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ABSTRACT
\

The assumptions under which the standard Black-Scholes equation

has been derived are restrictive (e.g. liquid and frictionless mar-

kets). When illiquidity and market friction are introduced into the

market, financial models based on these assumptions fail. Nonlinear

equations for modelling illiquid markets have been solved numeri-

cally. Numerical techniques give approximate solutions. Recently,

Lie group symmetry analysis has been used to solve the same. Al-

though Lie group symmetry analysis is very useful in determining

all the solutions of a given nonlinear equation, it has been estab-

lished that any small perturbation of an equation disturbs the group

admitted by it. This in effect reduces the practical use of symme-

try group analysis. Our objective is to find an analytic solution of

a nonlinear Black-Scholes equation for modelling illiquid markets.

The methodology involved transformation of the nonlinear Black-

Scholes equation into a groundwater equation. This yields Ordinary

Differential Equations which have been solved. Using substitutions

and integration led to an analytic solution of the nonlinear Black-

Scholes equation. In a real market situation, this solution may help

in finding how typical prices of derivatives can be described hence

contributing significantly to the field of Financial Mathematics.

v
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Chapter 1

Introduction

This thesis is outlined as follows: Chapter 1 is an introductory chapter.

Chapter 2 addresses literature that is relevant in modelling both liquid

and illiquid markets. This includes the information on the physical phe-

nomena which are connected to the study of nonlinear Partial Differential

Equations (PDEs). Basic concepts are presented in Chapter 3. Theory

of the linear and the nonlinear Black-Scholes option valuation models is

discussed in Chapter 4. Chapter 5 considers both linear and nonlinear

equations. The solution of the Korteweg-de Vries equation is presented in

Section 5. The main results and their discussion are presented in Chapter

6. These results are formulated in form of a theorem (Theorem 6.1.3).

The general conclusions of this thesis and the recommendations for fur-

ther research come after Chapter 6.

1



CHAPTER 1. INTRODUCTION

1.1 Background Information

2

Financial Mathematics is a collection of mathematical techniques applied

in finance. An example of these applications is in asset pricing where

derivative securities such as options are valued. Another application is in

hedging and risk management. The two main modelling approaches used

in Financial Mathematics are Partial Differential Equations, and Proba-

bility and Stochastic Processes.

The standard Black-Scholes equation which gave rise to the field of Fi-

nancial Mathematics has been derived under restrictive assumptions such

as liquid and frictionless markets. However, market liquidity has recently

become an issue of high concern in managing risks. From literature,

it has been shown empirically and theoretically that large traders move

the underlying asset's price. In addition, financial markets are markets

with friction since transaction costs are incurred when a financial asset

is traded. As a result, financial models based on the assumptions of fric-

tionless and perfectly liquid markets may fail when transaction costs are

introduced into the market and when market liquidity vanishes from the

market.
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Our focus in this research is to use dynamic hedging to study liquidity
\

C-

of derivative securities in the presence of transaction costs. We studied

an illiquid market model where the implementation of a dynamic hedging

strategy affects the underlying asset's price process.

In this study we built on the work of Cetin et al. [11] where a model for

European options that takes into consideration illiquidities arising from

transaction costs is formulated. Perfect hedging strategies here are char-

acterized by a nonlinear Black-Scholes Partial Differential Equation.

An analytic solution to the nonlinear Black-Scholes equation via a soli-

tary wave solution is currently unknown.

The purpose of this research was to solve analytically by direct integra-

tion the nonlinear Black-Scholes equation arising from transaction costs

in order to have a better understanding of illiquid markets for derivative

assets. This was done by differentiating the equation twice with respect

to the spatial variable S. After substitutions and transformations, we

got a nonlinear groundwater equation that admits a solitary wave solu-

tion. Assuming a traveling wave solution to the nonlinear groundwater
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equation reduced the nonlinear Black-Scholes equation to Ordinary Dif-
\

<:

ferentialEquations (ODEs). The parameter "gamma" (i.e. u.ss) ends up

being a solitary wave solution since it decays to zero at large distances.

Weobtained the solution to the nonlinear Black-Scholes equation via the

solitary wave solution by integrating uss twice with respect to the spatial

variable S.

A subset of the data from the Nairobi Stock Exchange (NSE) for the

Kenya Electricity Generating Company (KenGen) and the Kenya Power

and Lighting Company (KPLC) for the periods between 2nd January

2007 - 24th December 2007 and 3rd January 2003 - 2nd January 2004

respectively, i.e. one year for each company, was used to test whether the

solution to the nonlinear Black-Scholes equation is applicable in a real life

situation.

Recent studies have focussed on derivative hedging in illiquid markets. In

this study we mention the contributions of Bank and Baum [2], Bordag

and Chmakova [5],Bordag and Frey [6],Cetin et al. [11, 12], Frey [21, 22],

Frey and Patie [23], Frey and- Polte [24], Frey and Stremme [25], Platen

and Schweizer [46], Sch6nbucher and Wilmott [53], Papanicolaou and



CHAPTER 1. INTRODUCTION 5

Sircar [44].

1.2 Statement of the Problem

Variants of a nonlinear Black-Scholes Partial Differential Equation have

only been solved numerically and by Lie group symmetry. Use of numer-

ical techniques gives approximate solutions. Any small perturbation of

an equation using Lie group symmetry disturbs the group admitted by it

which in effect reduces the practical use of symmetry group analysis. If

all these problems have to be solved, then the equation has to be solved

analytically by direct integration.

1.3 Objective of the Study

The main objective of this study is to solve a nonlinear Black-Scholes

Partial Differential Equation analytically.

1.4 Research Methodology

In this study we consider European options only. The linear Black-Scholes

Partial Differential Equation is utilized in developing a picture of its non-

linear version.

MASENO UNtVERSITY
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The nonlinear Black-Scholes equation resulting from transaction costs is
\

transformed into a nonlinear groundwater equation that admits a soli-

tary wave solution. A wave solution is assumed before transforming the

groundwater equation into Ordinary Differential Equations. This led to

the analytic solution of the nonlinear Black-Scholes equation by assuming

localized boundary conditions after the transformation.

1.5 Significance of the Study

Given a real market situation, the analytic solution may help in finding

how typical prices of financial derivatives can be described hence con-

tributing significantly to the field of Financial Mathematics.

Since the solution is theoretic, it may give option hedgers guidance on

how to hedge risks on a real market situation.



Chapter 2

Literature Review

In this chapter we review the development of stock price modelling right

from the time Brownian motion was first investigated up to the time the

nonlinear Black-Scholes equations were derived and solved. We mention

some of the studies that have so far been done on the nonlinear (illiquid

market) models and their relevance together with their shortcomings.

Since this research is on Black-Scholes option valuation, most of the equa-

tions for modelling financial markets have been deferred until Chapter 4

where they will be discussed in details.

2.1 Brownian Motion

Brownian motion was first used by Scottish botanist Robert Brown to ob-

serve the irregular motion of pollen grains suspended in a liquid. Brown

himself admitted to not having any scientific explanation for the observed

7
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phenomena (see Brown [8]). It was further studied by Albert Einstein [16]
l

in 1905. Einstein's theory was based on the assumption that Brownian

motion process exists. The definition of a lP-Brownian motion process is

the modern statement of Einstein's postulates (see Khoshnevisan [30]).

Bachelier [1]discussed its theory in his thesis where he applied it to model

stock prices. However, the Bachelier's model allows the stock price to take

both positive and negative values yet stock prices can only be positive.

This was further developed by Norbert Wiener in 1923. The validity of

Einstein's assumption that Brownian motion process exists was proved

by Wiener in 1923 (see Khoshnevisan [30]).

The prototype for diffusion processes is Brownian motion or Wiener pro-

cess (see Feller [19]). The standard Wiener process can be used to model

asset returns. The main problem with it is that its mean is zero. This

means that the growth rate of returns is zero whereas for instance a com-

pany's stock normally grows at some rate - and from history the prices

are expected to rise because of inflation (see Baxter and Rennie [3]). To

avoid such growth rate of returns, we extend Brownian motion to a gen-

eralized Brownian motion, i.~. Brownian motion with non-zero mean.
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Morerecent work suggests that the process resulting from the generalized
\

Brownianmotion applies rather to relative prices (i.e. stock returns) in

steadymarkets (see for instance Black and Scholes [4], and Merton [39]).

In this geometric Brownian motion process as was first introduced by

Samuelson[51],the stock price St is positive.

2.2 Merton-Black-Scholes Model

The modern application of Brownian motion to model financial markets

began between late 1960s and early 1970s. Geometric Brownian motion

was applied by Black and Scholes [4], Merton [39], and Paul Samuel-

son [51, 52] among others. In 1973, Black and Scholes [4] derived an

option valuation model. This was extended by Robert Merton [39] the

same year to include dividends and then coined the term Black-Scholes

theory of option pricing (see Merton [39]). That is why the model is

sometimescalled the Merton-Black-Scholes model. Black and Scholes [4],

and Merton [39]assume that stock returns follow a Brownian motion.
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2.3 Diffusion Processes and Stochastic In-
\

tegrals

Although Brownian motion is continuous everywhere, it has been shown

in Theorem VII of Paley et al. [43] that it is nowhere differentiable almost

surely. The same theorem has also been proved by Khoshnevisan [30] (see

Theorem 9.13 in [30], pp. 168 and its proof on pp. 169).

Due to this notion of nowhere differentiability, the ordinary rules of cal-

culus fail in a stochastic environment. What becomes useful is stochastic

calculus, also called Ita calculus in honor of Kiyoshi Ita (see [15, 28]).

Diffusion processes are solutions to Stochastic Differential Equations (SDEs).

Ito's lemma plays a very important role in stochastic calculus since it is

used in solving stochastic integrals.

2.4 Standard Option Valuation Theory

The use of linear Black-Scholes equation started in 1973 when Fischer

Black and Myron Scholes Game up with an option valuation formula

by considering a non-dividend-paying stock (see Black and Scholes [4]).
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Stock prices were taken to be lognormally distributed. From the result-
\

ing Black-Scholes model, the Black-Scholes PDE was obtained and was

solved to get the Black-Scholes formulae for the call and put options.

Put-call parity was first described by Professor Hans Stoll in 1969 but it

had been known earlier (see Knoll [32]). It was first used in the Black-

Scholes option valuation (see equation (25) of [4]) to compute the value

of a put option from a call option's value easily.

2.5 Risk Parameters

The risk parameter delta for a European call option was first used by

Black and Scholes [4] for hedging European call options (see equation

(14) of [4]). Since then, other risk parameters such as theta, gamma,

speed, vega, and rho have been computed from Black-Scholes formulae

(see for instance Wilmott [61]).

A financial institution selling options faces the problem of hedging risks

and the use of the risk parameters addresses this problem.
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2.6 Nonlinear Black-Scholes Option Valua-
\

tion Theory

Use of Black-Scholes formulae in the standard option valuation to de-

rive option values rests on the assumption of frictionless and perfectly

liquid markets. Owing to liquidity constraints, the trade of the underly-

ing asset induced by dynamic hedging can certainly affect market prices.

Existence of market frictions and market illiquidity renders the standard

option valuation models unrealistic (see Frey [22]) hence the need for use

of nonlinear Black-Scholes models.

A modelling philosophy that trading large amounts moves the price of an

asset has been studied by Frey [21], Frey and Stremme [25], Papanicolaou

and Sircar [44], Platen and Schweizer [46], Schonbucher and Wilmott [53].

The PDE for Frey [21] is given by

0= ¢t + ~(j2 f2 (1 + 2Pt¢J) ¢JJ

(72 ( t: 2 -e )+ Wf¢J f'ljJj - 'ljJt + 2 'ljJff + P¢jU 'ljJaj + f'ljJa) + (p¢j) 2 'ljJaa ,

(2.1)

where ¢ = ¢(t,J) is a smooth function that solves equation (2.1), a is

a martingale, f is the value of some fundamental state variable process

(Ft)09~T' P is market weight of the large trader, 'ljJ = 'ljJ(t, Ft, a) is the dis-



CHAPTER 2. LITERATURE REVIEW 13

counted stock price at time t, 1/Ja = :01/J, 1/Jf = :f1/J, (Pt = (it¢, ¢f = :f¢'

82 8 82 82 82'--
lP/I = 8f2¢' 1/Jt= {)i1/J, 1/Jff = op1/J, 1/Jaf = oaar1/J, 1/Jaa = orx21/J.

The trading strategy used by Frey and Stremme [25], and Papanicolaou

and Sircar [44] is of the form a = p¢(t, S) for a shares and for the smooth

function cp.

By using numerical techniques, Platen and Schweizer [46] quantitatively

substantiated the idea that feedback effects resulting from hedging strate-

gies can induce option price distortions. Sergeeva [54] has solved the

equation that was derived in [46] using Lie' group symmetry.

Schonbucher and Wilmott [53] analysed the influence of dynamic trading

strategies on the prices in financial markets. The nonlinear effect and the

feedback arising from prices in the trading strategy I(S, t) are analysed.

A nonlinear PDE for an option replication strategy is derived and this

PDE is given by

where p(S, t) is the put option price, r is the continuously compounded
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risk-free interest rate, Pt = ~, Ps = ~, Pss = ~, and the volatility is

given by
8

A(S ) - _ 8WX(S,W,t),t - a a,
8SX(S,W,t)+ 8Sf(S,t)

where X is the excess demand in the market and W is Brownian motion.

The stock price in the models in [21, 25, 44, 46, 53] responds instanta-

neously to the amount of stock a single large trader holds. These models

are for price impact effects. In these models, the price impact effect would

make price dynamics to be history-dependent and also to be dependent

on the past trading decisions of agents. These price impact models are

unsuitable as models of illiquidity since if the action of an agent affects the

price, logically the actions of all agents affect the price and the resulting

analysis of the inter-related behaviour of the many agents participating in

the market becomes impossibly cumbersome (see Rogers and Singh [49]).

A diffusion model for stock price dynamics whose coefficients depend on

the large investor's trading strategy is considered by Cuoco and Cvitanic [14].

In this model the feedback is rather indirect since only the drift and

volatility coefficients depend on the trading strategy of the large investor.
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Transaction costs caused by illiquidity in a continuous-time model are

studied by Bank and Baum [2] and further studied by Cetin et al. [11]

who eliminates the path dependency condition in their structure which

excludes manipulation of the market and allows use of classical arbitrage

pricing theory. The market dependency condition is that under market

manipulation, the price process of the security can depend on the in-

vestor's current trade and the entire history of their past trades. The

analysis of Cetin et al. [11] avoids market impact costs.

When an individual sells (or buys) huge quantities of shares this pushes

the price down (or up) due to the high (or low) volumes/supply. The

difference in price between the original and the new price is called impact

cost.

The model used in Bank and Baum [2] is specified in terms of semimartin-

gales that are parameter-dependent. The difference in the modelling ap-

proaches in [2] and [11, 12] is that in Cetin et al. [11, 12J the price effect of

an order ends the very moment the order is placed in the market while in

Bank and Baum [2J the effect of the order will extend into the next order

hence making prices of the asset follow a possibly different dynamics.

MASE 0 ltN1VERS1 Y
., S.G. S. LIBR Y
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The framework used by Cetin et at. [11] is a continuous-time trading

strategy while Cetin et al. [12] investigates valuing of derivatives through

discrete time trading strategies with the assumption that the underlying

asset is not perfectly liquid.

Stock price dynamics are studied by Frey [22]. A model where implemen-

tation of a hedging strategy affects the price process of the underlying

security is considered. The price process is driven by a Brownian motion

and by a representative agent's strategy of hedging derivatives. Using

a feedback strategy of a large trader leads to a nonlinear Black-Scholes

equation. Numerical simulations of the equation are done in [22]. The

same equation is solved using Lie group symmetry in [5, 6].

The analysis of Frey [22] is implemented by Frey and Patie [23] where an

extensive simulation study is carried out" to have a better understanding

of the implications of market illiquidity for derivative asset analysis. The

equation that was studied by Frey and Patie [23] is modified through
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introducing a liquidity profile )'(S) to give

1 0"2 S2 °Ut + 2 (1-p'x(S)Suss)2 USS = , U(ST' T) = h(ST), ST 2: 0, (2.2)

where p is a liquidity parameter, Ut = ~~,USS = Z~~,and h( ST) is the

payoff of the terminal value claim.

Equation (2.2) has been solved numerically (see [23]). The same equation

has also been solved through Lie group symmetry by Bordag and Frey [6].

Modelling using numerical methods and Lie group symmetry analysis has

its own disadvantages. Numerical techniques give approximate solutions.

Although Lie group symmetry analysis is very useful in determining all

the solutions of a given nonlinear equation, it has been established that

any small perturbation of an equation disturbs the group admitted by it

which in effect reduces the practical use of symmetry group analysis (see

Ongati [41]).
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2.7 Physical Phenomena Connected to Non-
\

linear Partial Differential Equations

Mostnonlinear PDEs which arise in physical applications are practical

and this leads to physically meaningful solutions. The study of nonlinear

PDEs has shown that solitons are essential physical phenomena which

are connected with nonlinear equations.

The solitary wave solution represents a localized wave travelling with un-

changedshape. In 1834, John Scott Russell, a British engineer, observed

the waves. He recounts how such a solitary wave was generated by the

suddenmotion of a large barge along an Edinburg canal and then chasing

it on horseback for several miles (see [34, 57]). Much later, the proper

nonlinearsurface wave model given by

Ut + 6uux + Uxxx = 0 in ffi. x (0,00), (2.3)

whereu( t, x) is the speed of the traveling wave of permanent form, Ux =

~ and Uxxx = ~:~,was written down by Korteweg and deVries. This

modelis valid for a one-way wave in shallow water. Zabusky and Kruskal

got curious after some time and rederived the Korteweg-de Vries equation

(KdV) (2.3) as a continuum limit of a model of nonlinear mass-spring
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chains that were studied by Fermi et al. [20] and also discovered that
\

<-
numerical solutions to the Korteweg-de Vries equation have remarkable

properties (see Zabusky and Kruskal [62]). It is for this reason that these

solutions have been given a special name- soliton, a word that first ap-

peared in Zabusky and Kruskal [62] who called solitary waves solitons

where the ending 'on' is a Greek word for particle (see Munteanu and

Donescu [40], pp. 82).

However, none of the nonlinear Black-Scholes equations discussed in See-

tion 2.6 has ever been solved using direct integration although some non-

linear equations have been solved using this .method. An example of these

equations is the Korteweg-de Vries equation (2.3) that has been solved

analytically via direct integration to obtain a solitary wave solution.



Chapter 3

Basic Concepts

Black-Scholes model is a model which describes mathematically financial

markets and derivative instruments. This model was used in Black and

Scholes [4] to get the Black-Scholes Partial Differ'ential Equation which

was solved to give Black-Scholes formulae. The formulae are widely used

in valuing European-style options.

3.1 Brownian Motion

When we talk of a continuous process, we mean the following: firstly, the

value can change any time and from one moment to another; secondly,

actual values taken can be expressed in arbitrarily fine fractions- a value

can be any real number; lastly, the process changes continuously- no in-

stantaneous jumps are made by the value (see Baxter and Rennie [3]).

20
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3.1.1 Random Walk

21

For a positive integer n and time t, a random walk is a binomial process

Wn(t) if the following conditions hold.

2. The layer spacing is l/n.

3. The up and down jumps are equal and of size l/fo·

4. The measure IP'resulting from the up and down probabilities every-

where equals to 1/2.

Random_It

Figure 3.1: The steps of a random walk Wn·
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This means that, if Xl, X2, ... is a sequence of independent binomial
\

randomvariables taking values ±1 with equal probability, then, at the

Ith step, the value of Wn is defined by

W (i) = W (i-I) + s, for all i 2: 1nn nn v'n

Theorem 3.1.1 (Central Limit Theorem) Let the random variables

XI, X2, ••• , Xn form a random sample whose size is n from a probability

distribution with mean and standard deviation JL and (J' respectively. Then

[orall x

lim Pr (v'n(X-J-L) ~ x) = N(x),
n--+oo U

where N(x) is the cumulative distribution function of x and Pr denotes

probabili ty.

Definition 3.1.2 Let X be a random variable and x E R If X is contin-

uous, then it has the probability density function f : lR H [0,00) which

satisfies

jx y2

N(x) = Pr(X ~ x) = An -00 e-2 dy. (3.1)

The function N(x) denotes the probability that the value of a standard-

izednormal variable X is less than or equal to x. This function is repre-
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nted in Figure 3.2.

2
X

Figure 3.2: A normal distribution curve.

From the central limit theorem, the limit ofthese binomial distributions is

that as n gets larger, the distribution of Wn(l) tends to the standardized

normal distribution, i.e. limn-too Wn(1) rv N(O, 1). In fact

By the central limit theorem, the distribution of the ratio in brackets tends
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a standardized normal random variable. This means that the distribu-
\

<:

tionofWn(t) tends to a normal distribution, i.e. limn-+ooWn(t) rv N(O, t).

Hence, in the limit as n -+ 00, the distribution of the random walk Wn(t)

convergestowards Brownian motion Wt (see Baxter and Rennie [3]).

3.1.2 Martingale

Definition 3.1.3 A martingale is a stochastic process X = {Xd:'l such

that the unconditional expected value is always finite and that

The process X is a sub martingale if

and it is said to be a supermartingale if

The process X is a martingale if it is both a super- and a submartingale;

it becomes a semimartingale if it can be written as X, = Yt + Zt where

the process {Ii}:'l is a martingale and the process {Zd:'l is a bounded-

variation process; i.e., Z; = Ut - U, where U1 ~ U2 ~ ••. and



ER 3. BASIC CONCEPTS 25

I ~U2 :::; .. , are integrable adapted processes.

Markov Process

AMarkov process is a process whereby the distribution of its future values,

conditional on its past and present values, depends only on the present

Using the fact that Wt - Ws is independent of Ws, where s is a time

variable, we get

We call the expression

the martingale property.

Definition 3.1.4 (Levy Process) A process X = {Xt : t ~ O} is said

to be a Levy process if it possesses the following properties.

1. The paths of the process X are JP>-a.s. right-continuous with left

limits.

MASENO ut'J'VERS'TY
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3. For0 ::; s ::; t, the distributions of X, - X; and Xt-s are equal, i.e.

the process X has stationary increments.

4. For 0 ::; s ::; t, X, - X s is independent of {X, : T ::; s}, where T is

another time variable.

Definition 3.1.5 The quadratic variation of the process X = {X t : t 2: O}

is definedto be

(X) t = it ds

= t.

Theorem 3.1.6 (Levy, one dimension) .Let the process X = {Xt : t 2: O}

be a martingale. Assume that Xo = 0, X, has continuous paths, and the

quadraticvariation (X) t = t for all t 2: O. Then X, is a Brownian motion.

Definition 3.1.7 Suppose that X, is a stochastic process with time t E

[0, T] for some T > O. If P is a partition of the time interval [0,T] such

that

P = {O = to ::; tl ::; ... ::; tm = T} ,

then the quadratic variation of the process X, can be defined along the

partition P by
m

(X)p == 2:)Xtk - Xtk_1?·
k=l
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A stochastic process W = {Wt, t 2: O} is ~ IP-Brownian

1. t t-t Wt is a continuous random path with probability one,

3. {Wt, l 2: O} has stationary independent increments. This means

that for any 0 < s < t, w, -:-Ws is independent of {Wr }O:S;r:S;s'

Thinking of s as the current time, this condition says that "given

the value of W at the present time, the future value is independent

of the past value." We call this property the Markov property.

4. Wt is normally distributed with mean zero and variance t under IP,

i.e. Wt rv N(O, t).

Since (J = 1 for the process Wt ~e often call this process Brownian tno-

tion or Wiener process. The growth rate of returns in a Wiener process

is zero since Wt has zero mean. Hence, we have to extend it to Brownian

motion with non-zero mean (drift or trend) by adding the drift artificially

to get the stock price process S, (see Baxter and Rennie [3]). The exten-

sionmodels the dynamics of the prices in a steady market (Onyango [42]).
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When (J =I- 1 and the drift is added to the Wiener process \Vt we get the

stochastic process {St, t ~ O} which is a Brownian motion with constant

drift coefficient /-L E R We write this as

(3.2)

where Wt = cVt and e is a Brownian motion process with mean zero and

variance one, i.e. e rv N(O, 1). Hence, during the time-step dt we get the

SDE
(3.3)

from equation (3.2). The process represented in equation (3.3) is referred

to as Bachelier or Arithmetic Brownian motion and it assumes that the

stock price S, follows a stochastic process (see Onyango [42]). Using

the model (3.3), stock prices can take positive or negative values (see

Figure 3.3) though stock prices cannot be negative.
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Figure 3.3: Possible realizations of Brownian motions.

3.2 Geometric Brownian Motion or Samuel-

son's Model

If Brownian motion is given by {Xt, t 2: O}, we call the process {Yr, t 2: O}

defined by

(3.4)

a geometric Brownian motion or Samuelson's model. We also refer to this

type of a stochastic process as a geometric Wiener process, or economic

geometric Brownian motion (see Samuelson [52]).
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To obtain the stock price model under a geometric Brownian motion

process, let

(3.5)

Then, from equations (3.4) and (3.5) we get

(3.6)

Equation (3.6) is called a generalized Wiener process. The process as-

sumes that stock price returns dgt follow a stochastic process. Since S,

is the price of a stock at time t, then dgt is the rate of return on the

asset over the next instant and its solution on integrating both sides of

equation (3.6) is given by

(3.7)

where So is the initial stock price.
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Hence,rearranging equation (3.7) gives the stock price as

St = 50ellt+a- J~dWs > 0, 50 > 0. (3.8)

Equation (3.8) shows that the stock pnce 5t is positive at all time t

since So > O. Since stock prices can never take negative values as seen in

Figure 3.4, this makes geometric Brownian motion important in modelling

stock prices.

Geomebic Brownian Motions
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Figure 3.4: Possible realizations of geometric Brownian motions.
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3.3 Diffusion Processes and Stochastic In-

tegrals

Although the Wiener process Wt is continuous everywhere, it is (with

probability one) differentiable nowhere (see for instance [3,43]). Standard

rules used in calculus are therefore inapplicable in a stochastic environ-

ment since the Wiener process Wt is nowhere differentiable. We therefore

generalize the approach of Section 3.2 for us to be able to solve SDEs.

3.3.1 Ito Processes

Ito processes generalize Brownian motion in equation (3.6) by letting

parameters J.L and (J be functions of the underlying variable S, and time

t. Thus, a one-dimensional generalized Ita process is given in the Ito's

lemma or Ito's formula stated below. This lemma is the cornerstone of

stochastic calculus.

Lemma 3.3.1 (Ito?« Lemma) Suppose that the random variable S, is

described by the Ita process

(3.9)
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where dWt is a normal random variable. Suppose the random variable
\

h(St) = u(St, t). Then h is described by the following Ita proces»

where the hedge ratio Us = ~~.

Before we prove the Ita process for h given in equation (3.10) we need to

define Taylor expansion.

Definition 3.3.2 Taylor expansion is an expression of the value of a

function j near x in terms of the value of j and its derivatives at x and

is given by

j(x + h) = j(x) + h!,(x) + ~h2J"(x) + ~h3 jlll(X) + ....

Proof 3.3.3 (Ito's Lemma) Taylor series expansion of 1[(St+::'t, t + fl.t)

around (SI> t) results in
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c

U(St+At,t + ,6.t) = U(St, t) + Ut(St, t),6.t + US(St, t)(St+At - St)

where Utt = ~~,and USt = %t~~.We need the informal rules

dt·dt=O, dt·dW=O, dW·dW=dt (3.11)

to reduce the Taylor series expansion above further.

Taking the limit flt -+ ° and then applying the informal rules in (3.11)

to the Taylor series expansion above yields

(3.12)

since h = u. Since S, is an Ita process, it follows from (3.9) and (3.11)
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that

dS; = (v(St, t)dt + >'(St, t)dWt)2

= (v(St, t))2(dt)2 + 2v(St, t)>'(St, t)dtdWt + (>'(St, t))2 dW? (3.13)

= (>'(St, t))2 dt.

Hence,substituting (3.9) and (3.13) into (3.12) gives

dh = u.d: + Us (v(St, t)dt + >'(St, t)dWt) + ~uss ((>'(St, t))2 dt

= (Ut + v(St, t)us + ~(>'(St, t))2 USS) dt + >'(St, t)usdWt.

Equation (3.9) is a SDE for the process St. It is a generalized diffusion

(Ita) process (see [15, 28, 42]). This SDE for the process S, is called a

diffusion process. Its integration gives

The last integral in equation (3.14) is called a stochastic (Ita) integral.

We now use Ita's lemma to solve equation (3.6) as follows.
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Let

u(S, t) = inS, I/(S, t) = J.],S and >'(S, t)= as.

Hence,

'US=~, USS=-i2 and 'Ut=O.

Substituting these expressions into equation (3.10) gives

Therefore, applying Ita calculus gives the geometric Brownian motion

process in equation (3.6) under the transformation u = inS as

du = d~t

(3.15)

Equation (3.15) is integrable using Ita calculus. Integrating both sides of

the last equality of this equation gives the solution to equation (3.6) as

1
S - S (J.!--2<72)t+<7Wt

t - oe , So> O.
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.3.2 Arbitrage-Free Pricing

In finance and economics, the practice of taking advantage of differences

m prices of an asset between two or more markets is called arbitrage.

The profit is the difference in the market prices. An individual engaging

in arbitrage is called an arbitrageur. The term arbitrage is commonly

applied in trading of financial instruments like bonds, stocks, derivatives

and currencies.

IT market prices do not allow for profitable arbitrage, they are said to

constitute arbitrage-free market or an arbitrage equilibrium.

Arbitrage possibilities can arise when any of the following is true.

1. Two assets with equal cash flows are not marketed at the same price.

2. Prices of a particular asset are different on different markets.

3. The asset's price today is not the discount price (at the risk-free

interest rate) of the known future price of the asset. This is because

an asset, for example grains has an appreciable storage costs. This

condition is not true for a security.
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\
in different markets tend to converge to the same price due to the

eorem 3.3.4 Consider a discrete-time financial-market model with

tely many possible random outcomes. If there exists a martingale

e with positive probabilities, then the market is arbitrage-free.

versely,if the market is arbitrage-free, then there exists a martingale

ure with positive probabilities (see Theorem 6.2 of (is}).

The fundamental theorem of finance/arbitrage (see Theorem 3.3.4) in a

general sense relates arbitrage opportunities with risk-neutral measures

equivalent to the original probability measures.

The fundamental theorem of arbitrage free pricing in a finite state market

can be broken down into two parts which state that (see Harrison and

Pliska [26])

1. there is no arbitrage if and only if a risk-neutral measure equivalent

to the original probability measure exists, and

2. a market is complete if and only if there is a unique risk-neutral

measure equivalent to the original probability measure.
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fundamental theorem of pricing is therefore a way of converting the

pt of arbitrage to a question about whether a risk-neutral measure



Chapter 4

Black-Scholes Option Pricing

Theory

Inthischapter Black-Scholes option pricing will be broken down into stan-

dard option valuation and modified option valuation. We will discuss the

theorybehind the two types of option valuation and present the models

used.

4.1 Standard Option Valuation Theory

Financialinstruments can be divided into basic securities and their 'deriva-

tives'. Basic securities are further subdivided into fixed income (i.e.

bonds, bank accounts, etc), and equities (i.e, stocks). Derivatives are

40
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subdivided into options (i.e. calls, puts and exotic options), swaps, fu-

tures and forwards (see Cvitanic and Zapatero [15]).

Derivatives are contracts which depend on a fundamental asset, i.e. a

basic security. In the absence of the security there could be no future

claims. The random nature of the underlying security filters through to

the 'derivatives' (see Baxter and Rennie [3]). Derivative contracts are also

termed as contingent claims. The contracts can reduce risk for example

by fixing the price of a future transaction now or they can magnify it.

The results of the linear Black-Scholes equation which gave rise to the

field of Financial Mathematics were obtained by considering an option

maturing at time T for a non-dividend-paying stock. In this classical (or

standard option valuation) theory, there is no change in the price of a

security for any order size, i.e. the trader does not move the market. In

addition the price process of a security is independent of the past. This

means that an investor's trading strategy has a temporary impact on the

price process.

A call (put) option is a contract where at a prescribed time in future,
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known as the expiry date T, the holder of the option may buy (sell) a

prescribed asset known as the underlying asset for a prescribed amount

known as the exercise/strike price K. The opposite party has the obli-

gation to sell (buy) the asset if the holder chooses to buy (sell) it. An

option's value is therefore a function of various parameters in the contract,

such as the time to expiry T and strike price K. It also depends on the

asset's properties such as its drift IL and volatility o, its current market

price St and time t, and the continuously compounded risk-free interest

rate r. The option's value can therefore be written as U(Sb t; a, IL; K, T; r).

The following assumptions are used for modelling the financial market

described above.

Assumption 4.1.1

1. The price S, of an underlying asset (i.e. stock) follows a geometric

Brownian motion. The stock volatility o and the drift IL are constant

for 0 ::; t ::;T and are known in advance.

2. The risk-free interest rate r is a known constant for 0 ::; t ::; T.

3. No dividends are paid in the period 0 ::; t ::; T.

4. The option is of European type.
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5. No transaction costs (including taxes) are incurred in buying or
\

selling either the stock or the option.

6. The price of the underlying security is divisible so that any fraction

of the share of the security can be traded at the risk-free interest

rate T.

7. There are no arbitrage opportunities.

8. Delta hedging is done continuously.

The market is said to be complete under the assumptions above. This

means that any asset and any derivative can be hedged or replicated with

the portfolio of other assets in the market.

4.1.1 Linear Black-Scholes Model

The first assumption in Assumption 4.1.1 above means that

(4.1)

The SDE (4.1) is called the Black-Scholes model.
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4.1.2 Linear Black-Scholes Partial Differential Equa-
\

tion

We now let IIt be a portfolio's value of one long option position [i.e.

u(S, t)] and a short position in some quantity ~, delta, of the underlying

asset S. Hence,

IIt = u(S, t) - ~S. (4.2)

From Itd's lemma we have

Substituting this expression into (3.10) gives

(4.3)

since >'(S, t) = 17S. Hence, the portfolio changes by

(4.4)

as ~ is constant during the time-step dt. The right hand side of equa-

tion (4.4) is the sum of the deterministic and random terms, i.e. the terms
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with dt and dS respectively.

The risk in our portfolio is the random terms. We can reduce or even

eliminate the risk by carefully choosing A. This is done by delta hedging.

We can delta hedge by choosing

(4.5)

This leaves us with a portfolio whose value changes by the amount

(4.6)

The change in equation (4.6) is completely riskless as the equation does

not have random components. The security Il, in equation (4.6) is there-

fore said to be "risk-free" as its dynamics do not have stochastic compo-

nents after delta hedging. This means that

(4.7)

MASENO Ut'UVERSlTY
.•S.G. S. LIBRARY
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Integratingequation (4.7) and simplifying gives

IT rt:t=e

since ITo = 1. This is an example of the no-arbitrage principle. The

absenceof arbitrage means that contingent claims that can be replicated

through a trading strategy could be priced using expectations under a

risk-neutral probability measure Q.

Toobtain the linear Black-Scholes PDE, substitute equation (4.5) into (4.2)

to get

ITt = u - Sus.

Then, plug into the right hand side of equation (4.7) to get

dITt = r( u - SUs )dt, ITo = 1. (4.8)

Equating the right hand side of equations (4.6) and (4.8) we get
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Dividethrough by dt and rearrange to get

1 2S2 SO·Ut + 20" uss + r Us - ru = III lR x [0, T]. (4.9)

This is the famous linear Black-Scholes Partial Differential Equation.

4.1.3 Black-Scholes Option Pricing Formulae

To specify the values of a derivative at the boundaries where possible

values of the stock price S, and time t lie, we use boundary conditions.

For a European call option whose price at time t is Ct = c(t, St), the

boundary conditions are

1. c(t,O) = ° for 0::; t::; T,

where T - t is time to maturity. The payoff function for a call option is

given by the terminal condition

C(T,ST) = (ST - K)+ = max{ST - K,O} for 0::; ST (4.10)
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since the call option can only be exercised if ST > K. The second condi-
\

tion has to be understood as

Hm
St-too

c(t,St) = 1
St-Ke ,o(T_t)

uniformly for 0 :::;t :::;T.

At maturity the expected value of the payoff function is EQ(max {ST - K, O})

where Q is the martingale measure for the discounted stock whose value

at time t is given by

.t, -TtS
'f/t = e t· (4.11)

At time t = T, using (4.10) and (4.11) gives the call option price as

where CT = (ST - K)+ is the terminal claim (see Figure 4.1).

Equation (4.12) tells us that at time t = 0,

(4.13)
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Equation (4.13) gives the value of the replicating strategy I~t time t = O.
'-'

The value (ST - K)+ depends only on the stock price at expiry time T.

This means that we need only to find the marginal distribution of ST

under Q in order to find the expectation of the terminal claim CT.

Terminal Payoff: Call Option

Profit at maJmily

K
-Premium Stock Price sr

Asset Price

Figure 4.1: Call option terminal payoff.

To do that, we look at the process S, that is written in terms of a

Q-Brownian motion.
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Define

W = W + (/1.-,.)t
t t ", (4.14)

whereWt is a l?-Brownian motion (see Definition 3.1.8). By Levy's the-

orem(see Theorem 3.16 in Karatzas and Shreve [29], pp. 157), Wt is a

Q-Brownianmotion. Rearrange equation (4.14) and substitute into (4.1)

and then simplify to get

(4.15)

Applying Ito's lemma to equation (4.15) the same way we did to equa-

tion (3.6) gives
1 2 -

S - S (1'--2" )t+"Wtt - oe . (4.16)

At time t = T, equation (4.16) becomes

1 2 -
S - S (1'--2" )T+"WTT - oe . (4.17)

Therefore, the marginal distribution for ST is So times the exponential of

a normal probability density function with mean (r - ~(}2)T and variance



CHAPTER 4. BLACK-SCHOLES OPTION PRICING THEORY 51

In Figure 3.2 the total area under the curve is 1 since this 'is a standard
<:

normal distribution. Since N(x) = Pr(X :::;x), this means that N(x) is

represented by the area under the curve excluding the unshaded area on

the upper tail of the distribution, i.e. ~' Hence,

N(x) = 1- ~' (4.18)

The normal distribution is symmetric about the mean zero and hence the

two unshaded areas on the lower and upper tails are equal.

By Definition 3.1.2, the function

N( -x) = Pr(X :::;-x)

represents the unshaded area on the lower tail. Hence,

N(-x) =~' (4.19)

From equations (4.18) and (4.19) we get

N{x) + N( -x) = 1.



CHAPTER 4. BLACK-SCHOLES OPTION PRICING THEORY 52

Therefore,

N( -x) = 1 - N(x). (4.20)

We now calculate Co, the value of the replicating strategy at time t = 0

as follows:

Let

(4.21)

At time t = 0 equation (4.21) gives a distribution of the form

(4.22)

From equations (4.17) and (4.22) we get

Thus, the value of the claim Co in equation (4.13) can be written as
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where z E lR is drawn from the continuous random variable Z and S is

the value of the stock.

From the boundary condition c(t, 0) = 0 in Subsection 4.1.3 the terminal

condition in (4.23) gives

(Ser1'+z - K)+ = O.

Therefore, if we use

Ser1'+z - K = 0 , (4.24)

the equation (4.24) simplifies to give

z = In ( ~) - r'T,

We will now take the limit x in equation (3.1) to be z = In(Kj8) - r'T

when computing the replicating strategy at time t = 0 (i.e co).

The value of the payoff function in equation (4.23) can now be written as

srr= - K if 81' > K,

o if 81':S K.
(4.25)



CHAPTER 4. BLACK-SCHOLES OPTION PRICING THEORY 54

When Sr > K the call option is exercised and when Sr :::;K the call
\

option is not exercised. Using equations (4.23) and (4.25)'--'gives Co as

follows:

(4.26)

Let

(4.27)

Then, the lower limit of the last integral of equation (4.26) changes from

z = In(KjS) - rT to

_ In(K/S)-(I'-~cr2)T
C - crv'T (4.28)

since z is a limit of y in equation (4.26). From (4.27) we get dy = (JVTdx.

Plugging the new limit and variables to equation (4.26) gives Coas follows:
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(4.29)

using equations (3.1) and (4.20). Completing the squares and simplifying

equation (4.29) we have

(4.30)

To simplify equation (4.30) further, let

x - aFT = w.

Then

dx = dw.



CHAPTER 4. BLACK-SCHOLES OPTION PRICING THEORY 56

Thelowerlimit of equation (4.30) changes from E: to E: - O'VT due to the
(

changeof variables from x to w. Equation (4.30) now beco~'es

1+00 w2

Co = S vk:e-T dw - K e-rTN( -E:)
E-ayT

= S [1- i:a.JT },;e-";' dW]- Ke-,TN(-c)

= S [1- N(E: - O'VT)] - Ke-rTN(-E:)

= SN( -E: + O'VT) - K e-rT N( -E:)

(4.31)

usingequations (3.1) and (4.20). Substituting equation (4.28) into (4.31)

gives

Since Co is the value of the replicating strategy at time t = 0, using

equation (4.12), the formula for a replicating strategy at time t = T

becomes

(4.32)

where

(4.33)
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and
1d _ In(S/K)+(r-Z0"2)(T-t)

2 - 0"..,!'I'=t (4.34)

Reciprocally, for a put option whose value at time t is p( t, St), the terminal

condition is given by

p(T, ST) = (K - ST)+ = max {K - ST, a} for O:S ST

as the option can only be exercised if K > ST. The terminal claim

(K - ST)+ is shown in Figure 4.2 below. Its boundary conditions are

1. p(t,O) = Ke-r(T-t) for O:S t:S T,

The value of a put option can be found as we did for the call option or

by using put-call parity. The put-call parity is the result that relates the

prices of the European call and put options and is given by

c(t, S) + K e-r(T-t) = p(t, S) + S. (4.35)

Equation (4.35) means that the sum of the call price c(t, S) and the

present value of K currency units (such as dollars) in the bank equals to
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the sum of the put price p(t, S) and the stock price S (see Cvitanic and

Zapatero [15]). When we substitute equation (4.32) into (4.~5) and then

rearrange, we get

(4.36)

using equation (4.20), where d1 and d2 are as defined in equations (4.33)

and (4.34) respectively.

Terminal Payoff: Put Option

Valne I profit at malnrity

Premium

s~
pncc . Stock Price ST

Asset Price

Figure 4.2: Put option terminal payoff.
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4.1.4 The Greeks

When a financial institution sells an option, the only problem it is facing

is that of hedging risks (see Hull [28]). The Greeks or risk parameters are

used to address this problem.

We can use the following fact to simplify the option Greeks for linear

option valuation theory:

(4.37)

This can be proved by considering the relation

(
SN'(dIl ) _ (/) ( ) (N'(dIl)In Ke r(T t)N'(d2) - In S K + r T - t + In N'(d2) (4.38)

and the definition of the cumulative distribution function given in equa-

tion (3.1).

From equation (3.1), we get

N'(d ) = _1_e-di/2-I ..j21r , (4.39)
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and

(4.40)

Substituting equations (4.39) and (4.40) into the last logarithm of equa-

tion (4.38) gives

(4.41)

Usingequations (4.33) and (4.34), we can write

di - d~ = 2ln(Sj K) + 2r(T - t). (4.42)

Therefore, from equations (4.41) and (4.42) we get

In (~:~~~\) = -In(Sj K) - r(T - t).

Plugging the last expression into equation (4.38) proves the relation

I ( SN'(dll )-n Ke r(T t)N'(d2) - 0,

which is equivalent to (4.37). '
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Similarly,

(4.43)

We now use equations (4.37) and (4.43) to simplify the options Greeks as

follows.

Theta

The rate at which the price of the option changes with time with all else

remaining the same is called theta and it is denoted bye. It is sometimes

referred to as the time decay of the option. The name 'time decay' is used

since theta measures the rate at which the option value changes with time

if the asset price doesn't move (see Wilmott [61]). Hence, the theta of

a call option is obtained by differentiating both sides of equation (4.32)

with respect to t as follows:

e - Dc,
call - at

= _ aSN'(dil _ K -r(T-t)N(d )
2.,f'lCt r e 2
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by using equations (4.33) and (4.34) and then applying equation (4.37).

For a put option, we differentiate both sides of equation (4.36) with re-

spect to t to get theta as follows:

8 -!t£
put - 8t

= _ aSN'(-dJ) + K -r(T-t)N(_d )2..,j1Ct r e 2

by using equations (4.33) and (4.34) and then applying equation (4.43).

Delta

The delta, .6., of an option is the sensitivity of the option to the underlying

asset's price S. It is the rate at which the option value changes with

respect to the asset's price and is therefore the first derivative of the

value of the option with respect to the asset price. It is the slope of the

curve which relates the price of the option to the price of the underlying

asset. Hence, to get the delta for a call option we differentiate both sides
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ofequation (4.32) with respect to S to get

A _ Bc«
Dcall - 8S

(4.44)

on applying equations (4.33), (4.34), and (4.37).

For a put option, we differentiate both sides of equation (4.36) with re-

spect to S as follows:

~ _ 8p
put - 8S

= N(dd-1

by applying equations (4.33), (4.34), and (4.43) and then using equa-

tion (4.20).

Gamma

An option's gamma, r, is the rate at which the delta of the option changes

with respect to the underlying asset's price. It is therefore the second

partial derivative of the option position with respect to the price of the
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underlying asset S. For a European call option, r is given by

(4.46)
_ N'(dI)
-aS~

by using equations (4.33) and (4.44).

For a put option, gamma is obtained by different.iat.ing both sides of equa-

tion (4.45) once with respect to S as follows:

_ N'(dI)
-aS~

by using (4.33).

Speed

The rate at which gamma changes wit.h respect to the price of the st.ock

S is called the option's speed. Hence,

Speed = ~~.

The speed for a call option can be obtained by differentiating
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equation (4.46) with respect to S as follows:

S d - a ( N'(dl) )pee - as us.,f'JCi. . (4.47)

We can use the fact that

(4.48)

to simplify equation (4.47). We prove the relation in equation (4.48) as

follows.

Differentiating both sides of (4.39) with respect to d1 gives

N"(d ) = -d _1_e-dU2
1 l~

Hence, from equation (4.47), we get

by using equations (4.33) and (4.48).
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Since

fcall = fput,

this means that the speed of a put option equals to that of a call option.

Vega

In all the risk parameters considered above, the implicit assumption we

have made is that volatility a is constant. In practice, volatility changes

with time, which means that a derivative's value is liable to change due to

movements in volatility and also due to changes in the price of the asset

S and the passage of time t. The parameter vega, also known as zeta or

kappa (see Wilmott [61]), is the sensitivity of the price of the option to

volatility. It is the rate at which the price of the option changes with

respect to the volatility of the underlying asset.

To compute vega for a call option, differentiate both sides of equation (4.32)

with respect to a to get
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by substituting equations (4.33) and (4.34) and then using equation (4.37).

For a put option we differentiate equation (4.36) with respect to (J as

follows:

V -0!.egaput - Da

= SVT - tN'( -d1)

on substituting equations (4.33) and (4.34) and then using equation (4.43).

Rho

The sensitivity of the option value to the interest rate r used in the

Black-Scholes formulae is called rho. To get the rho for a call option,

differentiate both sides of equation (4.32) with respect to r to get

rho ~call = 81.

= :r [SN(d1) - Ke-r(T-t)N(d2)]

= K(T - t)e-r(T-t) N(d2)

on substituting equations (4.33) and (4.34) and then applying equation (4.37).
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For a put option, rho is obtained by differentiating both sides of equa-
I

tion (4.36) with respect to r to get

h - 8p
r Oput - 8T

by using equations (4.33) and (4.34) and then applying equation (4.43).

4.2 Modified Option Valuation Theory

In the standard option valuation theory discussed in Section 4.1, we take

the market (risk-neutral) dynamics as given and then calculate derivative

prices.

However, when we have a feedback loop or market frictions it means that

derivative hedging will lead to market dynamics. The feedback loop and

market frictions resulting from hedging renders the use of the standard

Black-Scholes model inappropriate in option valuation.

Nonlinearities in diffusion models can arise from insect dispersal, heat
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conduction and illiquid market effects. Our focus in this work is on the

nonlinearity arising from illiquid market effects.

Two primary assumptions are used in formulating classical arbitrage pric-

ing theory. These are the frictionless and competitive markets assump-

tions. Relaxing the competitive market assumption can completely change

the standard theory. As such, manipulation of the market may become

an issue and pricing of an option becomes market structure- and trader-

dependent. Under market manipulation, the price process of a security

can depend on the entire history of the investor's past trades up to the

current trade. Eliminating this path-dependent condition rules out mar-

ket manipulation and allows use of the classical arbitrage pricing theory.

The notion of liquidity risk (see Cetin et ol. [11] for further details) is

introduced on relaxing the two assumptions above. This risk, roughly

speaking, is the additional risk resulting from timing and the size of a

trade. Cash liquidity risk is of concern in a situation where a firm's in-

volvement in derivatives is more pronounced [13].

The nonlinear Black-Scholes PDEs in illiquid markets have been derived
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in order to model the following.

1. Transaction costs arising in hedging of derivatives. The models un-

der this category are called the (quadratic) transaction-cost models.

The markets involved here are said to be markets with friction.

2. Feedback effects due to large traders. The models here are subdi-

vided further into

1. the reduced-form SDE models, and

11. the equilibrium or reaction-function models.

Two assets are used in all the models above. These are

1. a bond (or a risk-free money market account) with interest rate

r 2: 0, and

2. a stock. This is an illiquid asset, i.e. its price is affected by trading.

The stock has no maturity date while a bond matures at the end of the

term. The interest rate r is a spot rate of interest and is assumed to be

zero in the illiquid market models above. The value in the money market
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account (or bond's value) is given by

ft rd«= eJo (4.49)

since rt = r, i.e. the rate of interest rt is assumed to be constant. For

modelling purposes, the bond (or money market account) has been taken

to be a numeraire whose value has been set at 1 [since r = rt = 0 in

equation (4.49)] so that the value of the bond (or money market account)

throughout time t is B; == 1. This choice of the value of the bond simpli-

fies the model (see Shreve [55]). It is assumed that the bond's market is

liquid (or perfectly elastic). With this assumption, large amounts of the

bond are traded without affecting its price. This is a reflection of the fact

that money markets are more liquid compared to the stock markets [23].

There are two types of investors in all these nonlinear models. These are

fundamental investors and hedgers.
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4.2.1 Transaction-Cost Models

The market under the standard option valuation model discussed in Sec-

tion 4.1 is assumed to be frictionless. Hence, there are no transaction

costs incurred in trading either the stock or the option. This assumption

is not realistic given the scale of hedging activities on many financial mar-

kets (see Bordag and Frey [6]). For instance we cannot avoid telephone

charges in the process of placing an order.

The frictionless market assumption has been relaxed by Cetin et al. [11,

12] who have put forward the predominant model in the transaction cost

model for illiquid markets. In the economy under consideration, the study

is on the trading of a stock and a bond (or money market account).

In the transaction-cost model, a fundamental stock price process Sp fol-

lows the dynamics

for a Brownian motion Wand constant parameters J.L E lR.and a > O.

The stock price Sp is called the bid price.
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In the classical theory discussed in Section 4.1, the trader receives the

same price for any order size, i.e. the trader does not move the market.

In the economy under transaction costs the price received depends on the

hedger's order size, i.e. the trader moves the market.

Option prices increase due to transaction costs [12]. These costs make

the price of a traded security dependent on the size of a trade (see Cetin

et al. [11]). When trading a = at shares, the transaction price to be paid

by the investor at time t for his purchase/sale is

(4.50)

The liquidity parameter p models the liquidity of the market. When

p = 0 we have a perfectly liquid market that was described in Section 4.1.

Large p means that trading has a substantial impact on the transaction

price. The prices here are therefore a continuum of stochastic processes

which are indexed by trade size. The transaction price S't (a) is called the

ask price. Hence, a bid-ask-spread whose size depends on the amount

a is modelled by the transaction price in the model (4.50). This leads
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to transaction costs which are proportional to quadratic variation of the

stock trading strategy as shown in Cetin et al. [11].

To explain the statement above in more detail, consider a self-financing

trading strategy (<pt, (3t)t>o, where <Pt and (3t are the stock and bond po-

sitions at time t respectively.

Definition 4.2.1 A self-financing portfolio is one where the change in

its value only depends on the change of the prices of the asset(s).

From this definition, the change in the marked-to-market (or paper) value

of the strategy at time t whose value is

(4.51)

is given by

(4.52)

since (3t is constant throughout time t. This marked-to-market value is

the value of the position using current market prices. For a self-financing

strategy (<Pt,(3dt20, the marked-to-market value in equation (4.51) repre-

sents the portfolio's value under the classical price-taking condition that
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the trader does not move the market.

The price process of the security in the transaction-cost models is in-

dependent of the past. This is the Markov property discussed in Sub-

section 3.1.3. A Markovian trading strategy is a trading strategy of the

form cI>t = </>(t, SP) where </> is a smooth function. The investor's trading

strategy cI>t has a temporary impact on the price process since the price

process is independent of the past.

Since cI>t = </> = us(t, SP), the quadratic variation for the stock trading

strategy (cI>t, f3t)t>o is obtained as follows.

Since the deterministic component of a SDE is not important in comput-

ing the quadratic variation of a given process, we will assume that the

deterministic component is zero for simplicity. We now let

or

(4.53)

ASENO Ut!1VERSITY
S.G. S. LIBRARY
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where Wt is a Wiener process. By Theorem 28, pp. 17 in Protter [48], the

quadratic variation of the process {Xt, t 2: O} satisfying the'--'SDE (4.53)

is given by (X) t = (W, W) t = t (see Definition 3.1.5).

Suppose that the coefficient of dWt in equation (4.53) is a( i- 1). We can

rewrite equation (4.53) as

(4.54)

The quadratic variation of the process {Xt, t 2: O}satisfying the SD E (4.54)

is given by

(X) t = (aW, aW) t = a2t

or

Suppose that instead of the arithmetic Brownian motion process described

in equation (4.54) above we have a geometric Brownian motion process

{SP, t 2: O} such that
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or

dS~ = aS~dWt. (4.55)

The quadratic variation of Sp in equation (4.55) becomes

or

Hence,

(4.56)

We now introduce a semimartingale e, E ILsuch that IE:{J~<p;ds } < 00

for all t 2 0 where IL is a left continuous process. To enable us derive

the quadratic variation when semimartingalesare involved, we let ¢ and

S be continuous quadratic variation functions, where ¢ is smooth. Then

( <p) t = (¢ 0 S) t

= 1t ¢'(Ss, s)2d (S) s

= 1t ¢~d (S) s.

(4.57)

Hence, the change in quadratic variation of a semimartingale <Pt in



CHAPTER 4. BLACK-SCHOLES OPTION PRICING THEORY 78

equation (4.57) becomes

d (<p) t = ¢~d (S) t. (4.58)

Substitution of equation (4.56) into (4.58) gives

(4.59)

or

We now apply Ito formula to the process (u(t, SP))t20 the way we did to

obtain (4.3) to get the dynamics

The liquidity parameter p in equation (4.51) is zero since the equation

is for standard option valuation. If p > 0, then the liquidation value of

the portfolio is lower than its marked-to-market value (see Bordag and

Frey [6]). This is because transaction costs incurred in the process of

trading reduce the marked-to-market value ~M given in equation (4.51).

The amount by which the change in the marked-to-market value reduces
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as trading goes on is an extra transaction cost which results from the
\

limited market liquidity (see Frey and Polte [24]), i.e. when p >'1) a trader

incurs an extra transaction cost. The amount of this extra transaction

cost is -pS?d (<p) t (see for instance Bordag and Frey [6]). Adding this

extra transaction cost into equation (4.52) gives the wealth dynamics of a

self-financing strategy for a continuous semimartingale <Pt with quadratic

variation (<p) t as

(4.61)

A self-financing strategy by construction docs not generate cash flows for

all times t E [0,T), i.e. stock purchase/salemust be obtained through

borrowing/investing in the money market account.

Substituting equation (4.59) into (4.61) yields the dynamics of ~ M, i.e.

(4.62)

where ¢s = ~~and <Pt = ¢(t, S?). Equations (4.61) and (4.62) are the

results from Theorem A3 of Cetin et al. [11].
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Since

~M = U(t, S~),

this means that

d~M = du(t, S~).

Equating the right hand side of equations (4.60) and (4.62) gives

us(t, S~)dS~ + (Ut(t, S~) + ~(j2(SP)27J,SS(t, S~)) dt =

<p(t, S~)dS~ - pSp ((j<Ps(t, SP)SP) 2 dt.
(4.63)

Using the relation Us = <pmeans that the random terms in equation (4.63)

are equivalent. We equate the deterministic terms and simplify to get

(4.64)

since <Ps= ues- Rearranging equation (4.64) gives the nonlinear PDE for

uas

The hedge-cost u(S, t) of the terminal claim h(ST) is given by the solution

of equation (4.65) which we intend to get.
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If p = 0, then the asset's price Sp in equation (4.65) follows the standard

Black-Scholes model with constant volatility (J.

4.2.2 Feedback Models

Reduced-Form SDE Models

The assumption made in this modelling approach is that investors are

large traders as their stock trading strategy affects equilibrium stock

prices [6J.

We now consider some Brownian motion Wt and two constants (J and

p ~ 0 where (J is volatility and p is a liquidity parameter. The param-

eter p is a characteristic of the market. This parameter determines the

strength of the price impact and it does not depend on the payoff of the

hedged derivatives. The value of p is fixed in the process of trading. Use of

the parameter p results into a model that can be viewed as a perturbation

resulting from the standard Black-Scholes model (4.1). The parameter p

controls the size of this perturbation.
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If a semimartingale ~t represents a trader's stock trading strategy, the

stock price process S, is assumed to satisfy the SDE

(4.66)

The semimartingale ~t is a right-continuous process ~+ with ~t= lim, >t ~s
-t

for ~t shares at time t. By choosing the strategy (~t, (3t)t?o, we are im-

posing exogenously rather than deriving the form and size of the hedger's

trades' price-impact. This simplifies the analysis considerably. The prop-

erty of the resulting stock-price dynamics is that if the large trader sells

the stock, i.e. .6.~t < 0, the stock price S, falls (and if he buys, i.e .

.6.~t > 0, the price rises) by pSt_.6.~t since the agent has increased (lim-

ited) the supply of shares. The notation St- stands for the left limit

lim •.s.tSt. If the representative hedger does not trade, i.e. ~t == ° and/or

p = 0, the price of the asset follows the standard Black-Scholes model with

constant volatility (J since the deterministic component in equation (4.66)

vanishes when p (or d~t) = ° leaving behind a linear Black-Scholes model.

The asset price process resulting when the liquidity parameter takes the

value p and if the large trader uses a trading strategy ~t is denoted by
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St(p, <Pt). Suppose that the hedger uses a Markovian trading strategy

<Pt = ¢(t, St) for a smooth function ¢ and that ¢ satisfies the constraint

1 - pS¢s(t, S) > 0 for all (t, S).

Given a liquidity parameter p, the constraint above limits the permissible

variations in the large trader's stock trading strategy.

Applying Ita formula to the stock price process St = St(p, <Pt) in equa-

tion (4.66) gives the dynamics

(4.67)

where the function v is the adjusted volatility and is given by

v(t S) - <7, - I-pSq,s(t,S)' (4.68)

while the function l/ is given by

(t S) - p ('" (t S) <7
2S2q,SS(t,S))

l/ , t - I-pSq,s(t,S) 'Pt, + 2(1-pSq,s(t,S))2 ,

where ¢ss = fJ. See Frey [22]for a detailed derivation of equation (4.68).
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We note that the adjusted volatility v( t, S) increases (decreases) relative

to the constant volatility a if ¢s > 0 (¢s < 0). This means that if a pos-

itive (negative) feedback strategy is used by the trader, when the stock

price rises, this calls for additional buying (selling) and when it falls the

hedger needs to sell (buy). Market movement will be accelerated (slowed)

by this hedging demand. The dynamics of S are therefore affected by the

form of the strategy <I>t. This feedback effect (i.e. positive or negative ¢s)

gives rise to the wealth dynamic's nonlinearity. The magnitude of the

feedback effect of the strategy used by the hedger is determined by pS

in equation (4.68). Large p implies a big market-impact of hedging since

this value of p leads to large pS.

Using model (4.66) and Definition 4.2.1 we derive the nonlinear Black-

Scholes PDE resulting from the SDE (4.67) as follows.

Suppose that ~M = u(t, St) and the stock trading strategy used is <I>t =

¢( t, St) for smooth functions u and ¢. Applying Ito's formula to the

process (u(t, St(p, <I»))t2:0 gives ¢ = Us. We get the gains from the self-

financing strategy <I>L as follows.
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Since

where VOM is an initial investment and ~M is the time t marked-to-market

value, this means that the gains from the strategy are given by

C, = ~M - VOM

= it dVsM.
(4.69)

Hence, from equations (4.52) and (4.69) we have

The function u(t, St) according to Bordag and Frey [6],and Frey [22]must

satisfy

(4.70)

Since 1= us, then 1s = ues- We substitute equation (4.68) into (4.70)

and then use 1s = ues to get the nonlinear PDE for u(t, S) as

1 0'2 S2 0
Ut + 2 (l-psuSS)2 ues = , U(ST' T) = h(ST), ST ~ O. (4.71)
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The market depth at time t is given by p~.

Equilibrium or Reaction-Function Models

There are two types of traders in the market modelled by equilibrium

models. The first type of traders are reference traders who are ordinary

investors. These traders are the majority in the market. Such traders

are "price-takers". By this we mean that the traders cannot influence the

asset price on the market. These traders trade in such a way that the

equilibrium stock price S, follows the dynamics

d.S, = a(St, t)dt + v(St; t)dWt.

The price S, is the proposed price of the stock [6]. We can consider all

reference traders as a single aggregate reference trader who represents a

total action of all reference traders [54]. We have two limitations for the

single aggregate reference trader. These are

1. an aggregate stochastic income Ft, i.e. the total income of all the

reference traders, which can be described by the equation
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and

2. a demand function D(St, Ft, t) which is a function of the income F;

and of the equilibrium price process St.

The second type of traders are programme or large traders. These traders

trade the asset following a Black-Scholes dynamic hedging strategy. The

main reason for trading of an asset is to hedge their position against the

risk. Programme traders are large enough to change the price of the asset

corresponding to their own trading strategy [54].

The large trader's demand function can be represented by

where c; is the volume of options hedged and Cpt is a smooth function of

time t representing the demand per security hedged.

The price process of the asset is determined by some fundamental value

F and a market equilibrium. The assumption made in the model by

Papanicolaou and Sircar [44] is that the supply of an asset So is constant

and that D is the demand of the reference traders relative to the constant
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supply So. This means that

D(S, F, t) = 50D(S, F, t),

where F is the value taken by the aggregate stochastic income Ft.

The relative demand function of both the reference and large traders at

time t is

G(S, F, t) = D(S, F, t) + pif>(S, t),

where p is the liquidity parameter (i.e. ratio of the volume of options be-

ing hedged to the total supply of the stock) .and pif>(t, S) = p¢(t, S) = 0:

is the stock position of a large trader for a smooth function ¢.

We now set the overall demand and supply equal to one at each point in

time. This means that market equilibrium will be equal to one, i.e.

G(St, Pt, t) = D(St, Pt, t) + p¢(t, St)

=1.
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By determining the relationship between the stock price S, and the income

F; in the function

we assume that the function G is smooth and satisfies the conditions of

the Implicit Function Theorem [54] (see Theorem (§C.6), in Evans [18],

pp. 633).

In this case we obtain

where 'IjJ is some smooth reaction function.

The smooth reaction function '1/) is a function of Ft and defines the process

St as a process that follows the same Brownian motion as the process

FL' The fundamental-value process FL is assumed to follow a geometric

Brownian motion with volatility a. The reaction function 'IjJ takes values

in 1R+ and is also assumed to be of the form 'I/)(j, ex) = f).. (ex) for some
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increasing function A (see [46]). Hence,

(4.72)

Assuming that the trading strategy of the large trader is of the form

p<p(t, St) for a smooth function <p, Bordag and Frey [6] apply Itc's formula

to equation (4.72) to get

where Act = ~~. We now assume that

a.s. (4.74)

We can view the constraint in (4.74) as an upper bound on permissible

variations of the large trader's strategy [6].

Bordag and Frey [6] have shown that rearranging and integrating the

inverse of the left hand side of inequality (4.74) over both sides of
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equation (4.73) gives the dynamics of S, as

Reasoning the same way as in the reduced-form SDE models gives the

PDE

Sr ~ a (4.75)

for the value function u( t, Sf,) of a self-financing strategy a. When

.>.(a) = exp(a) as in Platen and Schweizer [46] we have X = \:. and

equation (4.75) reduces to (4.71). When the. transformation .>. (a) = I~a

is used in (4.75), the same PDE reduces to

( )

2
U + 2(]"2 S2U I-pus = a

t 2 SS l-puS-pSuSS ' u(Sr, T) = h(Sr), S ~ a (4.76)

since a = pcp = pus.
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4.2.3 Variants of Nonlinear Black-Scholes Equations

The nonlinear Black-Scholes PDEs (2.2), (4.65), (4.71), (4.75), and (4.76)

are of the form

1 2 2 2u, + 20" vp(pus, pSuss)S USS = 0, U(ST, T) = h(ST), ST::::: 0,

(4.77)

where the "volatility" O"vp(pus, pSuss) is an increasing function of the

"gamma" USS.

The parameter p is often considered to be small. Therefore, replacing

v; with its first order Taylor approximation around p = 0 using the

linearization v;(pus, pSuss) ~ 1+ 2pSuss reduces equation (4.71) to the

PDE (4.65). This linearization can be shown by taking

= 2Suss

so that
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The Korteweg-de Vries

Equation

Consider the Korteweg-de Vries equation (2.3) in Section 2.7. It is the

simplest wave equation. We seek for a traveling wave solution which has

the structure

u(x, t) = l/(O, ~ = x - Ct, (5.1)

where f ,x E lR and t > O. This is a wave of permanent form and the wave

translates to the right with speed C > O. By the chain rule we have

Ut = -Cl/'(O, UX = l/'(~), and V'xxx = l/III(E)·

93
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Substituting these expressions into the KdV equation (2.3), we conclude

that u solves the KdV equation, provided that u satisfies the third order

ODE

-Cv' + 6vv' + i/" = 0. (5.2)

The ODE (5.2) can be solved in a closed-form since integrating it gives

(5.3)

where 61 denotes some constant. Multiplying this equation by v' gives

(5.4)

Assume that the traveling wave is localized, that is, at large distances, the

solution 'u( l, x) together with its derivatives are small. This means that

lim u(t, x) = lim ux(t, x) = lim uxx(t, x) = 0,
X--+±CXl X--+±CXl X--+±CXl

where Uxx = ~:~.We now impose the localizing boundary conditions

lim v(~) = lim v'(~) = lim v"(~) = 0.
€--+±CXl €--+±.CXl €--+±CXl

(5.5)
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Integrating equation (5.4) gives

(5.6)

where 62 is also a constant of integration. With these localizing conditions,

the function u with the form (5.1) is called a solitary wave. The localizing

conditions imply that for equations (5.3), (5.4) and (5.6),

Hence, equation (5.6) simplifies to

v' = ±vJc - 2v.

We take the negative sign for computational convenience. If we let

10
. _ dq .

( - - 0 qJC-2q + (0, (5.7)

where ~o is an integration constant and then substitute
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it follows that

~ = -C sech/z tanh xdx

and

V C3/2 2q C - 2q = -2-sech x tanh x.

Then, equation (5.7) becomes

(5.8)

where e is implicitly given by the relation

(5.9)

Combining equations (5.8) and (5.9) we compute

We need to check routinely that II a.', was defined actually solves the

ODE (5.2). What we get is that

u(x, t) = ~sech2 ( ,;; (x'- Xo - Ct)) (x E JR,t ~ 0) (5.10)
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is a solution of the KdV equation for each C > 0 and Xo E ITt We call

a solution of this form a soliton or solitary wave solution because equa-

tion (5.10) describes a localized travelling wave solution (see Figure 5.1).

The localized wave travels with unchanged shape .

..

Amplitude

0.8

...
~~--~--~--~----L---~s~--~--~--~==~~--~ ••·

"

Figure 5.1: A solitary wave solution of KdV equation (5.10) for C = 2

and Xo = 2 calculated at t = 1.

To compute the wave speed we, rewrite equation (5.6) by assuming that

(5.11)
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where A is the wave's amplitude (see Figure 5.1).

Equation (5.11) gives

C=2A.

These solitons occur in nonlinear optics, fluid mechanics, and other non-

linear phenomena.

The Korteweg-de Vries equation (2.3) is a nonlinear dispersive equation

for modelling surface waves in water. It combines dispersion (i.e. the term

with uxxx) and nonlinearity. The equation is used in studying solitary

waves.



Chapter 6

Results and Discussion

The nonlinear Black-Scholes PDEs considered in Chapter 4 are all singu-

lar perturbations since they are modifications of the linear Black-Scholes

PDE (4.9) through addition of a small multiple p times a higher order

term ues-

The questions of existence and uniqueness of the solution to the nonlinear

Black-Scholes equations discussed in Section 4.2 have been addressed in

Theorem 3.1 of Frey and Polte [24]. General results in [24] have shown

that a unique solution to equation (4.77) exists. These results are there-

fore applicable to the nonlinear equations (2.2), (4.65), (4.71), (4.75),

and (4.76) since equation (4.77) is the general form of all the nonlinear

Black-Scholes equations above.
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Existence of the solution means that there is a solution to the problem
\

satisfying all given conditions while uniqueness of the solution means that

the problem has no more than one solution.

6.1 Solution to a Nonlinear Black-Scholes

Equation

Now that a unique solution to the boundary-value problem (4.65) exists,

we will solve it by direct integration. The primary solution methods we

will apply to obtain its solution will be transformations and traveling

wave solution.

To classify the nonlinear Black-Scholes equation (4.65) we differentiate it

twice with respect to the spatial variable S and set w = uss to get

(6.1 )

where

ow
ui; = at'

, ow
Ws = os' and
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The general form of equation (6.1) is given by

F(S, t, w, Ws, un; WSS, WSt, Wtt) = 0,

where

and

We can rewrite equation (6.1) as

(j2t (1 + 4pSw)wss = f(S, t, w, Wt, ws).

Equation (6.3) is a special case of equation (6.2) with

F(S, t, ui.p, q, d) = (j2t (1 + 4pSw)p - f(S, t, w, uu, ws) = 0, (6.4)

where

p = uiss, q = WSt = 0, and d = Wtt = O.

Since from equation (6.4) we have

a = 8F = (j2S2 (1 + 4pSw) b = 18F = 0 and c = 88F = 0
8p 2 : 28q' d'

101

(6.2)

(6.3)



CHAPTER 6. RESULTS AND DISCUSSION 102

then, the discriminant of equation (6.4) is zero.

Hence, the nonlinear Black-Scholes equation (4.65) is a scalar parabolic

equation.

If we let 1/(0 be a twice continuously differentiable function, and x and t

the spatial and time variables respectively, then there is a traveling wave

solution of the form

V(x, t) = I/(~), where ~ = x - Ct (6.5)

for all (x, t) E lR.x (0,00). The function V(x, t) in equation (6.5) is

interpreted as the strength of the signal. Equation (6.5) is a bounded

solution for the signal or wave profile at time t. When the conditions

1/1(~) > 0 at ~ -7 +00 and 1/2(~) > 0 at ~ -7 - 00 are added to the equation

that is solved to obtain V(x, t), the traveling wave solution V(x, t) is

called a wavefront solution. The wavefront solution is termed as a pulse

if V(x, t) approaches the same constant values at both plus and minus

infinity. Since the initial signal V(x,O) = I/(x), the profile at time t is

represented by I/(x - Ct) which is an initial profile translated to the right
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Ct spatial units [34]. The constant C represents the wave speed for a

wave propagating undistorted along the characteristics x - ci.= constant

in spacetime [34]. We interpret the variable E = x - Ct in equation (6.5)

as a moving coordinate [34].

Proposition 6.1.1 Ifl/(~) is a twice continuously differentiable function,

and x and t are the spatial and time variables respectively, there exists a

traveling wave solution to

v; + [D(V) (Vx + ~V)L = 0 in lR x (0,00) (6.6)

of the form given in equation (6.5) for all (x, t) E lR x (0,00) and D(V) =

<722V such that V (.1:, t) is a traveling wave of permanent form which trans-

lates to the right with constant speed C > O.

Proof 6.1.2 Applying the chain rule to equation (6.5) gives

v; = -Cl/'(E), VT. = l/'(E), and VT.X = l/"(E)·

Substituting these expressions into equation (6.6) and since D(l/) = D'(l/)l/

we conclude that l/(E) must satisfy the nonlinear second order ODE

-Cl/' + Dl/" + D'(l/,)2 + Di/ = 0 (6.7)
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and hence V solves equation (6.6).

We also assume that the traveling wave is localized.

Equation (6.7) can now be solved in a closed-form. First write it as

~(Dv') + ~(~Dv - Cv) = 0 (6.8)

since D(v) D'(v)v. Integrating equation (6.8) we get the standard

form [34]

(6.9)

where K, is a constant of integration. Imposing the localizing boundary

conditions (5.5) to equation (6.9) means that K, = O. Rearranging equa-

tion (6.9) after applying the localizing boundary conditions (5.5) yields

a2 , C a2 2-vv = v - -v2 4 . (6.10)

since D(v) = ;2V.

Introducing the two states of the signal at infinity (i.e. Vl(~) > 0 as
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~ -7 +00 and V2(~) > ° as ~ -7 -00) to the right hand side of (6.10) gives

Therefore, the wave speed is given by

Since n. = 0 from the localizing boundary conditions (5.5) and

D(v) = "; v, simplification of equation (6.9) further gives

v' = ;2(c - ~2v):

From this equation we conclude that v(~) satisfies the first order linear

autonomous ODE

_ 2dll = V _ 4C
d~ ,,2 .

This equation is variable separable. Integrating it and simplifying gives

so-s
v(~) = e 2 + ~~, a > 0, (6.11)

where ~o is a constant of integration.
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To get a twice continuously differentiable solution of equation (6.6) on JR

we use equations (6.5) and (6.11) to express it as

xo-(x-Ct)
V(x,t)=e 2 +!~, a>O, t>O, (6.12)

where (0 = Xo - Ct = Xo since the initial time t = 0.

In order to solve equation (4.65) analytically by direct integration we

proceed as follows:

Theorem 6.1.3 IfV(x, t) is any positive solution to the nonlinear ground-

water equation \It + [D(V) (Vx + ~V) L = ° in JRx (0,00), then,

u(S t) = 1 (-v'se Ctt
so + S(1 -lnS)(l _ Q) + St (,,2 _ C2) _ ~eCt+so)

, p 4 ,,2 16 ,,2 16C

solves the nonlinear Black-Scholes equation Ut+ ~a2S2uss(1 +2pSuss) =

° for S E JR, x E JR, t > 0, D(V) = "22V and for each So E JR, C > 0,

a > ° and 1 > p > 0.

Proof 6.1.4 Since the dynamical process (4.65) is first order in t, its



CHAPTER 6. RESULTS AND DISCUSSION 107

solutions are expected to be uniquely prescribed by their initial values

u(8, 0) = J(8), -00 < 8 < 00.

We transform the reaction-advection-diffusion equation (6.1) by using two

transformations. One of the transformations is

_ v
W - pS.

To understand the motivation behind this transformation we write it as

follows:

_ w
V - (pS)-1

(6.13)
-~
- (pS)-1

since w = USS. Equation (6.13) has the form of a dimensioned variable

divided by a variable with the same dimension. We refer to the variable

(p8)-1 in the denominator as a scale [34]. This means that the parameter

gamma (i.e USS) is being measured relative to the market depth p~.
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The other transformation is

x = ln S',

which is motivated by the fact that the stock price S follows a geometric

Brownian motion, so that inS describes a Brownian motion. Then, inS

should satisfy a diffusion equation.

Applying these two transformations to equation (6.1) and simplifying it

gives

(6.14)

where

av
Vt = at'

av
Vx = 8x' and 82v

Vxx = ax2'

If we let

v = V-1
4

we get

v-lft _ Vx and u = \I"",
t - 4' Vx - 4' xx 4'

where

vt=~~, v'!: = 8V and V = a
2v

ax' xx ax2 .
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Substituting these expressions into equation (6.14) and simplifying the
\

results gives

(6.15)

where VVT represents a nonlinear advection or transport term. Equa-

tion (6.15) is a homogeneous second order nonlinear parabolic PDE of

degree one.

Taking the diffusion coefficient to be D(V), we can rewrite equation (6.15)

as

lit + D(V)Vxx + D'(V)Vx2 + D(V)Vx = ° III lRx (0,00), (6.16)

where D(V)Vxx is a nonlinear Fickian diffusion term [34]. Comparing

the terms in equations (6.15) and (6.16) we conclude that D(V) = <722 V.

Therefore, D'(V) = ;2. The equation (6.16) can also be rewritten as

lit + D(V)Vxx + [D'(V)Vx + D(V)] Vx = ° in lR x (0,00). (6.17)

We recover from the variable diffusion constant in equation (6.17) a non-
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linear advection term [34]

[D'(V)V't + D(V)] V't.

This implies a propagation signal of speed (see [34])

D'(V)Vx + D(V).

From the advection-diffusion equation (6.17), the Fick's law takes the

form [34]

¢(V) = D(V) (Vx + ~V) , (6.18)

where ¢(V) is the flux. We substitute equation (6.18) into (6.17) to get

Vi + ¢(V)x = 0, c(V) = ¢'(V), (6.19)

where

¢(V)x = tx¢(V)

and the characteristic speed c(V) is a given smooth function of V. The

nonlinear equation (6.19) is the same as equation (6.6).
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Hence, from equation (6.6) we get the determined system

(6.20)

since D(V) = ;2 V.

Before assuming any form of a solution to the nonlinear PDE (6.6) we

consider the groundwater equation (see equation (1.3.19) on pp. 31 of

Logan [34]) given by

(6.21)

where I = I(x, t) is pressure, Ix = ~~,« is the porosity, 6 is permeability

of the fluid, I is the viscosity of the fluid, V is the density of the fluid with

positive x measured downward, and 9 is the acceleration due to gravity.

In this equation the parameters 6, I and 9 are assumed to be positive

constants. The porosity r; is also assumedto be constant. When 9 = 0,

equation (6.21) becomes a porous medium equation used for modelling

say a fluid (e.g., water) seeping downward through the soil. In a given

volume of soil, a fraction r; of the total space (or volume) is available to

the fluid while the remaining space is reserved for the soil itself [34] (see
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Figure 6.1).

Figure 6.1: A chemical dissolved in a liquid contained in a porous medium

of cross-sectional area A.

Comparing equations (6.20) and (6.21) we conclude that equation (6.20)

is of the form (6.21) when K, = -1, ~ = ;2, Ix = Vx, and g = ~.

Groundwater equations are applied in nonlinear problems of suspension

transport in porous media e.g. a contaminant transport in groundwater

(see [34, 47]).
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Substituting

v = V-I
4

into (6.12) gives the solution to equation (6.14) as

xo-(x-Ct)
V(x t) = Ie 2 + ..Q. - I o » ° t > °'4 0"2 4' , . (6.22)

Substituting the transformations

uss = W = v" and x = InSpc'

into (6.22) we get the solution to equation (6.1) as

1 (1 CL+so C 1)
USS = - -e 2 + - - -pS 4vts (72 4 (6.23)

for all p > 0, S > 0, a > 0, and t > 0, where

xo = so·

Hence, the parameter gamma given by uss in equation (6.23) is a solitary

wave solution to equation (6.1).
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Integrating USS in equation (6.23) twice with respect to the spatial vari-

able S, we arrive at the (Black-Scholes formula) solution u(S, t) of the

nonlinear Black-Scholes PDE (4.65) (see Theorem 6.1.3).

REMARK 6.1.5 We call the solution USS in equation (6.23)

1. a solitary wave solution or simply a soliton as the solution uss

decays to zero at large distances, i.e, lims-toouss = 0 [see equa-

tion (6.23)], and

2. gamma when taken as a risk parameter.

6.2 Applicability of the Solution and the

Option Greeks

The stock price data from the Nairobi Stock Exchange will be used to

plot curves of the solution of the nonlinear Black-Scholes equation and

the risk parameters derived from the solution in order to test whether

the solution is applicable in a real life situation. A subset of the data for

KenGen and KPLC for the periods between 2nd January 2007 - 24th

December 2007 and 3rd January 2003 - 2nd January 2004 respectively,
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i.e. one year for each company, will be used .
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Figure 6.2: Variation of gamma uss with stock price S for a call option

for C = 2 (KenGen), C = 2.2 (KPLC), So = 0.1, (J = 0.1 and t = 1.

The curves in Figure 6.2 are going from up to down with decreasing value

of the liquidity parameter p.

Figure 6.3 represents a plot of the solution of the nonlinear Black-Scholes

equation (4.65) against stock prices for various values of the liquidity

parameter p. The curves in this figure are going from down to up with
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Figure 6.3: The solution of the nonlinear Black-Scholes equation (4.65)

for C = 2 (KenGen), C = 2.2 (KPLC), 80 = 0.1, (J" = 0.1 and t = 1.

decreasing values of the liquidity parameter p. These rising curves with

rising liquidity (i.e. reducing value of p) mean that the stock markets

tend to become more liquid if derivative markets are introduced. This

supports the empirical evidence by Mayhew [38]. It is clear from these

curves that the gradient Us is positive.

6.2.1 The Greeks

In this subsection we compute the risk parameters resulting from the

solution of the nonlinear Black-Scholes equation. We then plot these risk
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parameters against the prices of the stock. The risk parameter gamma
(

that is represented by uss was obtained in Section 6.1 in the process of

finding the solution to the nonlinear Black-Scholes equation (4.65). As

such, we will not discuss gamma in this subsection.

Delta

We obtain the delta, ~, of the call option u(S, L) by differentiating the so-

lution to the nonlinear Black-Scholes equation (4.65) [see Theorem 6.1.3]

once with respect to the spatial variable S as follows:

~ =Us

1 ( 1 Ct+SQ 1 C ".2 C2)= - --e 2 -lnS(- - -) + t(- - -)p 2../S 4".2 16".2

(6.24)

for all p > 0, S > 0, a > 0 and t > O.

The curves in Figure 6.4 are going from up to down with increasing value

of the liquidity parameter p. These curves show that the gradient which

is given by uss is negative.
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Figure 6.4: Variation of delta Us with stock price S, for a call option for

C = 2 (KenGen), C = 2.2 (KPLC), So = 0.1, a = 0.1 and I = 1.

Speed

Differentiating gamma, uss, in equation (6.23) with respect to the spatial

variable S, we get the option's speed as

1 ( 3 Ct+SQ C 1)Speed = - - -e 2 - - + -pS2 8v's (72 4

for all p > 0, S > 0, a > 0, and t > 0.

Gamma is used by traders to estimate how much they will rehedge by

if the stock price moves. An option delta may change by more or less
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the amount the traders have approximated the value of the stock price

to change. If it is by a large amount that the stock price moves, or the

option nears the strike and expiration, the delta becomes unreliable and

hence the use of the speed.

_ •..-
0.'

-.
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-price

Figure 6.5: Variation of speed uses with stock price S, for a call option

for C = 2 (KenGen), C = 2.2 (KPLC), So = 0.1, a = 0.1 and t = l.

The curves in Figure 6.5 are going from down to up with increasing value

of the liquidity parameter p when the option speed is negative. The curves

converge when usss = 0 and then go from up to down with increasing

value of p when the speed is positive.
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Theta

For a European call option resulting from the nonlinear Black-Scholes

equation (4.65), the parameter theta, 8, is computed as follows:

8 = Ut

(6.25)

for all p > 0, (J > 0, and t > 0. We obtain this value of Ut when the solu-

tion to the nonlinear Black-Scholes equation (4.65) [see Theorem (6.1.3)]

is differentiated with respect to time i, If the price of the asset does not

move, the option price will change by theta with time t.

The curves in Figure 6.6 are going from up to down with increasing value

of the liquidity parameter p.



CHAPTER 6. RESULTS AND DISCUSSION

_ •........

121

PlatbKPLC

1 [§=
- p=
- p=
- p=

2.5

R5

~~5~~~~~m~~~~~~~~~~~~~oo
-price

Figure 6.6: Variation of theta 'Ut with stock 'price St for a call option for
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Vega

The vega, Ua, of a call option u(S, t) to the nonlinear Black-Scholes equa-

tion (4.65) is computed as follows:

U = au
a aa

= 1 (2C S(1 - InS) + St(£. + 2C2
) _ ...£....eCt+so)

p a3 8 a3 8C

(6.26)

for all p > 0, S > 0, CT > 0, C > 0, and t > 0. This value of vega u.;

is obtained on differentiating the solution to the nonlinear Black-Scholes

equation (4.65) with respect to CT.
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Figure 6.7: Variation of vega '/La with stock price S, for a call option for

C = 2 (KenGen), C = 2.2 (KPLC), So = 0.1, a = 0.1 and t = 1.

The curves in Figure 6.7 are going from up to down with increasing value

of the liquidity parameter p.



Conclusions and

Recommendations

We have studied the hedging of derivatives in illiquid markets. Models

where the implementation of a hedging strategy affects the price of the

underlying asset have been considered. The main technical difficulty in

the nonlinear Black-Scholes equation (4.65) came from the nonlinearity

due to transaction costs. The difficulty was overcame by differentiating

the nonlinear equation twice with respect to the spatial variable S. This

led to the principal contribution in this work which is the reduction of the

nonlinear Black-Scholes equation into a nonlinear groundwater equation

that admits a solitary wave solution. Assuming the solution of a forward

wave, a classical solution u(S, t) of the nonlinear Black-Scholes equation

was obtained from the the solitary wave solution uss by integrating ues

twice with respect to the spatial variable S. The solution u(S, t) can be

applied in pricing a European call option at time t > O. We have found

out that the analytic solution to the nonlinear Black-Scholes equation is

123
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nontrivial when the liquidity parameter p > O. We have further found out
\

'--
that transaction costs can be modelled by a parabolic nonlinear equation

via a soliton uss-

The analytic solution to the nonlinear Black-Scholes equation can be used

as a benchmark for numerical methods.

In conclusion, further research needs to be done to solve the nonlinear

Black-Scholes equation using other boundary conditions. Future work

will also involve evaluating the impact of Greek parameters.
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