |
N |

which on using equations (15b) , (15d) take suitable forms

1 1
Jo = §(j+j— + j—j+) i T = §(j+j— - j—j+) = LJI-=0+T.; JI-TJr=T—-T:

;
—5(«7+—«7—) (15f)
where in defining Jy , J., we take note of the explicit forms in equation (15d).

Using standard algebraic property of atomic spin state lowering and raising operators s_ , sy given in
equations (3a) , (5a), we obtain the corresponding algebraic property of the antiJC-spinor state lowering and
raising operators J_ , J4+ in the form

1
Tz = §(J++J_) i Iy =

JP=0 ; Ji=0 (16a)

which we apply to determine the following algebraic relations for the quadratic operators J2 , Jy2 , J2 with
respect to Jp using the definitions in equation (15f) in the form

1 1
Ji=5h i Ti=5h i T=T (16b)
We introduce the antiJC-spinor Casimir operator J2 defined in standard form by

T =T+ T +7T? (16c)

which on substituting 7, , J, , Jo from equation (15f) or using the quadratic operator algebraic relations
obtained in equation (16b) takes the form

1
J? = 5(\7+J7+L7ﬂ7+)+\75=\70+k73 = J*=T(Jo+1) (16d)
The definition of J, in equation (15f) easily provides an important algebraic relation

[Ty, T-1=2T. (17a)

Here again, we observe that this commutation bracket relation of the state lowering and raising operators
J+, compared to the corresponding atomic spin commutation bracket [si , s_] = 2s, where s, is the atomic
spin state population inversion operator, leads us to interpret the dynamical operator J, defined explicitly
by equations (15d) , (15¢) as the antiJC-spinor state population inversion operator, which will be established
through its algebraic operations on coupled qubit state vectors in subsection 3.2 below.

Using the definitions of Jy , J. , J» , Jy » J° in equations (15f) , (16d), we apply the algebraic property
of J_ , J4 in equation (16a) to obtain the following closed algebraic relations, including equation (17a):

(Jo, T-1=0 5 [Jo, Ts)=0 5 [Jo, T)=0 5 [Jo, Tyl=0 ;5 [T, T]=0 (17b)
{jz7 jﬁ}:O 5 {jz 5 j+}:O ) {jz 5 jx}:() ; {jza jy}:O 3 {\-7:6 ) jy}:() (176)

[j27\7—]20; [j27\7+]20; [j27«70]; [‘72,‘73;}20, [jZ,jy]:O, [jZajZ]:O (17d)

T, J)=27.  |L.Jl=01 ; [%..,J])=-J1

where I = 27, in equation (17¢) is the antiJC-spinor identity (or conserved excitation number) operator,
which commutes with J4 , J, , J,. Here again, we note that the evaluation of equations (17b)-(17d) using
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equation (16a) is straightforward, while equation (17e) includes a step applying equation (15f) according
to the procedure presented in the JC-spinor case in equation (4f). The results in equation (17d) establish
the standard algebraic property of a Casimir operator commuting with all the operators which generate the
closed algebra of a symmetry group. The full set of closed algebraic relations in equations (16a)-(16d) ,
(17a)-(17e) constitute a closed generalized SU(2) Lie algebra and the associated anticommutation relations
of a spinor characterized by dynamical operators Jo , J. , Jx , Ju , Jy and a Casimir operator [J2, precisely
similar to the closed SU(2) Lie algebra and the associated anticommutation relations generated by the basic
spin operators of a two-state atomic spin or spin—% particle presented in equations (5a)-(5d). We identify this
spinor as the antiJC-spinor, which arises as an atom-field quasiparticle excitation in an antiJaynes-Cummings
interaction mechanism. The antiJC-spinor dynamical operators are interpreted as generators of a generalized
SU(2) Lie algebra.

3.1 The antiJC-spinor Hamiltonian

To determine the algebraic form of the antiJC-spinor Hamiltonian, we consider that the conserved excitation
number operator is defined in symmetrized form in terms of normal and antinormal order products of the
lowering and raising operators J_ , J, which constitute the identity and state population inversion operators
Jo , J- according to equations (15¢)-(15f). It follows from equation (15¢) that in the atom-field antiJaynes-
Cummings interaction mechanism which forms an antiJC-spinor, the normal order form J,J_ = afa —
atas_s, provides the effective field mode excitation number operator, while the antinormal order form
J_Jy = s_s,. + atas_s, provides the effective atomic spin excitation number operator, each modified by
the atom-field excitation number correlation operator Fa'as_s, arising from the atom-field mode coupling
as appropriate. Noting the relation s_s; = sg — s, the effective free evolution Hamiltonian of an antiJC-
spinor is then obtained as the difference of the effective field mode component Aw 7 J- and the atomic spin
component hwyJ_J4+ in the form Aw T J- — hwoJ—J4, while the interaction Hamiltonian is obtained in the

general form as a linear combination of the coherence components in the form Uy Xg + ayiy. We therefore
define the antiJC-spinor Hamiltonian # in terms of the dynamical operators in the general form

H = hwds T — lwod-Ts + (@S, +a,5,) (18a)

where w , wy are the field mode and atom angular frequencies for the free evolution energy of composite
atom-field system, while @, , @, are real physical parameters defining the atom-field interaction which forms
the antiJC—spinm:. R

Substituting ¥, = J.+J- , ¥, = —i(J+ —J-) from equation (15b) into equation (18a) and symmetrizing
the first two terms according to 2(aA — bB) = (a + b)(A — B) 4+ (a — b)(A + B) then substituting J , J. as
defined in equations (15d) , (15f) provides the antiJC-spinor Hamiltonian in the form

H=—h6Jo+hoT. +2hgle T, +e7) | d=w—-w ; d=wotuw (18b)

where we have introduced blue and red sideband frequency detunings § = wo+w , § = wo—w as defined earkier
in equation (6b) and we have redefined interaction parameters to coincide with the parameter definitions in
the antiJaynes-Cummings Hamiltonian H in equation (1d) for ease of comparison in the form

v - a.
Gy Fiay = |a, F iﬁﬂeyo ; [a, Fia,| = 2¢ ; tanf = -2 (18¢)
ay
It follows from the commutation relations in equations (17b) , (17d) that the operators Jy , J? commute

with the Hamiltonian H according to
[(Jo, H]=0 ; [J*, H]=0 (18d)

meaning that Jy , J2 are conserved dynamical operators of the antiJC-spinor. These operators can be used
to determine the entangled state vectors which specify the quantum state space of the antiJC-spinor. In
particular, the emergence of the Casimir operator 72 and the state population inversion operator 7, deter-
mined algebraically and defined in equations (15¢)-(15f), now provides a standard approach for determining
antiJC-spinor state eigenvectors and eigenvalues through the SU(2) Lie algebra.
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3.1.1 Generalized antiJaynes-Cummings model : atom-field excitation correlation energy

We now determine the physical nature of the dynamics generated by the antiJC-spinor Hamiltonian #.
Substituting J,J- , J-J4+ from equation (15¢) into equation (18a), setting @, = 0, @, = 2¢ and introducing
the definition of J¢ from equation (15a), we obtain the Hamiltonian in the form

ay =0 ; ay,=2g : H=hw(ata—atas_si) — hwo(s_sy +a'as_sy )+ 2hg(as_ +a's,)  (19a)

which on introducing the relations afa = aat — 1, —s_s, = s, —
is easily reorganized in the form

% in the free field and atom components

_ 1
H = hwaa' + hwos. + 2hg(as_ +alsy) — §hw0 — hw — h(wo +w)alas_s,

= H=H-—h(wy+w)alas_s, (190)

where H is the standard antiJaynes-Cummings Hamiltonian in equation (1d). It is clear in equation (19b)
that the antiJC-spinor Hamiltonian 7 is a generalization of the basic antiJaynes-Cummings Hamiltonian to
include an atom-field excitation number correlation operator component —h(wo+w)aas_s, , which generates
an atom-field excitation correlation energy. Notice that in the antiJC-spinor case, the atom-field excitation
correlation energy depends on the blue-sideband detuning frequency 6 = wg + w which does not vanish at
the familiar resonance frequency w = wy, in contrast to the JC-spinor case where the atom-field excitation
correlation energy depends on the red-sideband detuning frequency é = wy — w and therefore vanishes under
resonance conditions as explained earlier. We establish below that the general dynamics generated by the
antiJC-spinor Hamiltonian H, which we now identify as a generalized antiJaynes-Cummings Hamiltonian, is
characterized by alternate field and atom blue or red frequency-shifts associated with the excitation number
correlation energy.

Here again, we emphasize that the atom-field excitation number correlation operator component —7(wq +
w)a'as_s, which extends the basic antiJaynes-Cummings Hamiltonian H to the generalized form H of the
antiJC-spinor in equation (19b) is not externally introduced, but arises naturally from the algebraic property
of normal and antinormal operator ordering of the products of the antiJC-spinor state lowering and raising
operators J_ , Jy taken in equation (15¢) to define the identity and state population inversion operators Joy
, J. according to equations (15d)-(15f). We re-emphasize the interpretation that the atom-field excitation
number correlation operator, which modifies the atom and field mode excitation number operators according
to equation (15¢), is an intrinsic dynamical property of the algebraic structure of the atom-field interaction
mechanism, which does not directly manifest itself externally, thus generally missing in standard atom-field
interaction models as explained earlier.

3.2 The antiJC-spinor quantum state space

Having determined all the dynamical operators, including the Casimir operator and Hamiltonian, we now
complete the characterization of the internal structure of the antiJC-spinor by determining the state vectors
and energy spectrum which specify the quantum state space of the system. As we explained earlier in
section 1, here again we achieve clarity by developing the spin-up and spin-down antiJC-spinor quantum
state spaces separately in subsections 3.2.1 and 3.2.2 below. We present the basic algebraic operations of
the antiJC-spinor dynamical operators on the initial n-photon spin-up and spin-down state vectors |14,,),
which generate the respective coupled qubit state vectors, state eigenvectors and eigenvalues. The spin-up
and spin-down antiJC-spinor state energy eigenvalues determined explicitly reveal alternate atom and field
mode blue or red frequency-shifts in the upper or lower spectrum.

3.2.1 Spin-up antiJC-spinor

The initial state vector of the spin-up antiJC-spinor is the n-photon spin-up state vector |¢,) defined in
equation (1h). Applying the antiJC-spinor state lowering and raising operators J defined in equation (15a)
on the initial state vector |¢4,) in equation (1h), using equation (le) and introducing the corresponding
transition state vector |)_,_1) to define the coupled pair of initial spin-up antiJC-spinor qubit state vectors
in the form

[pin) =1+mn) 5 [na)=[-n-1) (20a)
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we obtain the coupled initial qubit state algebraic operations

j—|w+n> = 2j—n|w—n—1> 5 j+|’¢)—n—1> =V 2j—n|'¢)+n> 5 «7+|'(/)+n> =0 ; j—‘¢—n—1> =0

j,n::g C n=0,1,2,3, .. (200)

where we have introduced the spin-up antiJC-spinor quantum number j_,,, which according to the definition
given earlier in equation (9b), coincides with the spin-down JC-spinor quantum number.

The dynamical operators Jy , J. and the Casimir operator J?2 from equations (15f) , (16d) generate
eigenvalue equations on |¢),) , [)_,—1) in the form

jOW}Jrn> = jfn|¢+n> ; '.70|w7n71> = jfn|wfn71>
jz|w+n> - ]7n|/(/)+n> ) jz|w7n71> - _j7n|w7n71>
j2|¢+n> = jfn(jfn + 1)|¢+n> ) J2|"/}7n71> = jfn(jfn + 1)|¢7n71> (206)

The physical interpretation of 7, as the antiJC-spinor state population inversion operator is clearly demon-
strated in the eigenvalue equations it generates on the coupled initial qubit state vectors |¢in) , |¥—n—1)
in equation (20¢), with corresponding upper or lower eigenvalues +j_,, such that we may interpret |¢).,)
as the upper and |[¢_,,_1) as the lower initial qubit states of the spin-up antiJC-spinor. Here again, we
note that the eigenvalue equations generated by the antiJC-spinor Casimir operator J2 take precisely the
form of the standard quantum mechanical total angular momentum Casimir operator eigenvalue equations
with quantum number j_,, taking both integer and half-integer values according to the definition in equation
(200).

3.2.2 Spin-down antiJC-spinor

The initial state vector of the spin-down antiJC-spinor is the n-photon spin-down state vector |¢_,,) defined
in equation (1h). Applying the antiJC-spinor state lowering and raising operators Jy defined in equation
(15a) on the initial state vector [1)_,,) in equation (1h), using equation (le) and introducing the corresponding
transition state vector [¢4,+1) to define the coupled pair of initial spin-down antiJC-spinor qubit state vectors
in the form

oy =l=m) 5 arn) = [+ 0+ 1) (21a)

we obtain the coupled initial qubit state algebraic operations

Tilb—n) = V2Jinlint1) 5 T-|[Vins1) = V2iml¥—n) 5 T-|¥n)=0 ;5 Ti|¥ing1)=0

1
p%:(”;) . n=0,1,2,3,.. (21b)

where we have introduced the spin-down antiJC-spinor quantum number j4,, which according to the defini-
tion given earlier in equation (8b), coincides with the spin-up JC-spinor quantum number.

The dynamical operators Jy , J, and the Casimir operator J? from equations (15f) , (16d) generate
eigenvalue equations on |[¢)_,) , [ 4n+1) in the form

Jol—n) = Jinlth—n) ; JolVint1) = Jenl¥int1)
T\V—n) = —Jinl¥—n) ; T \Vsnt1) = Jonl¥int1)
‘-72|1/)7n> = jJrn(jJrn + 1)|1/)7n> ) j2|wfn+1> = jJrn(jJrn + 1)|¢+n+1> (210)

Here again, the physical interpretation of J, as the antiJC-spinor state population inversion operator is
clearly demonstrated in the eigenvalue equations it generates on the coupled initial qubit state vectors
[¥—n) , |¥4nt1) in equation (21c), with corresponding lower or upper eigenvalues Fj,, such that we may
interpret |¢_,,) as the lower and |14,4+1) as the upper initial qubit states of the spin-down antiJC-spinor.
The eigenvalue equations generated by the antiJC-spinor Casimir operator 72 take precisely the form of the
standard quantum mechanical total angular momentum Casimir operator eigenvalue equations with quantum
number j4,, taking both integer and half-integer values according to the definition in equation (21b).

The basic qubit state vectors and algebraic operations in equations (20a)-(20c¢), (21a)-(21c¢), together with
the algebraic properties in equations (16a)-(16d) , (17a)-(17¢e), can be used to determine all the dynamical
properties of the antiJC-spinor, which we now present in subsection 3.3 below.
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3.3 Dynamical evolution of the antiJC-spinor

We now determine the internal dynamics of the antiJC-spinor generated by the Hamiltonian 7 in equation
(18a), reorganized in the appropriate form in equation (18b). It is evident in subsections 3.2.1 , 3.2.2 that the
complete quantum state space generated by the antiJC-spinor Hamiltonian H is composed of two orthogonal
and independent quantum spaces, depending on the initial spin-up or spin-down state of the atom, namely,
the spin-up antiJC-spinor quantum state space specified by the coupled pair of initial qubit state vectors
(|14n) , |¥—n—1)) and the spin-down antiJC-spinor quantum state space specified by the coupled pair of
initial qubit state vectors (|t)_n) , |tb4n+t1)), which are orthogonal according to the relations

Wgnlv—n) =0 5 (Win|bgns1) =0 3 Wopnoalv—n) =0 5 (W—n_1|t4ns1) =0 (22a)

Hence, instead of studying the internal dynamics of spin-up and spin-down antiJC-spinors separately, we find
it more effective to consider the basic antiJC-spinor formed in initial superposition state |1) of the n-photon
spin-up and spin-down states [1)1,) , [¥)—,) as defined in equation (17).

Dynamical evolution of the antiJC-spinor described by the general time evolving state vector [¥(t)) is
governed by time evolution operator U(t) generated by the Hamiltonian H through the time-dependent
Schroedinger equation as presented in equation (10b), but now substituting |¥(¢)) , H for the antiJC-spinor.
Here again, we note that the interaction parameters @, , @, which characterize the Hamiltonian in equation
(18a) may be time-dependent or time-independent, but we choose the time-independent case and consider
the Hamiltonian # to be time-independent, postponing the time-dependent form for specified cases.

For time-independent Hamiltonian #H in equation (18b), the general time evolving state vector | W(t)) of
the antiJC-spinor initially in the superposition state |¢) is easily obtained through a simple integration of
the time-dependent Schroedinger equation in the form

@) =U®) ) ;  UEt)=e w7 N U(t) = e~ 29t GT+e 0T +e ) LibtTo (22b)

where we have applied the commutation property [ Jo , @J. +e 7, + e J_ ] = 0 to factorize the time
evolution operator U(t) in appropriate form for ease of evaluation. Substituting the initial state vector |1))
from equation (1j) into equation (22b) provides | ¥(t)) as a superposition of the time evolving spin-up and
spin-down antiJC-spinor state vectors | Wy, (t)) , | W_,(t)), respectively, in the form

| U(@) = us| Cyn(®) +u| Ton(®) 5 [ Wgn(®) =UOPn) 5 | V() =UB-n) (220)

Substituting U(t) from equation (22b) into equation (22c¢) and applying the J, eigenvalue equations from
(20¢) , (21¢), we express the time evolving spin-up and spin-down antiJC-spinor state vectors | W, (1)) ,
| U_,(¢)) in the form

_ e Y — —if i6
| \If+n(t)> — i0j-nto—2igt (@Tz+e™ " Tp+e"T-) |¢+n>

| T (1)) = ientemiot @It 0Tere00) ) (224)

Expanding the interaction time evolution operator in even and odd power terms, writing (—i)2* = (=1)* |
(—i)#+1 = —i(—1)* and using the algebraic relations from equations (16a) , (16b) , (17¢) giving

@J. +e 0T, + P 7 = @ T2+ 27)F

@T. + e P T + T )M = (@2 +270)" @T. +e P Ty +ePT) 5 k=0,1,2,.. (22¢)

we apply the respective qubit state algebraic operations generated by Jy , Jo in equations (20b) , (20c) ,
(21b) , (21¢) and introduce standard trigonometric function expansions to obtain the time evolving spin-up
and spin-down antiJC-spinor state vectors in equation (22d) in the explicit form

[T (t)) = e 0 (cos( Ripnt) — i Tonsin Rint) Mtosn) — i 5one? sin( Ront)[ti—n1))

W_n(t)) = e_i(_6j+"')t< (cos( Rnt) + i Cynsin( Ropt) th—n) —i §+n6_19 sin( R—pt)[¢4n+1)) (22f)

where we have introduced the respective Rabi oscillation frequencies R4, and interaction parameters ¢4, ,
S+, obtained as

= Yy : _ 29ajn _ 29\ 255n )
Rin =291/ 0252, + 2j+n ; Cin = —"" + G, =22 g=_— 22
+ g\/ @35, + 2jF + . + R, 5 (229)
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where the frequency detuning § = wy + w has been defined in equation (6b). We easily determine orthonor-
malization relations of the general time evolving antiJC-spinor state vectors in the form

CoanOTin) =1 5 (T[T =0 5 (TuOTn) =0 ; (T, (O)T_,) =1

Pl P=1 5 (BO[TE) =1 (221)

Substituting | Wi, (¢)) from equation (22f) into equation (22c¢) provides the general time evolving state
vector | W(t)) of the antiJC-spinor. We can now use the time evolving state vector | ¥(t)) to determine the
dynamical and statistical properties of the antiJC-spinor, noting that setting u_ = 0 or uy = 0 in equation
(22¢) gives separate descriptions of the spin-up or spin-down antiJC-spinor provided by the respective time
evolving state vectors | W, (¢)) , | U_,(t)).

3.3.1 AntiJC-spinor state eigenvectors, energy eigenvalues and frequency-shifts

We determine the state eigenvectors and energy eigenvalues which characterize the dynamical structure of
the antiJC-spinor by using the trigonometric relations 2 cos( Rant) = ! Rent 4 ¢=i Rent | 9jgin( Rypnt) =
el Rent _ o—i ﬁi"t, to reorganize the time evolving spin-up and spin-down state vectors | ¥, (¢)) in equation
(22f) in the equivalent form

— iF t, — PP — g — —
| U () = e #Een?| WY 4 e #8en?| W) (23a)

where we have introduced the respective spin-up and spin-down antiJC-spinor state eigenvectors and energy
eigenvalues (| U4, £.), (| ¥s,,) , €,) obtained in the form

=+ _ _ i =+ . =
| ‘Ilin> = ( (1 + Cin)win> + sinei 9|¢=Fn:!:1> ) ; Eip = h(_(sjq:n + Rin)

( (1 $6in)‘win> - gineii §|w:Fn:F1> ) ; gin = h(_(s-j:‘:” - ﬁin) (23b)

N~ N

| U.,) =
These are eigenvectors of the antiJC-spinor Hamiltonian # satisfying eigenvalue equations
=5 =+ =+, =+ a7 T — T
H| ‘Ilin> = gin| \I/in> ; H| \Ilin> = gin| qjin> (230)
In equation (23b), we express the Rabi frequency R, defined in equation (22g) in the form

2

ﬁ:I:n = 2gaj$nX:tn ; X:I:n =4/1+ - (23d)
A" Jxn
and substitute 6 = wg — w , 2g& = wy + w to reorganize the energy eigenvalues in the final form
=+ ) BN 5N == ) T T
Epn = Njzn( Wl +Asn) —wo(l=Axn) ) 5 i =Tjza(w(l = Azn) —wo(1+Axn) ) (23€)

which reveals that the dynamical evolution of the antiJC-spinor is characterized by alternate atom and
field mode frequency-shifts towards the blue or red sidebands in the upper or lower energy spectrum. The
frequency-shift is associated with the atom-field excitation correlation energy generated by the excitation
number correlation operator component —h(wy + w)afas_s, of the antiJC-spinor Hamiltonian. Since it
depends on the atom-field mode frequency detuning 6 = wp +w, the atom-field excitation number correlation
operator in the antiJC-spinor never vanishes and the associated frequency-shift phenomenon demonstrated
in the energy spectrum in equation (23e) is always observable even under resonance conditions w = wy, in

contrast to the JC-spinor case where the frequency-shift vanishes at resonance.

3.3.2 AntiJC-spinor state population inversion and fluctuations

We determine the antiJC-spinor state population inversion Z(t) and mean square population inversion ?(t)
as the mean values of the state population inversion operator J, and its square J2 in the general time
evolving state |¥(t)) obtained as

Z(t) = (POILIeE) 5 Z2(t) = (LT[ () (24a)
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Using [V, (¢)) from equation (22f), we substitute |¥(¢)) from equation (22c) into equation (24a), expand
as appropriate, then use the J, algebraic relations from equations (20c¢) , (21c¢) and apply the standard
|¥4n) , [gnz1) orthonormalization relations to obtain the population inversion and mean square population
inversion in the final form

Z(t) = lur PZen(t) +lu-PZon(t) 5 Z2(8) = |usl® 23,00 + lu—|? 22,,(1) (240)

where we have identified the spin-up and spin-down antiJC-spinor state population inversion Z.,(t) and

mean square population inversion 2%, (¢) determined in the respective time evolving states |, (¢)) in the
form

Zen(t) = (T TTen(t) 5 22,00 = (Tan (O] T2 Taa(t)) (24¢)

Substituting |¥ i, (t)) from equation (22f) into equation (24c), using equations (20c) , (21c) and applying the
appropriate orthonormalization relations as explained above, we obtain the spin-up and spin-down antiJC-
spinor state population inversion and mean square population inversion in the explicit form

Zin(t) = jn( cos?( Rant) + (Ein — §2in) sin?(Rant) ) : Z2.,(t) = jin (24d)

We obtain the antiJC-spinor state population inversion fluctuations from the variance according to the

definition o
(AZ(1)* = 22(t) — (2(1))? (24e)

which on substituting the explicit forms of Z(t) , Z2(t) obtained in equation (24b) and reorganizing as
appropriate using the relation |uy|? + |u_|? = 1 takes the form

(AZ(t)* = Ju P(AZ4n())? + [u-P(AZ_0 (1)) + lug Pu—[*(Z40(t) = Z-n(t) )? (247)

where the spin-up and spin-down antiJC-spinor state population inversion fluctuations (AZ4,(t))? are ob-
tained from the respective variances

(AZ4n(1)? = 23, (1) — (Z4a(1))? (249)
which we substitute the results from equation (24d) to determine in explicit form
(AZ4,(1)* = j2, (1= (cos*(Rant) + (¢4, — 52,,) sin*(Rant))?) (24h)

Substituting the explicit results from equations (24d) , (24h) into equations (24b) , (24f) as appropriate
provides the antiJC-spinor population inversion Z(t) and population inversion fluctuations (AZ(¢))? in the
general time evolving state |¥(¢)) in explicit form.

We defer the time evolution plots of the antiJC-spinor population inversion and population inversion fluc-
tuations briefly to consider them together with the plots of coherence and coherence fluctuations determined
in the next subsection as we relate them to the corresponding plots of the JC-spinor dynamical evolution
below.

3.3.3 The antiJC-spinor coherence and coherence fluctuations

The coherence X (t) , Y(t) and mean square coherence X2(t) , V2(t) of the antiJC-spinor in the general time
evolving state |U(t)) are determined as the mean values and mean square values of the respective coherence
dynamical operators J , Jy in equation (15f) according to

X(t) = (U TT@) 5 %) = (P)|ITZ[E)

V(&)= (TOITT0) 5 YA = (T () (25a)

Using [V, (¢)) from equation (22f), we substitute [¥(¢)) from equation (22¢) into equation (25a), expand
as appropriate and use the Jy algebraic relations from equations (20b) , (21b) giving

Jz|w:|:n> = \) ]:FTTL |¢:Fn:|:1> s jz|w:|:n:|:1> = ]:FTn |¢:|:n>

\7y|¢:tn> = il\l th |1/}$n11> ; t7y|w$n¥1> = :FZ hTH |1z[}:i:n> (25b)
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we apply the |14) , [th5n41) orthonormalization relations as appropriate to obtain the coherence and mean
square coherence in equation (25a) in the final form

X(t) = [usPXn () + lu—PA_a() 5 A2() = Jus P A2, () + [u—|* X2,(1)

V() = [ug PVin(t) + [uPYn(t) 5 V2() = [ug | V3,() + [u_|* V2,,(t) (25¢)
where we have identified the spin-up and spin-down antiJC-spinor coherence Xy, (t) , Vi, (t) and mean
square coherence X7, (t) , V3, (t) determined in the respective time evolving states |, (¢)) in the form

Xen(t) = (Va1 Te[Tan(®) 5 A2, () = (Tan (DT [Vt (8)
Vin(t) = (| T [ Tan () 5 V2,(8) = (T ()T V(D)) (25d)
The coherence fluctuations in the state |[¥(¢)) are obtained as variances according to
(AX(1))? = X2(t) — (X(1)* 5 (AY(H))* =I2(t) - V(1)) (25¢)

which on substituting the results from equation (25¢) and reorganizing as appropriate using the relation
|ui|? + |c_|? = 1 take the form

(AX(1)? = Jug (A (8)” + [u— P(AX_ () + [y [ u— [* (Xin (t) — X (1))?

(AY(1)* = [us P(AYV4n () + [u—[H(AV-n(1)* + lur [*lu—* Vin(t) — Y=u(1))? (251)

where (AX4,,(t))?, (A1, (t))?, are the spin-up and spin-down antiJC-spinor coherence fluctuations obtained
as the variances

(AXpn(t)® = X2, () = (Xen(t)® 5 (AVsa(1))? = V3, (1) — (Vea(1)? (259)

We now determine the explicit forms of the spin-up and spin-down antiJC-spinor coherence and coherence
fluctuations. Substituting [¥4,(¢)) from equation (22f) into equation (25d), using equation (25b) and ap-
plying the appropriate orthonormalization relations, we obtain the spin-up and spin-down antiJC-spinor
coherence and mean square coherence in explicit form

Xin(t) = %4/ ‘7? Sin (SinOSin(2R4nt) 4 Ty cosO(1 — cos(2R4t))) ; X2,(t) = j;”
Vin(t) = Fy 228 5 (cosBsin(@Rosnt) — o sind(1 — cos@Rant)) VI, (1) =55 (25h)

which we substitute into equation (25¢) to obtain the explicit form

(AXiy,(1)? = Jxn (1 —3%,,(sin@sin(2R 4nt) + Cp cos O(1 — cos(2R4nt)))?)

(AVin (1) = % (1 — 3%, (cosOSin(2R 1 pt) — €y sinO(1 — cos(2R 4,t)))?) (251)

Substituting the explicit results from equations (25h) , (25¢) into equations (25¢) , (26f) as appropriate
provides the antiJC-spinor coherence X (t) , Y(t) and coherence fluctuations (AX(t))? , (AY(t))? in the
general time evolving state |¥(t)) in explicit form.

Comparing the spin-up antiJC-spinor state algebraic operations in equations (20a)-(20c) with the corre-
sponding spin-up JC-spinor state algebraic operations in equations (8a)-(8¢) and similarly, comparing the
state algebraic operations for the spin-down antiJC-spinor in equations (21a)-(21c) and the corresponding
spin-down JC-spinor in equations (9a)-(9¢), reveals an important physical property that the dynamical evo-
lution of the antiJC-spinor and the JC-spinor are similar, but occur in reverse order. The similarity of
dynamical evolution is evident in the explicit forms of the respective population inversion and coherence in
equations ((12d) , (14h)) and ((24d) , (25h)), but the reverse order dynamical evolution is easily understood
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according to the physical property already explained earlier that the JC-spinor is formed in the coupling of
the atom to the clockwise-rotating component of the field mode in a Jaynes-Cummings interaction mecha-
nism, while the antiJC-spinor is formed in the coupling of the atom to the anticlockwise-rotating component
of the field mode in an antiJaynes-Cummings interaction mechanism. We demonstrate the reverse order
dynamical evolution by plots of the respective population inversion and coherence against scaled time 7 = gt
for initial field mode photon number n = 1 as specified together with the parameter values @ = o + % ,
5 31 , g =0.16 , § = 6 = 0 in Fig.15 , Fig.16 below, noting that we set u;, = u_ = % in determining

the explicit forms for the plots.
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Figure 15: AntiJC-JC-spinor population inversion plots Z(7)—blue ; Z(1)—red, T =gt: @@= oz—!—% , 0=
a7 2=016;0=0=0;n=1
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Figure 16: AntiJC-JC-spinor coherence plots X (1) — blue ; X(7) —red , 7 =gt : @ = a+
= ©=016;0=0=0;n=1

In Fig.15, we compare the antiJC-spinor population inversion Z(7) from equations (24b) , (24d) (blue
plot) with the corresponding JC-spinor population inversion Z(7) from equations (12b) , (12d) (red plot),
while in Fig.16, we compare the antiJC-spinor coherence X'(7) from equations (25¢) , (25h) (blue plot) with
the corresponding JC-spinor population inversion X (7) from equations (14c) , (14h) (red plot). It is clear
that the blue (antiJC-spinor) and red (JC-spinor) plots evolve in reverse order, but corresponding points on
the evolution profiles are slightly displaced from each other due to the fact that, in addition to the flipped
quantum numbers ji, — jgn, the JC-spinor Rabi oscillation frequency R4, defined in equation (10h) is
characterized by the red-sideband (difference) frequency detuning § = wy — w, while the antiJC-spinor Rabi
oscillation frequency R.,, defined in equation (22g) is characterized by the blue-sideband (sum) frequency
detuning § = wy + w so that the respective Rabi oscillations do not match.

The reverse order dynamical evolution is also evident in the state eigenvector form of the JC-spinor and
antiJC-spinor time evolving state vectors W, (t)) , | ¥4, (¢)) in equations (11a) , (23a), respectively, where
the field mode and atom frequency-shifts towards the red or blue in the upper or lower energy spectrum in
the JC-spinor in equation (11e) occur in reverse order (blue or red) in the corresponding energy spectrum in
the antiJC-spinor in equation (23e).

4 Conclusion

Let us now recapture and summarize the basic algebraic and dynamical properties of the quasiparticle ex-
citations in light-matter interactions which we have developed here in the wider framework of the quantum
Rabi model, composed of Jaynes-Cummings and antiJaynes-Cummings interaction mechanisms. We have es-
tablished that a quasiparticle excitation formed in a generalized Jaynes-Cummings or antiJaynes-Cummings
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interaction mechanism is a composite atom-field spinor, best referred to as a quasiparticle spinor, character-
ized by a closed generalized SU(2) Lie algebra and the associated fermion anticommutation relations. To be
specific, we have identified the quasiparticle spinor formed in the generalized Jaynes-Cummings or antiJaynes-
Cummings interaction mechanism as a JC-spinor or an antiJC-spinor, respectively. The quasiparticle spinor
state annihilation and creation operators (J_ =afs_ |, J. =s,a) or (J- =as_ , Jy = sy al) are obtained
as normal or antinormal order products of the atomic spin and field mode state annihilation and creation
operators (s_ , s;), (&, a') in standard notation. Algebraic relations, namely, sum , difference, anticom-
mutation brackets and commutation brackets, of the quasiparticle spinor annihilation and creation operators
provide the respective coherence, identity, population inversion and Casimir operators which generate the
closed generalized SU(2) Lie algebra and satisfy the associated fermion anticommutation relations of the
quasiparticle spinor. It follows from the respective JC-spinor and antiJC-spinor state algebraic operations
in equations ((8a)-(8¢)) , ((9a)-(9¢)) and ((20a)-(20¢c)) , ((21a)-(21c)) that a quasiparticle spinor may be
treated as a generalized two-state spin—% particle characterized by an infinite spectrum of integer and half-
integer quantum numbers ji, = %(n + % + %) and an infinite spectrum of coupled photon-carrying spin-up
and spin-down qubit state vectors (|t)+n) , |Ygn+1) oF (|¥4n) , |¥5ny1) specified by atomic spin-up and
spin-down state signatures + or F and field mode photon numbers n = 0,1, 2,3, ..., 00. The interpretation of
the quasiparticle spinor as a generalized two-state spin—% particle is best demonstrated by the coupled qubit
state eigenvalue equations ((8¢) , (9¢)) and ((20c) , (21c)) where we notice that the respective eigenvalues

Jin=(n+3+ 1)L +ji, ==+(n+ 5+ 1)L of the spinor identity and state population inversion operators

(Jo, J.) or (Jo, J.) are multiples of the eigenvalue % of the corresponding spin-% particle identity and
state population inversion operators (sg , s,) generated on the coupled spin qubit states (|4) , |—)), while
the eigenvalue ji,(j+n + 1) of the spinor Casimir operator J2 = Jo(Jo + 1) or J2 = Jo(Jo + 1) generalizes
the eigenvalue 3( + 1) of the corresponding spin-1 particle Casimir operator s = so(so + 1) by the multi-
plicity factor (n + % + %) determined by the field mode photon numbers n = 0, 1,2, 3, ...,00. The algebraic
operations by the spinor annihilation, creation and population inversion operators (J+ , J.) or (J+ , J.)
in equations ((8b , 8¢) , (9, 9¢)) and ((200 , 20c) , (21b , 21c¢)) specify the quasiparticle spinor qubit states
(I0en) » |Ygnt1) or (|4n) , |¥Ens1) as upper or lower qubit states as appropriate, which generalizes the
corresponding spin—% particle qubit states |+) , |—) as upper and lower states, respectively. The quasiparticle
spinor closed generalized SU(2) Lie algebra and fermion anticommutation relations in equations ((3a-3d) ,
(4a-4e)) or ((16a-16d) , (17a-17e)) are generalizations of the corresponding spin-3 particle closed SU(2) Lie
algebra and fermion anticommutation relations in equations (5a)-(5d).

The quasiparticle spinor Hamiltonian is obtained as a generalization of the standard Jaynes-Cummings
or antiJaynes-Cummings Hamiltonian including an atom-field excitation number correlation operator com-
ponent, which arises as an intrinsic algebraic property of the spinor. The Hamiltonian generates a general
time evolving entangled state vector describing Rabi oscillations between the spinor qubit state vectors. Ex-
pressing the general time evolving state vector as a superposition of two entangled state eigenvectors reveals
that the internal dynamics of the spinor is characterized by alternate field mode and atom frequency-shifts
towards the red or blue spectra in the upper or lower energy level. The frequency-shift phenomenon is at-
tributed to the atom-field excitation correlation energy, which depends on the frequency detuning 6 = wp —w
or § = wy + w and therefore vanishes at resonance (w = wp ; § = 0) in the JC-spinor, but remains a per-
manent dynamical feature in the antiJC-spinor, noting the frequency detuning relation 6 = ¢ + 2w which
never vanishes at resonance w = wy, unless we introduce negative frequency resonance w = —wg. Dynamical
evolution of the mean values and fluctuations of the state population inversion and coherence of the quasi-
particle spinor evolving from an initial atom-field superposition state where the atom starts in a spin-up
and spin-down superposition state or the field mode starts in a coherent state is characterized by quantum
collapses and revivals attributed to the interference of oscillations with different Rabi frequencies.

The quasiparticle spinor interpretation which we have developed in this article provides a useful frame-
work for understanding general dynamical properties and practical applications of light-matter interactions
in the quantum Rabi model and the more general Dicke model. The closed generalized SU(2) Lie algebra
and fermion algebraic properties means that we can apply the standard algebraic methods for atomic spin
coherent and squeezed states [14 , 15 , 16] to determine the coherent and squeezed state properties, as well
as the related topological properties, of the quasiparticle spinors in the quantum Rabi and Dicke models.
Quasiparticle spinors are useful in formulating generalized spin models of many-body interactions to study
ferromagnetic, antiferromagnetic and related quantum phase transition properties in coupled arrays of QED
cavities, paralleling widely studied Bose-Hubbard models of many-body interactions based on the bosonic
polariton interpretation of the atom-field quasiparticle excitations in [4 , 5]. We note that the closed algebraic
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properties of the quasiparticle spinor interpretation developed in the present article are exact, in contrast to
the approximate algebraic properties of the bosonic polariton interpretation developed in [4 , 5]. The gener-
alized algebraic properties of the quasiparticle spinor also provide great potential for practical applications of
the quantum Rabi and Dicke models in the design and implementation of quantum information processing,
quantum computation and all related quantum technologies; the infinite spectrum of photon-carrying spin-up
and spin-down qubit states (|¢+n) , |¥gnx1)) of the JC-spinor or (|¢)+n) , [5nF1)) of the antiJC-spinor for
photon numbers n = 0,1, 2,3, ..., 0o can be used to encode a large volume of information, while the respective
identity, coherence and state population inversion operators (Jo , Jo , Jy , J.) or (Jo , To, Ty, T2)
which generate closed SU(2) Lie algebra can be used to construct the appropriate quantum gates according
to standard definitions.
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