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ABSTRACT

A normal operator has been an object of much study in operator theory and possesses
many nice properties and non-normal operators in the set of all bounded operators in a
Hilbert space can be classified according to their satisfying some of such properties or
generalizations of some of these properties.

We have classified some of the non-normal operators and investigated the relationship
between these classes. In particular, we have shown that if a bounded operator is
quasinormal then it is subnormal and hence hyponormal. If an operator is hyponormal,
then it is paranormal and consequently its square is paranormal but not hyponormal. If a
- bounded operator is paranormal, then it is k-paranormal and hence is normaloid. We have
also shown that the implications cannot, in general, be reversed.

We have also obtained a set of necessary and sufficient conditions for convexoidity and
characterized those operators for which the real part of the spectrum equals the spectrum
of the real part of the operator generally. ‘
Using the result and the method of Lebow A., we have obtained results which indicate a
connection between spectral sets, the numerical range and normal dilation of an operator.
Using the techniques employed by Paul Halmos in the course of studying reducible
operators, we have investigated the class R; of operators and proved that this class
includes normaloid, spectraloid, paranormal, hyponormal and T+k, where the operator T
is isometric or has G;-property, or hyponormal and k is compact.
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CHAPTER ONE

INTRODUCTION

The theory of normal operators is so successful that much of the theory of non-normal operators

is modeled after it.

If T is a normal operator in B(H), the set of all bounded operators on a Hilbert space H, then it

has a number of interesting properties, among which are the following
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r(T) =T [14]

r(T) =w(T), the numerical radius of T [2]

Convo(T) = W(T) 8]

o(T)and m are spectral sets of T [8]

”Tx” = ”T*x” forall xe H [3]

Forall A €C, T + Al is a normal operator [5]

If M is an invariant subspace of T, then the restriction T l . has property (i). [7]

If M is a reducing subspace 6f T, i.e, M is invariant under T and T*, then T | » 18 normal
(7]

T satisfies the G;-property, that is,

1

N

forall 4 € p(T) (8]

Reo(T)=o(ReT) [8]

Historically, the consideration of non-normal operators began with a famous paper of Wintner

(1929) in an attempt to obtain a characterization of operators T for which () = “T ” He

asserted that for this property it is necessary and sufficient that Convo(T) = W(T).



An example of Paul R. Halmos (1967) [8]shows that this is not the case.

Thus properties (i) and (ii) are not equivalent.

The main aim was to consider generalized operators which satisfy some of the properties that
normal operators fulfill or their generalized versions and find the interconnections, if any,
between some of these classes of non-normal operators.

In chapter 2 of the thesis, some important prerequisites to the understanding of the rest of
chapters are listed. For instance, discussions on some of the important results by Paul R.
‘Halmos are done, that, if a bounded operator T is quasinormal, then it is subnormal. If T is
subnormal, what about its adjoint, T*?

An example of hyponormal operators which are not subnormal is given. The works of Peter A.
Fillmore on hyponormal operators and the Weierstrass approximation theorem and the S. K.
Berberian’s result on numerical range are discussed in this chapter.

Also some essential results on the characterization of non-normal operators are discussed in
chapter 3 providing a proof to show that if 7 € B(H) is paranormal then it is

k-paranormal. If T € B(H)is k-paranormal then it is normaloid.

A prove that if T € B(H)is k-hyperparanormal then it is k-paranormal is obtained. An important
result on Von Neumann’s theory of spectral sets which was first proved by Lebow is used to
obtain some results which indicate a connection between spectral sets, the numerical range and
the normal dilation. In this chapter the structure of operators with the G;-property is also
discussed. Lastly, the condition in the Gi-property is weakened to obtain loc-G class and
discuss the characterization of the class loc-Gj, spectral Gy, spectral loc-G; and the class R of
operators.

In chapter 4, characterization of those operators T € B(H) for which Reo(T) = o(ReT) holds

generally is obtained.



Simple examples show that this remarkable relation does not hold for arbitrary operators. Hence
in this chapter, we are motivated towards a natural problem to find classes of non-normal
operators for which the relation holds.

In particular, we show that: If 7 € B(H) and one of the following holds, then T has the property
Reo(T)=0o(ReT):
N, T is hyponormal.
N, T* is hyponormal
| N3 o(T) is a spectral set
Ny T has G;-property and o (T) is connected.

Finally, the class 7{: of operators which was introduced by Paul R. Halmos [7] in the course of

studying reducible operators is discussed. Halmos showed that R_1 contains the normal and

isometric operators.

Lastly we have proved that if T € B(H) is normaloid, spectraloid, paranormal, hyponormal, and

T +k, where T € B(H) s isometric or has G;-property, or hyponormal and k is compact; then T

isinR, class.



CHAPTER TWO

BACKGROUND MATERIAL

21 LITERATURE REVIEW

Some basic material about operator theory is given in Halmos [6] and Bonsall and Duncan’s
article [4] along with Functional analysis by Bachman and Narici [2].

The theory of normal operators is so successful that much of the theory of non-normal operators
‘1s modeled after it.

A natural way to extend a successful theory is to weaken some of its hypothesis slightly and
hope that the results are weakened only slightly.

Historically the consideration of non-normal operators began with a famous paper of Wintner

(1929) in an attempt to obtain a characterization of operators T for which
r(D)|7].

He asserted that for this property, it is necessary and sufficient that conv o()= m

Later in 1967, Halmos [6] showed that th‘is is not the case.

Halmos [6] gave a characterization of non-normal operators and proved that normal operators are
quasinormal. He went on and proved that quasinormal operators are Fillmore [5] in 1970
extended Halmos’ result and showed that if an operator T is hyponormal, then its normaloid.
Halmos however proved that the implications cannot, in general be reversed.

Halmos [6] extended Fillmore’s [5] work on spectral sets and showed that for normal operators
T, the spectrum and closure of the numerical range of T are spectral sets.

Lebow [11] gave a result on Von-Neumann’s theory of spectral sets which we use to obtain
results which indicate a connection between spectral sets, numerical range and the normal

dilation.



Operators of class Gy, class loc-Gy, spectral loc-G; and their beautiful characterizations due to
Halmos [6] and Fillmore [5] are discussed.

Halmos showed that R, contains the normal and isometric operators.

It is assumed, unless otherwise mentioned, that H denotes a complex Hilbert space with the inner
product function {(,): HxH — C

2.2. CONCEPTS ASSOCIATED WITH NON-NORMAL OPERATORS
Definition 2.2.1.

We take the standard base {e, : 7 =0,1,2,...} in¢*, where e, = {0,0,0...,1,0,...} with 1 in the

- 2
(n+1)" place. Let x = (x,,x,,X,,..) € 0ie) |x,| <.

n=0

Define U : £> — ¢* by
Ux = (0,x,,x,,x,,...) forall xe ¢
Thus Ue, =¢,,Ue, =e,,...,Ue, = e,.» forall n=0,1,2,... Uis easily seen to be linear and is
called the unilateral right shift operator on ¢2.
Let x = (x9,%,%,,..), ¥ = (Vg5 Yy V,»-..) bothin £2.
Then
Ux, ) = (0, %4, %, %55...), (Vo5 V1> Vg 5eer))
=XV, + X, Y, +...
= (s X B (s T Fyomel
= 6 (D15 Y25 Vo))
But U € B({?), so

Ux,yy=(x,U"y) forall x e ¢*




learly U* is a contraction, i.e; ||U *|| £l

is called the unilateral left shift operator on ¢°.

( Mile, Rao, Simiyu [13] pg.103)
 Definition 2.2.2
L'Let {e, :n=0,11,12,...} be an orthonormal basis for £ *. Order in orthonormal basis
{.ne.e,,e (e, )s€,€,5 €5 500

- If x e £*, we represent it by the Fourier series

x= i xe,

: or coordinate wise as

(...,x_3,3\¢_2,x_1,(xo),xl ,xz,x3,...)

The Bilateral shift S is defined by

Sx = (...,x_3,x_2’ () Xg5 X, X, 5.00)

where the shift is to the right by one place, so that x_, has moved to the central position.
Clearly ||Sx| = 1], V x e ¢*.

Therefore S is 1-1 and onto.

Therefore S is unitary. ( Mile, Rao, Simiyu [13] pg.103)

Definition 2.2.3
Let {e, :n=021,42,..} (orfe, :n=0,1,2,...})
be an orthonormal basis for 7.

The operator D defined by

De,= a,e, foralln,

is called a diagonal operator with diagonal {@, }. D is bounded if and only if {a,}




is bounded, and it follows, then, that

"D" = supﬂan l} ( Mile, Rao, Simiyu [13] pg.103)

Definition 2.2.4

An operator A = SD where S is a shift operator (Unilateral or bilateral) and D is a diagonal

operator is called a weighted shift with weights {, }, where {a, } is the diagonal of D.

( Halmos[6] pg. 48)

Definition 2.2.5
An operator T' € B(H) is said to be quasinormal if T*T < T,ie. (T*T)T = d T 2Ty
Itis obvious that if T € B(H) is normal, and then it is also quasinormal.
For Tisnormal < T*T =TT *
W )T =({TT*)T =T({T™*T)
ie. T*T <> T, ie. Tis quasinormal. ( Halmos [6] pg. 75)
Definition 2.2.6

An operator T € B(H) is called hyponormal if ”T*x” <||7x||for all x € H, or equivalently if

il <T'T. (Bachman[2])
Definition 2.2.7
. - . lim v,
An operator T € B(H) s called quasinilpotent if #(T') = ‘T" =0 (Bachman[2])
n— o

Definition 2.2.8

An operator 7' € B(H) is said to be subnormal if there is a Hilbert space K of which H is a
closed subspace and a normal operator N € B(K) such that

1) H is invariant under N, i.e., Nxe H V xe H.



{i) ' N|,=T.

If T € B(H) is quasinormal, then T is subnormal

£
L

~ Proof

A

~ Firstofall, fora T'e B(H)
Ker(T) = Ker(T'T).

' Indeed, let x € Ker(T). Then Tx=0.
]

Hence T*(Tx) =0, i.e., x € Ker(T'T).

i.e. Ker(T)c Ker(T'T).
Conversely, let x € Ker(T'T),i.e. T*Tx=0.
Then

(T*Tx,x)=0, ie, [T =0, i.e, Tx=0,
i.e; xe Ker(T).

.. Ker(T'T) c Ker(T) .
Thus

Ker(T'T) = Ker(T).
Next, if T is ‘quasinormal, then T*T <& T.

.. Ker(T"T) is invariant under T*.

Thus

T+ is invariant under T and T*.

.. Ker(TT") is a reducing subspace for T.

Since T*T <> T, so Ker(T'T) is invariant under T.

( Halmos [6] pg. 105)



Since Ker(T'T) = Ker(T), we have,
ker(T') is a reducing subspace for T (when T is quasinormal). i.c., Ker(T),{Ker(T)}* are
both invariant under T. We can therefore decompose T into two parts;
IT=T"®T" ,where T":Ker(T) = Ker(T)
T":{Ker(T)}* — {Ker(T)}*.
Replace 7' by 0 and then T acts on the Hilbert space {Ker(I)}* and " has the trivial
‘nullspace, i.e, Ker(T") = {6}, and since 7 =0@® 7" and T is quasinormal, it follows that 7" is

quasinormal.
We can therefore, without loss of generality, consider a quasinormal Te B(H) with the trivial
kernel.
Let T have the polar decomposition UP, where U is a partial isometry and P > 0.
Let E be the orthogonal projection UU*,
Then
(U-E)Y=0=U*(I-E) -

Let V7,0 e€B(H ® H)defined by

V=[U (I—E)), Qz[P o).
0 U* 0 P

The following facts are now verifiable:

(1) Q is positive

5o

LD HGEE)




i.e. 020.

(i) Vs unitary.

e [(1 f[;)* (U(’)")*)
=(IL1>;3 3)
e A

“l-mw (I-E)*+UU *

_OI_E+UU*_01

Since E=UU*

'L VV*=[U I_E](U* O]
_[ UU*+U-Ey} (-EW
\U*I-E) L=y

ot

1 Also, V — Q; indeed

o 1 I 4]

- (P () 20, forat

X

8

JGH@H.
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y_[P O][U I-E]_
Q_OP 0 U*|

UP =PU and U*P = PU* and
P(I-E) = P-PUU*
=P- (PU)U*
=P- (UP)U*
=P-U(PU*)
=P -U(U*P)
= P={1JU*) P
= (I-E)P
4 The product

Vo [UP (- E)P]

0 U*p

Theorem 2.2.10
] Proof

such that N|H =T.

~ Therefore, for all x,yeH

(T*x,yy={(x,Ty)

|

If T € B(H) is subnormal then T is hyponormal.

=(x,Ny) , since N|, =T.

PU P(I-E)

J

is the required normal extension of T = UP. (Halmos[6])

Since T is subnormal, there is a Hilbert space K > H and a normal operator N € B(K) and




i =(N*x,y)
=(N *x, Py), where P is the orthogonal projection of K onto its subspace H.
s *x, ) =(P*N*x,y)
=(PN*x, ),
us the operator PN* € B(K) is invariant under H and T* is the restriction of PN* to H.
:i’?us

it x= PN*y, Vxe H.

”T *x”2 = ”PN *x”2 < ”N *x”2 (since ”P” <1 for P is an orthogonal projection).

“Since N is normal

|V * x| = ||V forall xe H
CThes [T <[ forall xen
ie. |T*x < |’ forall xe H

B ic. I *x,T*5y<{Tx,Ix) forall xel
R Y 22.1)

- Since TT*, T*T are positive operators for any T € B(H), (2.2.1) implies
il <T*T.
Thus

Tis subnormal = TT*<T*T, i.e, Tis hyponormal.

Lemma 2.2.11

Hyponormal operators are not necessarily subnormal.

12



There are hyponormal operators which are not subnormal. To see this, we deduce a necessary
- condition for subnormality.
~ Let T e B(H) be subnormal and N a normal extension of T. Let {x,,X,,X,,...,x,} be any finite

~ set of vectors in H. Then

2
0< = . N*¥x,> N¥x,)
i J

> N,
=2 (N*¥x,N* x,)
U
=D DUN/N*x,,x,)
[
=Z;<N’x,.,N"xj)
0SS Tk, T'x,), since N|, =T.
&

Let A,,4,,4,,...,A4, be any complex numbers and replace x, by A,X, where

x, € H (i=0,12,...,n). Then we get for any finite set {)EO,)EI ,...,)"cn} of elements of H
D AT, T, VA4, 20.
i

In other words

D > (T'%,T'%,)A,4, is positive definite for all complex numbers A, 4,.,..., 4, .
j

1

Hence the determinant of the finite square matrix (i, j =0,1,2,...,n)

must be > 0.

It can be shown that the condition (2.2.2), which is necessary, is also sufficient.

(Halmos,[6], pr.203, pg. 109).



Example (i)
“ An example of a hyponormal operator whose square is not hyponormal
 (Halmos [6] pr.209, pg.111).

* The following results on hyponormal operators are well-known. ( Fillmore [5])

; Proposition 2.2.12

__ v'Let T € B(H) be hyponormal. Then

:-. N;. T-Al and T7'(if T is invertible) are hyponormal.

" Np.  Tx=Ax implies T*x=A*x.

N;. Tx=Ax,Ty=py and A # u imply that x L y.

: N;. If M is an invariant subspace of T, then the restriction T I - is hyponormal.

it 7 I ., is normal, then M reduces T ( Fillmore[5] pg.10).

Theorem 2.2.13

" Forany T € B(H),0(T) c W(T) and if d = dist(A,W(T)) then AI —T has an inverse and
| lar-1)7| < % or :11- >R, (D)
Proof
If A ¢ W(T), thendist (1,W(T)) > 0,i.e,d > 0; and by definition of distance
d <|<Tx,x>-A|forall xe H such that x| =1.
This implies
dx|* <|< (T = AD)x,x 5| forall xe H;
using the Cauchy — Schwartz inequality, it is clear that
|7 = 21)x] 2 |

Since T — Al is bounded from below, (T'— AI)™ exists on R(T — AI) and

14




(RT=AD) = {RT - AD}" = Ker(T*-11)

8

iy T

if A R (), then
(RT=AD)}" = {0},
' ie.Ker (T*-11) = {0},

- and hence 1 is an eigenvalue of T*.

| If x H,|x| =1 and is such that T*x = Zx, then

<Tx,x >=<x,T*x>=<x,Ax >= 4,

- which implies that 1 € W(T), a con;radic'tion.

Hence, if 1 ¢ WT), then 4 € p(T); this shows that o(T) < W

Now 2.2.3 implies that

| -an|< %. (Bachman & Narici [2] pg 386, Theorem 21.11)

Theorem 2.2.14

Let T € B(H), then conv o (T) c W(T).

Proof

See Halmos [8] pg. 170

15



Theorem 2.2.15 (Spectral mapping theorem)

g

J‘T'et H be a Hilbert space and T € B(H) and p be a complex polynomial
gl taz+ta,z’ +..+a,z", where a,,a,,a,,...,a, €C .

‘iet p(T) denote the bounded operator a,l +a,T +a,T* +...+a,T".

' Then

 o(pD)=ple)

:‘where plo(M)={p(A): Aeo(T)} (Bachman and Narici[2] pg .322)
,;‘RLemma 2.2.16

If T € B(H) is hyponormal, then

" =|T|", for n=12,.,
1 énd consequently
r(1) =]}

Proof
~ Fillmore [5] pg.10.

Theorem 2.2.17 (Extension by continuity)

"u" = ”uO” | (Bachman|2])

Definition 2.2.18

bounded sequence.

Consider the vector space /” of bounded real sequences.

Let X and Y be normed spaces, and suppose Y is complete. Every continuous linear operator

u,from Q c X into Y has a unique continuous linear extension u to the closure Qof Q, and

By analogy with the generalized integral, one can define a generalized limit,glim, for an arbitrary



a=(an,n,,...n)= R za +u,.

p(a) =inf z(a;n,,n,,...,n,),
where the infimum is taken over all sets of natural numbers 7,,7,,...,7, .
P is a semi-additive positive homogeneous functional. Hence there exists a linear function f
sfying the condition
-p(-a) < f(a) < p(a)
e set

Lim
a, = f(a),

n—> ®©

lim lim lim

Ni: [aa, + Ba)] =« a +p a’
L no>w n—> o n—> o
bm 50 a0 (n=12,..,)
a,20 ifa, > 1= 1525000
>0 " !
lim lim
i n+l an
n—> o n—> o
g a® =1, if a9 =1 (B =1200)
N~ o n ) n 9&geney
: lim lim
Ns:lim g, < s a,
& . n —» o n—> o
4 o : lim lim
It follows from the last of these that, if limq, exists, then we must have a, = a

n*

n —> 0 n—> ©

im
Thus the number o a,, is called the (Banach) generalized limit of the sequence (an )
n— o



osition 2.2.19

1” having the following properties:

If a, > 0, then glim (a,) >0 for all n.

glim(a, )= glim (a,,,) (i.e; translation invariance)
If (a, )' is convergent, then glim (a,) =1im (a,).

If a, € R, then lim (a,) <glim(a,) <lim (a,)
e need to consider real sequences.

Let a e M and let n,,n,,...,n, be any set of real numbers. Write

sup 1¢&

”(a;nlnz rﬂsnk) = _Z(an+nj) ¢

k— ki

- Let

~ and set

i lim

n

= b ..
k _)Oosup n,k

- Define p: M - R by

inf

pfa)= %

inf { lim }
= sup bn,k

neN|k—> o

inf li k
_ in im S5 l Zam.
neN|lk—>ow kg ™"

Clearly the map p is linear; since if « € R, then

Denote the set of all bounded real sequences by M. Clearly M is a vector space.

e space m of all bounded sequences there exists a continuous linear functional denoted by

18



inf

k— o

a)=sp(a) forall s >0
x we show that
p(x+y) < p(x)+ p(y)

p is semi-additive.

Indeed, for any real ¢ > 0,let (n,,n,,...,

zw(b;n,n,,...,n,)< p(b)+¢.

o su a
neN{ k> o P Z "

¢ [ him
= S a
e N{ P Z

5:I(an) - p(a) =inf z(a;n,, n,,...,n,),

re the infimum is taken over all finite sets of numbers #,,n,,...n

n,)and (n,,7,,...,

z(a;m,ny,....n,) < p(a)+& and

i

n, ) be sets of numbers such that

19




n,, =nj+ni.

Then we have, on one hand

B D) S (@ HD 1 B, s W v s 32 00 owommmmmmnns 33 smmemsemes 513 (2.24)
f the other hand
(@+b;m,m,,.nn, )= SUPZ(an+”,1+bn+n,)
IB!

= ﬂ(a;n],nz,...,np)+ (b, n,,...,n,)

< p(a)+ p(b)+2¢.

}fComparing this with (2.2.4) and bearing in mind that ¢ is arbitrary, we obtain

pa+b) < p(a)+ p(b).

 Since m, contains the closed subspace c of all convergent sequences c and the functional
f(x)=limx, , x=(xn)

"~ is continuous on ¢ and

@l p®, ¥=(x[) x=)

. by the extension theorem, we find an extension of this functional to the entire spacem, ; we
.} denote this extension by g lim.

1 Now, this functional has the property

glim (a,) = glim (a,,,).

| Since

—p(-a)=glim a < p(a)

20



nd taking the sequence (a,,, —a,) we obtain the assertion.

n+l

The other properties stated in the proposition are obvious from the definition. m

Now there exist elements in B(H) for which the numerical range is not a closed set. There is a

,»_.u{ nstruction following S. Berberian [3] to show that for any operator T € B(H) we can define
operator, say T, such that

W(T)=W(T)

P.(T) = n(T).

“‘ The basic result due to S. Berberian [3] is the following:

Proposition 2.2.20
Let Te B(H). Then there exist a Hilbert space H ,and an application T > T such that

W(T)=WT) and P,(T) = n(T).

- Proof

)e £ and we define a

- First we consider the space of all sequences x = (x,) such that qxn
 bilinear form,

B(x,y) = glim(< x,,y, >).

 Since |< X,V >| < ||xn || || ynl, the function S is well — defined.
- Itisalso clear that S is a positive symmetric functional on B(H), and by the Cauchy-

Bunyakowskii-Schwarz inequality we see that the set
N=N(B)={x:B(x,x)=0}

is a linear subspace.

21




we can define the space S(H)IN with an inner product defined in a standard way: If

=x+ N, then
<X,y>=glim<x,,y, >

and if S(H) denotes the space of all sequences x = (x,), as above, we have an isometric
: !

1A
1. .

linear mapping of H into a closed linear subspace of S(H)/N.

[

Since S(H)/N is a linear subspace of a Hilbert space (its completion), we have the relation

If x=(x,) e S(H), then we set
I'(x)=(Tx,).
It can be shown that 7 is bounded and N is an invariant subspace for T and this allows us to

~ define an operator on the space S (H)/N in a standard way. Denote this operator by]N"0 . Inthis

~ case we have NIN’O “ = “T ”, and moreover, we have infact the equality of norms. From the density.

'v of S (H)/N in the space K it follows that JN"O extends uniquely to a bounded operator on K. This

extension we denote by T*. The following properties are then easily proved and we list them:
Tis T

satisfies the relations
T+SH>T"+S8*
AT — AT

ST S*T*

22



T*> (TH)*
I—1T

7l =7

T>0=T" >0.

the properties of the mapping 7+ T we obtain the assertion of the proposition in the

owing way:

If ¢ 7(T) we find & >0 such that

T-AD*(T-AD)>¢e I

and this implies that the corresponding operator T* has the following property

(T -AD*(T* -A)>¢ 1

‘.d this gives the second assertion of the proposition.

The first assertion of the proposition can be obtained by observing that the closure of the
‘numerical range of T is the same as the closure of the numerical range of T™.

‘But it is clear that the closure of W(T) is contained in W(T"), and thus the proposition is proved.

' (Berberian and Orland[3])

" Lemma 2.2.21
If {T, }is a sequence of invertible operators and if T is a non-invertible operator such that
|7, -7| > 0 as n — oo, then 0 € z(T).

~ Proof
~ See Halmos [6]

Theorem 2.2.22

The boundary of the spectrum of an operator is included in the approximate point spectrum.

23




onvenient to prove lemma 2.2.21. Since T is not invertible, either 0 € z(T)or 0 e I'(T).

€ n(T), there is nothing to prove.

erefore sufficient to prove that T is not bounded from below (i.e; that 0 € z(T')) under the
ption that range (T) is not dense.

ose then that x is a non-zero vector orthogonal to range T, and write

-1
T

W= -
Tnx”

n

ce "xn ” =1, it follows that

|7 =D, | < |7, - 7] 0.

K

Since, however, Tx,e range T and 7, x, L range T, it follows that

2

T

x| +|x, |

2
9

> ”Txn

hence that

|7, | - o.

":’;l“o derive the original spectral assertion, suppose that A is on the boundary of o(T), it follows
* that there exist numbers 4, notin o(T) such that A — A.

The operators T'— 4, are invertible and 7 — Al is not;

~ since

@ -2,0) (T - A1) =|4, - 4| > o,

it follows that A e = (T).
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leorem: 202,23 (Banach Inverse Theorem)
‘be a Banach space and 7' € B(X) which is one —to-one and onto. Then the set inverse
[
B ) ic; T is invertible.
':.Bachman [2]
r nition 2.2.24
‘ ‘~T € B(H). A point A € o(T) is in the continuous spectrum of T, C_ (7)), if T'— Al is one-
l.!one and the range of 7' — A/ is dense in H but not equal to H.
"‘ié;l'tw it follows that A is in the continuous spectrum of T if and only if there exists a sequence of

ele

x,|| =1, such that

) Tx, - Ax, —>0

i) 7 e SRR ——— (2.2.5)

ince C,(T)=n(T)-{[(T)VP,(T)}, itfollowsthat A € z(T)and hence there is a sequence
?{n) of unit vectors such that propert.y (1) holds.

v;‘%Since T - Al is one-to-one, Ker(T- AI) = {0} and hence the range of 7*—A* is dense in H.
ﬂNow, for each y € H, we have

<x,,(T*-A*I)y>=<T-Al)x,,y>>0 as n — .

i Hence x, —~— 0.

- Conversely, if property (i) holds, we see that A € z(T).

- Now, property (i) implies that

<x,,(T*-A*I)y>>0 as n—> o, forall ye H.

Since x, —" 5 0., we see that the range of the set (T *—1* ) is dense in H, i.e, T — Al is one —

to — one.

NIVERSITY
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s%a A¢ P (T). Also Range (T —Al)# H (for if Range (7' — Al) was H, then A € p(T') using
e Banach inverse theorem).

we have proved contention (2.2.5).

Ve know that if 7 e B(H) is normal, then

MO T*T and T & TT*.

g a result of Kleinecke and Shirokov (Halmos,[6]) which states;

droposition 2.2.25

fP and Q are operators and if C = PQ — QP and if C <> P, then C is quasinilpotent.

ToT*T

Let Q= T*T - TT*,
The conditions of the proposition imply that Q is a quasinilpotent operator by proposition 2.2.25,
| iic,

h

n

Lim
| =0.

n—» oo

 Since Q is self-adjoint (and hence normal) we have’ ", and hence Q0 = 0,ie.,

Qn

=le

| T*T =TT*, i.e., T is normal.
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.3. OBJECTIVES OF THE STUDY
The main objectives of this study were:

(1) To characterize some of the non-normal operators and investigate the relationship

between these classes.

(i)  To obtain a set of necessary and sufficient conditions for convexoidity and
characterize those operators T € B(H) for which Reo(T) = o(ReT) generally.
(iii)  To obtain results which indicate a connection between spectral sets, the numerical
range and normal dilation of an operator T.
(iv)  To investigate operators of class R, and show that this class includes normaloid,
spectraloid, paranormal, hyponormal and T+k, where T € B(H ) is isometric or

has Gi-property, or hyponormal and k is compact.

2.4. SIGNIFICANCE OF THE STUDY

It must be frankly said that the theory of normal operators is so successful that much of the
theory of non-normal operators is modeled after it. Anybody working with particular
realizations of Hilbert Spaces with concrete operators given in those particular spaces can apply

these general abstract results.

In particular, the subnormal operators arise naturally in complex function theory, differential
1 geometry, potential theory, and approximation theory, and their study has rich applications in

“many areas of applied sciences as well as in pure mathematics.
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CHAPTER THREE

SOME ASPECTS OF NON-NORMAL OPERATORS IN A HILBERT SPACE

In this chapter, classification of non-normal operators which satisfy some properties as normal
operators and their generalizations is obtained. Accordingly we have quasinormal, subnormal,
hyponomal, paranormal, k-paranormal, normaloid, operators with G;-property, operators with
sequential G;-property, etc. We also have generalizations such as operators with sequential G-
 property, convexoid operators, class loc-Gy, spectral loc-Gj, operators of class R etc.
!A'Classiﬁcation of some of the non-normal operators and the relationship between these classes is
- investigated.

3.1. PARANORMAL, K-PARANORMAL, NORMALOID AND HYPONORMAL
OPERATORS

Definition 3.1.1

i :T € B(H) is called Paranormal if for all x € H satisfying ”x” =1, we have "Tx“2 < NT 2x“.

Definition 3.1.2

T € B(H) is called k-paranormal if for all ||x|| = 1 satisfying ”x“ =1, we have
||Tx”k < “T kx”.
Of course, when k = 2, we simply use the phrase ‘paranormal’ instead of 2-paranormal.
Proposition 3.1.3
If Te B (H) is paranormal, so is T.
Proof
=0 forall neZ.

Let x € Hand ”x” =1. Then Tx = 0 implies lT"x

On the other hand, if xe H, |x|| =land Tx#0 , then ||Tx|| > 0. Since T is paranormal, we have

[|T2x” > 0.
28
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*Iieq]
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_l Hszu ..................................................... ,
r-'?:
[P~ ol = e
Tx ’
| 2o o |
e -
nTx" ............................................... \

From (3.1.1) and (3.1.2) we get

L MR |

’
T x|| > =

7°s]

I
e

- Since T is paranormal,
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LS PN s Y
7=
A= =0 (3.1.3)

which shows that T* is paranormal.

When xeH, x“ =1 and ”T sz = 0 (in which case ”Tx” = Osince T is paranormal), the result

(313) is trivially true.

Remark
TeB (H) is paranormal does not imply that T is hyponormal.
Now TeB (H) is paranormal = T? is paranormal. It is enough to find a TeB(H) for which T is

not hyponormal, but T is hyponormal.
Thus we then have T is hyponormal = T is paranormal, and hence T? is paranormal, but T is

not hyponormal.

Proposition 3.1.4
~ TeB(H) is paranormal =T is k-paranormal.

Proof

To prove this assertion, we show that if TeB(H) is paranormal and k-paranormal, then it is
(k+1)- paranormal.

LetxeH and Hx“ =1 and Tx #0. Now

Tx
T —
7

(where we use that T is k-paranormal)

k

L
) 7

TG

Tk+1 =
fr ]

|7 =




= “sz”k 72|

k+1

> o™ ™ =

T x" = 0, the assertion is obvious.

1 case Tx =0, 1.¢; l
hus T is (k+1) — paranormal.
Jow T is paranormal = T is 3 — paranormal.

deed, let xeH,

lx” =1 and ”Tx” #0.

2

7]

Ix
2 T(m)

oL
e

= =

|7
7]

|7+ = =1

‘%‘Which is anyway trivially true if ||x” =1and Tx =0.
Thus T is 3-paranormal.

This completes the induction process and the proposition is proved.

~ Proposition 3.1.5



‘TeB (H) is k-paranormal, then it is normaloid.

We may assume, without loss of generality, that “T “ =1, and let (xn ), where

x,|| =1, be such that

ITx,| > 1as n — oo (of course, then |

Tx,| <1,forallne N).
Since T is k-paranormal

x|z, forallne N.

Hence

o

n —» <

. (3.1.4)

<l <kt =1

lim “

n —>

‘Niow, forall ne N
7, |75, | < .. <, |
and since

lim HT . lim

xn

[z

=1=
n— o n— o

- we conclude that for all i €[2,k] (i an integer)

X2



-1

el

since T is k-paranormal, i.€;

n —> ©

k

TK-H ||Tx

()
]

7=,
K+1 ”>

-—>1as n—oo;
[, [

and hence, using induction argument, we get

fim HT”’xn ” =1, forall meN .

n — ©
”T”‘H = sup{|T’”xH : ||x|| = 1}2 1
‘-;and "T ’”H < ||T I =1 Consequently,.

“T’"H=1 forallmeN .

~ Hence

=" Mrmu = 1=},

- which proves that T is normaloid.

| Example 1

||Tx

A

- Consider a nilpotent operator T} on a Hilbert space H; with the property that HTIH =1,

- Let T, be a normal operator on a Hilbert space H such that”T 2“ =1.




Proposition 3.1.6
'eB (H) is paranormal if and only if for all A € R,

T* T? _2AT*T+ 1120,

Ti:va, b are positive constants and A is a positive real variable, then it is seen that

Vadb= )" aar )

(through the differential calculus methods) . Hence, if TeB (H) and xeH, we have

inf
e b = ) %(I‘“szuz + )

SHE Y .
= ML AT Al x>
A>02

Takmg xeH with "x" =1, and using the hypothesis
HT zx“ — ||Tx||2 >0 (since T is paranormal)
we obtain that T is paranormal if and only if
%{< A'T* T? + AD)x,x >}—<T*Tx,x>20

B 722 T2 _2AT*T+ 421 >0.

The last result is obviously true when A<0.

Proposition 3.1.7

Jow, the operator 7' =T, ®T,on H, ® H, is normaloid and is not k- paranormal since Ty is
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IfTeB (H) is paranormal, then T" is paranormal, for all ne N .

‘We have seen earlier (proposition 3.1.3) that T is paranormal.
Now assuming that T* is paranormal, we will prove that T<"! is paranormal.

Now, forall L e R,

f * ‘ *
‘T*(2k+1) T(2k+l) _ 2T (k+l)T(k+l) +21T T

. B = ram | oo e e o o s B i (3.1.6)
=T (T™T* -2T"*T* +ANT 20 ‘

Since, by proposition 3.1.6, the assumption T*is paranormal amounts to, equivalently,

T2T% _2T™T* 4 41>0

and (3.1.6) implies that (using A =1)

[r s -]+ 20 (=)
and hence
[ro <o 0 (=) (3.1.7)

2
[

|=1).

~ since T is paranormal (“T 2x” > |Tx

- Now T is paranormal if and only if for all e N

2

Tn+lx >

T"x

"7 (Xl=1) oo (3.1.8)

Indeed, when n =1, we have from paranormality of T
|7 > (d=1).
| Multiplying both sides by HT 2x” , we get (3.1.8) for the case n=1.

Assume the result (3.1.7) for n+1. Thenif Tx#0  ( “x" =1)

T

2
T’
”h”HH

Tn+2x‘2 -

Tn+1(
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2

[

[N ll]

2
Z Tn+1x

. AtN
- 2
e ) Tn+2x

|74
and by induction, the result is valid forall ne N.
Putting n =2k +1 in (3.1.8), we obtain

2
HTzk+2xl 5 “T2k+1x

2
I7*s

....................................... (3.1.9)

sy,.rom (3.1.7) and (3.1.9), we obtain

2
“Tk+1x < ”Tzknx

L ey

which is equivalent to paranormality of T7%*'.

O

The next result gives a necessary condition for an operator T < B (H) to be

IfTeB(H) satisfies
rrt-(rtzo (3.1.10)

! then T is k-Paranormal.

Proof

~ Let xe H and “x“ =1. We then have from (3.1.10)

(T T, x) (T 50y = [T (71" %) 2 0
where lT l is the positive square root of the positive operator
i I'T. Now

(iTJZk X, = (]T’le,kx,x)
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= (el x) =t

Since IT l is self —adjoint, it follows from the spectral theorem for self- adjoint operators that
R

“Tx”2 =(T"Tx,x) = (lT,zx, X)
= (Tl [Ty = |71
u hence

7™ =i+ ™.

i

[
B
i

Hence (7™ T"x, x) —((T*T)kx: x)= ”Tkx”2 “”TXHZk 20.
af?us

”Tx”k < //Tkx” for all x e'H and x| =1;

i.e.T is k-paranormal,

An operator T e B(H ) which satisfies
T —(T'T)* 20

i

18 said to be k-hyper paranormal (k>2).

Thusif 7 € B(#7) is k-hyper paranoﬁna], then T is k-paranormal.

': Proposition 3.1.10
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g class of k-hyper paranormal operators 7 € B(H) is strictly smaller than the class of k-

anormal operators.

"k be the direct sum of a countable number of copies of H. For positive operators A and B on

{and for a positive integer n > k,we define the operator =7, ,  onk as

}A 5) i (69 A)C1 ] sz graey Axn 9Bx an+2 ’)

n+l?

B BE_ ,)

n+l? n+2°

A straight forward computation shows that 7" (x,, x,,...) = (sz N s Y

T'T(x,,x,,..)=T"(0, Ax,, Ax, ..., Ax,, Bx, ,,
= (Azx1 JA*x, e, A2x, B x

B, ines)
Bszz,...)

n+l?

B (x,x,,....) = T(4x,, Ax,,..Ax ,,, Bx,, ,Bx, ., )

n+l>
= 5,A2x2,A2x3,.:...,A2xn+1, B’% ;...
Bt 77— 77" >0 ifand only if

B*-4%20.

 Thus

(i) T is hyponormal if and only if B> > 4.

(ii) It can be shown similarly that T 2 is k-hyper paranormal if and only if

AB* 24 > (AB* A) , A" B2 4" 2 4%, m =1,2...2k - 2.

' If we take H to be a 2-dimensional Hilbert space and A and B the operators which are

- the square roots of

SR
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aranormal and k-paranormal for all k.

ow show that T is not k-hyper paranormal. Suppose on the contrary that T
ff-hyperparanormal.
Then, since 4 is invertible, we have
B > 4™ ,m=1, 2,...,.2k-2.
‘-4 =D’ - C? is not positive and the contradiction proves the resull.

T? is paranormal (proposition 3.1 .3) and hence k-paranormal (proposition 3.1.4).

But 77 is not k-hyperparanormal.

‘Indeed (3.1.11) implies that
T 7% > (1)
I TT* 2(T*T)~,

-and by proposition 3.1.8, it follows that T is k-paranormal.

] Proposition 3.1.12

The strong closure of hyponormal operators is contained in the class of paranormal operators.

ively, then B* > 4* and thus T, , , is hyponormal, and it is known that in this case T is
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et T be in the strong closure of hyponormal operators in B(H). Then there is a sequence (Ty,) of

yponormal operators such that
;sx-—s)Tx forall xe H.
Let x € H and ||x|| =1. Then

lim ) | )

Now hyponormal operators are paranormal.

X

P HT nzx“ (for xe H and |« =1).

lim 2 lim
T <

2
T 'x

=l

n —» © n —» ©

Thus T is paranormal.

32. SPECTRAL SETS, DILATIONS OF OPERATORS AND NUMERICAL RANGE

Definition 3.2.1

Let K be a Hilbert space and H a subspace of K. Let P be the orthogonal projection on K onto H.

If T e B(H) is an operator such that
Ix = PSx, forall x € H and for some S € B(K).

Then we say that S is a dilation of T to K and T is called the compressi'on of S.
- The space K is called the dilation space.

If S is a dilation of T and for all n e N

T"x=PS"x,
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is called a power or strong dilation of T. If K is the smallest space containing H and reducing
or S, then S is also called minimal dilation of T.

pose now that X is a compact subset of C and R(X) represents the algebra of all complex-
valued rational functions whose poles are not in X.

Then we say that S is an X-dilation of T if for all f € R(X), f(T)is the compression of f(S) (of

course, we have assumed that f(T) and f(S) exist). If the operator S is normal, we have X-normal

dilation.

Definition 3.2.2
closed subset X of the complex plane is called a spectral set for an operator
TeB(H) if
() o(T)cX and
(ii) For all f € R(X)
L@\ <), Esup{f(z): z € X)) (Fillmore[5],pg.62)
‘For normal operators T € B(H), it is known that o(T)and m are spectral sets.

(Halmos[8],pg122)

The following result was proved by Lebow A, (1963).

- Proposition 3.2.3
- If X is a compact subset of C and is a spectral set for an operator 7 € B(H) , then there exists a

normal dilation N such that N” is a dilation of T" (alln € N) and o(N)c aX.

- We use this proposition to obtain some results which indicate a connection between spectral sets,

- the numerical range and the normal dilation. (Lebow A.[11] pg.64-90).

41



Jefinition 3.2.4

A operator 7 € B(H) is called Translation-invariant —normaloid
brief, we write T is T I N) if T, = T + Al satisfies

IT,|=r;, forallieC

Proposition 3.2.5

If 7 « B(H) is Translation- invariant-normaloid, then

m =Convo(T)

We know that convo(T) < W(T) (theorem 2.2.14)

To prove the reserve inclusion, let D(A, ) represent the closed disc in C with centre A and

o(I' - Al) cD(0,a)and herer;, <a.
] : ,
‘But 7' AI is Translation-invariant-normaloid, i.e; tr, = "T - Al ”

-iSo ”T - /U“ <a.Since w(T) < ”T

|,we have w(T — AI) < |T - AI| and so
- W(7 - Al)c D(0,a), and hence W (T)c D(A,a).

Thus every closed disc containing o(T') contains W (T), and therefore W(T) < conv o (T).

Pronosition 3.2.6

et Te B(H)have W(T) as a spectral set, then

Comva (T)=W(T)= W(N),  eeeereerereeeereerenn, NS (3.2.1)

where N is a strong normal dilation of T.
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W is a spectral set, o(T") being closed is also a spectral set and any

/ e R(—W(—T)) also belongs to R(O'(T )).

any € C,

f(“z) =z+A1e R(W(T))and take f = p.

’en since o(7)is a spectral set for T, we have

|p(D)| < sup{|p(2)|: z € 6(T)}

i;e. ”T - /UH = sup{[z +/1| rzeo(T)}
= sup {|z| : z € o(T + AI)} (by spectral mapping theorem)
=1y <|T a1,

7y, =”T+/?J” forall AeC.

Hence T is Translation-invariant-normaloid and by proposition 3.2.5 we get W(I')= Convo (T);

which proves the first assertion.

| Using proposition 3.2.3 we assert that there is a strong normal dilation N such that
RG(N) — 0 W(T) = dconvo(T) .
:However
o N) € eono(l) = B0RVE(T) seosvensesusess ivss vsmmnsmres vid (3.2.2)
Since N is normal,
W = ST (N ) BT Y ssssmmsmmms 15 3 55 # yromsmnenmns ¢ ¢ 1 pwses o8 (3.2.3)
- AsNis a dilation of T, we have if x € H and||x“ =1, then (with P és the orthogonal projection on
dilation space onto H)

{0, 2y = PNz, x> = {Nx, Pay
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=(Nx,x)

.'.:15 thus W(T) (& W(N) 5

accordingly, W(T) < W(N).

hus we get
conva(T)=W(T) c W(N) = convo(N)

c convo(T);,

i.e; set quality holds throughout, yielding 3.2.1)

The following proposition gives a characterization of spectral sets which are closures of

numerical ranges.

Proposition 3.2.7
ZJTT € B(H), then W(T) is a spectral set for T if and only if there exists a strong normal dilation

Nof T such that 77/(T) = W (V).

Proof

TFrom proposition 3.2.6 it follows that the condition is necessary sufficiency. For sufficiently

large 1, the Neumann series.

=1{. T F*
— I+ —+—+..
A A X

converges for (77— AI)™ and likewise

converges for (N —AI)™.

44



N
|

nce T and N are related by

Si
T"x=PN"x forall xe H

where P is the orthogonal projection of the dilation space (=Domain of N), we have for all

(T-A)"'x=P(N-A)"x.

Hence, for all x,y € H , we obtain
((T“/U)_Ixaw=<P(N—/U)_1st’>

= (N =AD" x, Py)
=N =AD" x,)

{and since W(T)=W(N), forany f e R(W(T)), we have
(f@)x,y) =(Bf (N)x,y))
={f(N)x,Py)
={f(N)x, )
 (Note: f is a rational function with no poles in (W (T)).
Thus /(T)x = Pf (N)x forallxe H .
_- Now, we show that W (T)is a spectral set for T.
fl Indeed, for any f e R(W(T))
|7 @)= sup{|f (1) : x € H and x| =13
= sup{|Pf (N)x|: x € H and || =1}

< sup{“f(N)x“ ‘X €E Hande“ =1}

SIF| RRTTRRTR (3.2.4)

; Since N is normal, W (N) is a spectral set for N, and thus

|F (V)| < sup{f(2)]: z e W(N)}

,,,,,,
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= sup{|f(2)|: z e W(T)} (for W(N)Y=W(T)) eeeevrrereeeann. (3.2.5)
us, forany f e R(m), we obtain from (3.2.4) and (3.2.5):
Hf(T)H < sup{f(z)‘ 1z € W—(TS},

which shows that W (T')is a spectral set for T.

roposition 3.2.8
Let T e B(H)and A e p(T).If d =dist(2,o(T)), then

1
Pyt = E

Proof

 This follows from the spectral mapping theorem.

Indeed, for A € p(T), we have
i 1 : ,
o((T-Ant)= {— aeo(l- /II)}
a

- (Note « # 0 since T — Al is invertible).

From the spectral mapping theorem, we have
1
ol(T-AD7")={——:0ea();.
(-m)-{51; 0e0}

: Now

Tinfo-Af0eo() d




Definition 3.2.10
‘:‘ operator 7" € B(H ) is said to have Gy-property if

-2 s
dist(A,o0(T))
forall A e p(T).
When T e B(H) is hyponormal, it is clear that 7 — Al is also hyponormal for all 4 € C and if,

in addition, T is invertible, then T is also hyponormal.

(Fillmore [57).

ince 7, = NT H for hyponormal 7 € B(H ) , we note that among the operators satisfying G-

property, we have normal and hyponormal operators.

- Proposition 3.2.11

- If T € B(H) has G;-property, then convo (T) = W(T).

Proof

~ As, forevery T € B(H) ,we have o(T) c W(T), we need to prove the reverse inclusion

- W(T)co(T) for T is satisfying the Gi-property.



Itis sufficient to show that any closed half — plane which contains o(7") also contains W (7).

Then the intersection of all the closed half — planes that include the (compact) set o(T) is the

:bnvex hull, convo(T) and this intersection obviously contains m
~y translation and rotation this reduces to showing that

Reo(T) <0 implies Re W—(T) <0.
:vfet |¥|=1and TX = (a+ib)% + 5, with a,bcRand ¥ L5 .

orall ¢ >0, we note that ¢ € p(T') and hence (T —cI)™" exists.

S

Let dist(c,0(T))=¢ . The ¢ > ¢ since Rec(T)<0.

Since T satisfies property G, we have

|7 -en| =< < L Thus
C

L

¢

@ -en4] < ;12-”2“2 forallz e H .

j Replacing (7'~ cl)""z by x and hence z by (T - el)x, we gt
A <|(T-eDA| forall xe H .

Put x = ¥ . Then since |[¥|=1we get ¢* <|[(T-cD)F| .

 Now

| D)3 =|(a+ib)F +7 - |

=(a-o)* +b* +[7] .

? ie. 2ac<a® +b +“§“2 :

- Hence ¢’ <(a-c¢)* +b’ +|¥
Since this holds forall ¢ > 0
Re(Tx,x)=a<0.

This completes the proof.
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[he next proposition tells us about the structure of operators with the G; property in the

'e when o(7') is a finite a set.

Proposition 3.2.12

'et T € B(H) have the following properties
(1) T has G; property

(i1) o(T) is a finite set.

Then T is normal.

Let o(T) ={1,,4,,...4,} and for each 4, let C, be a circle with centre A, and radius ¢. We
‘assume that & is so small that the intersection of the closed disk of boundary C , with o(T)
contains A, and no other points of a(T).

Define the projection P, by

1
P=— [(T-zD'd
. 27ricj( e

which clearly commutes with T.

~ since

1
1

J‘(T -zN'dz

1 ;
sg;ﬂq-ﬂwwﬁ|

< L(27[8)l =]
27 &

" for ﬂdZ|=27T8
‘ =

J



d since T € G,, so

1

| R

1
Cdist(z,4,)

M |-

(T-A,Dx=(T-A,1)Px for Px=x.
We note that

(T-A,D)P, =(T—zj1)% [ -zn"dz
7Z'IC‘

J

=L (@ v - AT -20) s
27zzcj
_ 1 -1
_%L{u(z—zj)(T—zI) Ydz
1 S e
:O+57;Cj(z—lj)(T—zI) 'dz
Hence

|7 = 2,4 < [i Cj = |@ =zl ol (3.2.6)

< (Lg.l.zﬂg)uxu — e >0 as > 0.
2 B

We obtain 7x = /ljx .

Since T = Z A Lo it follows that T is Normal.
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orollary 3.2.13

)n finite dimensional Hilbert spaces every operator with Gi-property is normal.
The following is an example of a bounded operator which has G;- property but is not
Example (ii)

Let T; be an operator on /; with the matrix
i 1
[0 0:| which is nilpotent (le = O),

,lfet T, be a bounded operator defined on an arbitrary Hilbert space with a countable basis
{e) by

T,e, = A€,

here the A, are such that

min
e <l

forall z, iz‘ <1.The operator T =T, ®T, is of class G and is clearly non-unitary (also non-
"normal).
This example also shows that the restriction of an operator in class G fails to have the G-

property on the invariant subspace.

. Proposition 3.2.14

* The set of all Te B(H) with G property is strongly dense in B(H).

| Proof

Let TeB(H) arbitrary and {xl,x2 — } c H and let M= subspaée generated by {x,, %, ..., X, 3
We define the operator A on H as follows:

Ax, =Tx, , i=12,.,n,



and Ax=0 if xeM™".

We can consider a normal operator N on M such that

o(N)= {z : ]z’ £ “AH}

he operator 4@ N satisfies the G; property and since it coincides with T on the x,, the strong

density is clear.

‘The following definition gives, in some sense, a generalization of the class of operators with

- Gy property.

\\\\\

Definition 3.2.15
-V“Let TeB(H). T satisfies the sequential G- property if for every z € do(T) there exists a
- sequence (z,) < p(T) such that

(6] Z,—>Z as n—>®©

1

- tior allyn.
d(z,,o(T))

(i) “(T - znf)-1|| -

- Proposition 3.2.16
- If TeB(H) is quasinilpotent and O€ dW (T'), then T has sequential G;- property.

Proof
Since W(T) is a convex set there is a line of support through 0. Hence we can assume, without

loss of generality, that W (T) c {z :Rez > O}.

But 0 e oW (T)and o(T) = {0} Since for any operator

. 1
H(T —zI) H < e
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‘We can find that in our case, for any real negative number z,

d(z,W(T)) =|z.
So, taking z = ——, the proposition is proved.
' n

example of an operator with the sequential G, property we have the Voltera operator on L?.
The later does not have the G; property.

Note that every Voltera operator is quasinilpotent.

Proposition 3.2.17

[f TeB(H) and is with the sequential G;- property and for some m, T™ = 0, then T = 0.

: Proof

Since T has sequential Gy-property and is nilpotent, it follows that there exists a sequence (z,)

-such that
”(T = Z,,)_I” =1 for all n.

| Suppose now m > 1 and thus

-1 i
L e T
(z,I-T)" = Z; —.

This implies that

i B

1+1
}'l

n i=0 ,,

~ forall n.



Hence

PW

m=i—1

<k

+Z

forall n. But

WW

m—i—1

—>0asn—>wo

n

+Z

and this shows that HT . H =0.

An induction argument shows that T = 0.

Proposition 3.2.18

- Let TeB(H) and z, € o(7)have the following properties
| (1) Tx =z, x ”x” =1.
- (i)  There exists a subsequence (z,) of elements of p(7") such that z, -z, and

| -=07

Then T*x=Zzx ,i.e; (T*-z,[)x=o0.

Proof

Without loss of generality, we can assume that z, = 0.
Suppose that 7 * x = y. In this case
(T*-z,)x=y-Zz,x andthus
z (T*-z,1)'x=-x+T*-2,1)"y.

But x L (T*-z,1)"'y; thus we get
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[ *—z,0 +a" =z )" -2z.0" A
=z <[ *-2.07| bl
= @ =z,0m7 b
=@ -2 b
=@ -2z b1

|-z

yH —>0as n—> o

Zn

n

lie.
Lim —
o wH(T*_Z”I) yH =0.
- Since
Lim _ o
=" a*-zn @*-z0"5=0,

the proposition is proved.

~ Definition 3.2.19

An operator TeB(H) is called algebraic if there exists a polynomial P(z), not identically zero,

such that P(T) = 0.

The next proposition gives the structure of a class of operators with the sequential

G;. property.

Proposition 3.2.20

Suppose TeB (H) and T has the following properties:
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. (1) T is algebraic
(i) T has the sequential G.property

" Then T is normal.

~ Proof

Since T is algebraic it follows from the spectral mapping theorem that () = {ll e }with

multiplicities {ni } In this case,

H:iHi, where

i=1

H ={xeH:(T-1I)"x=0}
and clearly o (T ‘ o) =14t
Since T has the sequential G- property, it follows that T ‘ 5 also has the same property.
But 7 — A1 is a nilpotent operator on H;. From the above result (Proposition 3.2.17), it follows
that (T'—- 4,1 )‘ i 0. By proposition 3.2.18, it follows that (7" * —/Ti[ )IHf =0, which implies
that for i # j,H, L H . Thus we have H = ZHi and T = Zﬂ,ipi, where P, is the orthogonal

projection of H onto H;.

The concept of operators with G;-property can be generalized.

Theorem 3.2.21

For any operator TeB (H) we have the following inequality

L SR ifze WT) oo (B2

dist(z,W(T))
( Bachman and Narici,[2], pg. 386, Thm 21.11).

Now conv o (I') € W(T) and therefore it does not necessarily follow that
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1

- 2>
dist(z,convo (T)) |

R, (T)“ for all z ¢ convo(T).

We have therefore a natural generalization of operators of class Gi:

- Definition 3.2.22

equivalently, a convexoid operator) if for all z ¢ conv o(T)

1
dist(z, Conv o(T)).

-2z

R(T) <

, L.e.,

First we prove
Lemma 3.2.23

~ An operator T € B(H) is convexoid (or is with spectral G,— property) if and only if
{dist(z, conv o(T)} ||y“ < ”Ty - Zy“ ....................................... (3.2.8)

forall z ¢ conv o(T).

Proof

L
dist(z, conv o(T))

T is convexoid < H(T —zI)™ H <

forall z ¢ conva(T).

I

: for all ye H and
dist(z,convo (1))

& |T-20)| <

for all z¢ convo(T).

Putting (T-zl)y in place of y in the last line, we get

7 - zD),]
dist(z, conv o(T))

b=

i.e. relation (3.2.8) holds.

An operator T € B(H) is said to be in spectral G;-class (or with spectral G;-property or
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" Lemma 3.2.24

1
dist(A,convo (T))

Let T e B(H) with |(7 - A1)7| <

- forsome A ¢ conv o(T).
Then for any complex numbers a # 0 and b, the transformation z > az + b maps the

complement of conva(T) on to the complement of conv o(aT + bI) and

|
dist(al +b,convo(al +bl))

R,,.,(aT +bI)| <

Proof

Since a # 0, the transformation z > az + bmaps C onto C and is one-to-one and by the

spectral mapping theorem o (7") is mapped onto o (a7l +bl).

From this it follows that conv o(T') is mapped onto conv o (a7 +bI). Taking the complements in

C the first assertion of the lemma follows.

For the second assertion, we use lemma 3.2.23, by which for all ye H, we have

{dist(, conv o(T)} || < ||(T - AD)y

and from this, we have

lal{dist(a,comva(M)ly|  ={dist (aA,a comvo(T)}p]
={dist(al,conva(al))}|y|
= dist(aA +b,convo(aT +bI))|y|
< [aflry -
=|(aT +bI)y - (aA+b)y|

and the assertion of the lemma is proved.
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Lemma 3.2.25

Proof

Let yeHand A >0. Then ﬂ“y“ = ”(T - ﬂJ)y” if and only if

ZA™ <l + 2 I - 24RecTy, »)
and this implies that
2ARe(Ty, y) < |y

' This holds for all 1 > 0if and only if Re(Ty, y) < 0.

With the help of these results, we now prove

- Proposition 3.2.26

- Anoperator T € B(H) is convexoid if and only if conv o(T) = W(T).

~ Proof

convo(T) c W(T).

To prove the assertion, we show the reverse inclusion.

show that it contains W (T)

If T e B(H), then |R, (T)| < % forall 4 >0 ifand only if Re W(T)isin {x:x <0}

First, let T € B(H) be convexoid. We know that, for any operator T € B(H)

Let L be a line of support of conv o(T) and the closed half plane which contains conv o(T); we
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IfL touches conv o(7T') at a point, say A_, we find the complex numbers a and b, a[ =1, such that

z> az +b sends A, to the origin, L into the y-axis, and conv o (T) into a part of the left closed

- half plane.
From Lemma 3.2.24 we obtain

|
dist(az + b,convo(aT + bl))

R...;(aT +bI)| <

forall az +b ¢ convo(aT +bl).

We can choose a and b such that az + b is a strictly positive number and apply Lemma 3.2.25

above, and thus
ReW(aT +bl)<0

and this implies that W (T) is on the same side of L as conv o (T).
Thus W(T) < convo(T) and consequently V_Vm c convo(T).
Conversely, suppose that conv o (T )VZ-VWVT); we prove that T is convexoid.
Let z be any point in W_(T_)=conv0'(T ). We find a unique point A, € m such that
’2,0 — z| = dist(z,m
The line through A, and perpendicular to the line joining A, and z is a line of support of W (T')

we denote this line as L. Hence we can find complex numbers a and b such that z > az + b

carries A into the origin, L into the y-axis, and z into |z — A

Since W (aT +b) =conv o (aT + b), we have, by lemma 3.2.25

1
,conva(aT +bl))

HRiz—ﬂol (@f +b)” = |z _1,10| B dist(|z - 4,

Since the inverse of the map z > az + b has an inverse mapping of the same form, it follows

from lemma 3.2.24 that
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1
dist(z,convo(T))

, i.e; T is convexoid.

R.(T)|<

The converse part has a simpler alternative solution:

Suppose that conva(T) =W (T) fora T € B(H). ..ccovoviiiiiiiiiiiiiiiiiiine (3.2.9)

Since for all z ¢ W(T'), we have

1
dist(z,W(T))
It follows that
1
R, (T)H < for z ¢ convo(T)

dist(z,conva(T))

since (3.2.8) holds. But this means that T is convexoid.

We can weaken the condition in the G; property by, supposing that z is in an open

neighborhood of o (7).

Definition 3.2.27

An operator T € B(H) is said to be of class loc-G; if there exists an open neighborhood U of -
o(T)such that forall zeU/o(T)

1
d(z,0(T))

R.(D)|<

This class loc-G; is strictly larger than the class of operators with G- property. To see this, we

have




}

= maxﬂ

= max{

since N is a normal operator.

1

o)

Now since there exists an open set U containing o(A4) and contained in o(N), we can find V
“open such that
7V 2 0(N)(=a(T))

 and thus for all z € V|O'(T )

3G, (T))

| Definition 3.2.29

A complex number A is called a normal eigenvalue for 7' € B(H) if
ker (T = 27)=ker(T - AI).

Proposition 3.2.30

If T € loc— G, and 4, is an isolated point in o(T'), then 4, is a normal eigenvalue for T.




Proof

| Let £ >0 and C, be a circle with centre A, and radius ¢ such that the intersection of the closed

disc with boundary C, with o(T) isjust {4, }.

[t

1
P =— [(T-AD'dA
kL Zm.qj( )

which is an orthogonal projection commuting with T (see proposition 3.2.12).

The argument given there also shows that if x € P, (), then Tx = A,x and since

IR, (@)= |R; (")

we obtain 7" x = A x.

Indeed, since o(T") ={Z : z € o(T)}, if 4, is an isolated point of o(T), 4, is an isolated point
ofo(T"). Let C.be the circle of radius & centered at A, (with the usual orientation). So the
closed disc with centre A,and radius ¢ intersects o(7"")at the point A, only.

Consider the orthogonal projection

1
P. =— |(T" -ADdA.
& Znic'!.( )

Then it is easily seen that

P'y=—= [T=AD"dh (3.2.10)
° 2m ¢

But Pi = Pj—0 , whereas the right side of (3.2.10) is P, and hence PZO =P, .

Now for xe P, (H) = PZO (H), we have ( see equation (3.2.6), proposition 3.2.12).

== | o o= Al =20 e o
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(L Je-lke-

< &l

and &[x| > 0 as £ >0, to give T"x=A4,x.

As a corollary we have
Corollary 3.2.31

On a finite dimensional Hilbert space the class of normal operators and the class loc-G; are the
same.

We give an illustration. Let A be the operator with the matrix

i

and it is seen that
W(A)={z:|7<1}.
Consider a normal operator N on a Hilbert space such that
1
o(N)= {Z - ’Zl S—}.
2
Then the operator 7= A ® N is in class loc-G; and is not with G; property. Note that

conva(T)=W(T).

We can consider a new class of operators which is related to the class of operators with

spectral G; property and loc-G;.
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Definition 3.2.32

An operator 1" € B(H)is said to be in the class spectral loc-G; if there exists an open

neighborhood U of convo(T) such that

1
d(z,conva(T))

R.(T)| <

forall ze U \convo(T) .

We define another class as follows:

Definition 3.2.33

An operator T € B(H) is said to be of class R if for all z ¢ o(T)

1
d(z,(W(T))

R.(T)|=

In the next proposition, we give a characterization of this class of operators.

Proposition 3.2.34

An operator T € B(H) s of class R if and only if oW (T') c o(T) .

Proof

_ First let OW(T) c o(T)and z ¢ W(T). In this case we have dist(z,W (T) = dist(z,o(T))

and

1 1
d(z,W(T))  d(z,0(T)
<|R.(T)|
rI -
d(z,W(T))

and thus T is of class R.

Suppose now that T is of class R and z, e oW (T).
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Then we can find a sequence (z,) such that |zn - zol -0, d (zn ,kW(T )) >0 forall ne N.But

we have

1

. Ol @)

and thus z, € o(T).

Proposition 3.2.35

If T € B(H) s of class R, then the following assertions hold:

(i)  Convo(T)=W(T)

(ii) if o(T)1is a finite set, then T is a multiple of I

Proof

1) The first assertion is a simple consequence of the characterization of operators of

class R.
(i)  For the second, from the convexity of W(T), it follows that W(T) contains only

one point, which clearly implies the rest of the proposition.
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CHAPTER FOUR

ADDITIONAL RESULTS ON NON-NORMAL OPERATORS
This chapter continues with additional results on non-normal operators.
We obtain a set of necessary and sufficient conditions for convexoidity and characterize those
operators T € B(H) for which Reo(T") = o(ReT') generally.
We also obtain results which indicate a connection between spectral sets, the numerical range
and normal dilation of an operator T.
We finally study operators of class El and show that this class includes normaloid, spectraloid,
paranormal, hyponormal and T + k, where 7' € B(H) is isometric or has G;-property, or has

sequential G;-property, or hyponormal and k is compact.

4.1. RESULTS AND CONSEQUENCES
If X is a complex Banach space and 7 € B(X) for a polynomial p(4) =a, +a,A+...+a,A" with
complex coefficients, we represent by p(T) the element a,/ +a,T +...+a,T" € B(X).
By the spectral mapping theorem we have
a(p(T) = {p(1): A € o(T)} = p(o(T)).
Now if H is a complex Hilbert space and 7 € B(H) is self-adjoint we have
HT“ = supﬂl‘ tAe O'(T)}.
Then o(T')is a compact subset of R and the set C(o(7')) of all complex- valued continuous

functions on o (7’) is a Banach space with respect to the uniform norm

[fl=swpl{ff: Aco@)}  (f Cla@).
When f,g e C(o(T)), the product fg and the complex conjugaté function f (both defined
pointwise) are also in C(o (7). By the classical Weierstrass approximation theorem the set p of

all polynomials (considered as functions on o(T)) is an everywhere dense subspace of C(o/(T)).
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Proposition 4.1.1

Let T € B(H) be self-adjoint. Then there is a unique linear mapping f + f(7) from the
algebra C(o (7)) into B(H) such that

(1) f(T) has its elementary meaning when f is a polynomial;

@ Jr@l=lA  (eco@y)

Furthermore, for each fand gin C(o (7)),

(i)  (F)(D=HD)g(T).

@iv) f(T)=fT*).

v) f(T) is normal.

(vi)  f(T)S =Sf(T), whenever S € B(H) and TS = ST.

(vi) If AeP (T),xe H and Tx = Ax, then f(T)x= f(A)x.

Proof
If p(A)=a,+aA+..+a,A",then p(A)=a, +aA+..+a,A" when A € o(T).
Thus

p(T*)=(al+aT+..+a,T")*

It follows that p(T) is normal (for p(T)p(T*)=p(T*)p(T)).

Thus
|P(D)| = r(P(T)) = sup{|u|: 1 € o(p(T))}
=supﬂp(l)| ‘e O'(T)}Z |7

(since o (p(T)) = p(a(T))),

where ll p“ denotes the norm of p as an element of C(o(T)).




This shows that the linear mapping p — p(T") from p into B(H) is isometric.

Since p is dense in C(o(T)) and B(H) is complete, this mapping extends uniquely by continuity,
to an isometric linear mapping f > f(T) from C(o(7T'))into B(H).

We have thus proved the existence and uniqueness of the linear mapping f > f(I')) from
C(o(T)) into B(H), satisfying parts (i) and (ii) of the proposition. It is evident that parts (iii),
(iv), (v), (vi) and (vii) are satisfied when f, g are polynomials; by continuity, they remain valid
whenever f, ge C(a(T)).

The mapping f +> f(T))described in this proposition is called the functional calculus for the

self-adjoint operator T.

It is thus clear that the linear mapping f > f(T)) of C(o(T)) into B(H) is an isomorphism

from the algebra C(o(T)) onto a sub algebra of B(H).

Proposition 4.1.2

If T € B(H) is a normal operator and if o € o(T), then for any real & > 0 there exists a closed

subspace N # {5} such that

1) Nis invariant for any operator commuting with T*T.

2) [ri]se

Proof

=1 for all ne N, such that

Since o € o(T), we can find a sequence(x, ), |x,
s-lim Tx,= 0, and thus lim T*Tx,=0.

Consequently, o € o(T *T). Lete > 0; since T*T is self-adjoint, we can define the operator

f(T*T), where
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£
,fOI" ’tl SE

£ = 2(1—H,for5 <lf<e
& 2
0 ,f0r|t|28

T

b

T ], we can define

is continuous on ||
N ={x;: f(A)x = x}, THT =4
Clearly N is a closed invariant subspace for all operators commuting with T*T. It remains to
show that N # {0} and that 7], [ <.
Let x € N, with x| =1. In this case we have
|| =41 (@ * D = | £ (T * T) 4]
<|r@*n4|

= supﬂsf(s)| 1S € O'(A)}
<¢
and since ”Tx“2 = (T *Tx,x) = (Ax, x), it follows that ”T|NH <g”.
Next we show that N is nonzero. Since
|(7 = £(4) f24)| = sup|(1- £ (1)) f(2t)| = ©.
We see that f(2A4)x is in N for all x € H; furthermore this is not zero because

|r4)| = sup{f(20)|: 1 € o(A)}2 £(0) =1.

We have thus proved proposition 4.1.2

Proposition 4.1.3.

If T € B(H) is a normal operator and p(t,s) is a polynomial, then

o(P(T*,T)) ={p(z*,z): ze o(T)}.
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Proof

Let p(s,t) = Zan’ms"t’” and thus the operator p(7*,T) is equal to

Zan’mT*"T’".

Let S € o(T); then there exists a sequence (x, ), =1, such that

‘xn
(T-Sx, >0, (-5}, >0

and this implies that
p(T*,1)x, — p(§*,8)x, = 0.

Thus for any S € o(T), p(S*,S) isin o(p(T*,T)).

Let r € o(p(T*,T)) and since the operator

A= p(T*,T)—r is normal and 0 € o(4) by the above proposition 4.1.2, for ¢ = & we can find
n

a closed invariant subspace N, such that

1
&€ —

“A‘N n

=1 such that

Let She o'(TlN ) and since T <> 4, Nj reduces T, and we can find y ,|y,

IS, 7=T)y.| < 4
n

We can suppose, without loss of generality, that S, — S € o(T") and also

£,
n

[T *-5*,)y,

Thus we have that

and since p(T*,T)y, — p(S*,8)y, = 0,r = p(S*,S) and the proposition is proved.
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4.2: OPERATORS WITH THE PROPERTY Reo(T) = o(Re T).

. Byproposition 4.1.3, if T € B(H) is a normal operator, then for any polynomial p(z,z¥), we

have

o(p(T.T%) = {p(z,2%): 2 € (D)},
and if p(z,z*) = %(z +z*), then we get (since p(T,T*)=1(T +T%*))

o(ReT)=Reoc(T).
Simple examples show that this remarkable relation does not hold for arbitrary operators. It is
clear that for nilpotent operators or more generally for quasinilpotent operators this fails to hold.
Hence we are motivated towards a natural problem to find classes of non-normal operators for
which the relation holds.

We first prove a few results:

Proposition 4.2.1

If T € B(H) is a hyponormal opera}:or, then

Ren(T) c o(ReT).

Proof

Let A = x +iy € #(T). Then there exists a sequence (x,) of elements of H such that “xn || =1 and
(T-Al)x, ——0.
Since T — Al is hyponormal
(T*-21k, —>0.
Hence

(ReT)x, —Re Ax, = %[T+T*—(l+}:)l]xn — 50
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and this proves that

T+T*

Rele ﬂ'( ) =o(ReT) for Re T is self-adjoint. Thus the result.

Proposition 4.2.2

If T e B(H) ishyponormal, then Reo(T) c o(ReT).

Proof

Let A, € o(T) and the line Re A = Re A, meet the spectrum of T in a boundary point A . Since
every boundary point of o(T)is in the approximate point spectrum 7(7T),it follows that Re A, is
in Rez(T) and hence in o(ReT) (by Proposition 4.2.1).

ButRe A, = Re ,,and we have thus proved the assertion of the proposition.

Remark: Clearly, the assertion of proposition 4.2.2 also holds when T* is hyponormal.

Proposition 4.2.3

If T € B(H) and if either T or T* is hyponormal, then Reo(7) = o(ReT).

Proof

We need only consider the case when T is hyponormal. We use the result that the approximate
point spectrum of a self-adjoint operator is exactly its spectrum. Using proposition 2.2.20, we
can assume, without loss of generality, that if 7 = 4 +iB, then o(4) = P, (A).

Let A=a+ib and a € o(A4). Consider the subspace

M =Xker(4—al).
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Since a is an eigenvalue, M # {6} We show that M is an invariant subspace for B. Let x e M

and thus Ax = ax.

Since we have
1.
(A-al)B—-B(A—-al) = EZD
where D =T *T —TT*, it follows that
- %i(Dx,x} ={(A-al)Bx,x)—(B(A—-al)x,x)=0

and thus (Dx,x) = 0.

But D > 0and thus D? exists and is self-adjoint. Hence we have

2

O={Dx,x)= (D%x,D%x) = HD%x

which implies that Dix=0.

From this we have Dx = 0 and hence
0= A(Bx)— B(Ax) = (A-al)Bx=0
that is, Bx e M.

~ Clearly M is an invariant subspace for T and 7], is of the form

~

T=al+B
and since B is hermitian (self-adjoint), T is a normal operator.
But T is a hyponormal operator whose restriction to an invariant subspace is normal.

Then M is also invariant for T*. Clearly,

r-(,)eu

w) =5 9L,
Since o(T) = o(T;) U o(T,), we obtain that the same relation holds for the real parts,

Reo(T) =Reo(T;) WReo(T))
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and since Reo(7}) = {a}, the assertion of the proposition follows.
Earlier we had defined an operator T' € B(H) to be convexoid if for all -/1 ¢ convo(T)

1
dist(A,convo(T))

|- 407 <

and showed that T € B(H) is convexoid if and only if convo(T) = W(T).

Proposition 4.2.4

If T e B(H)is a convexoid operator and [a,b] is the smallest segment containing Re o (7’), then
aand b are in o(ReT).

Proof

As we know, we can assume without loss of generality that W(T) is a closed convex set and

z(T)= P_(T) (Proposition 2.2.20).

Let A, € o(T) such that ReA, =aand 4, is a point on do(T’) such that 1, € W(T).

Since T is convexoid, W(T) is closed.and Reo(T) > a, it follows that
Rem=Re(conva(T )2a

and thus A, is a boundary point of W(T). ie, A, € oW (T).

Hence, as is easily seen, A is a normal eigenvalue.

As in proposition 4.2.1, we can show that a is in o(ReT’), and similarly for b.

Proposition 4.2.5

If T € B(H) is a convexoid operator and [c,d] is the smallest segment containing

o(ReT), then

o(ReT) c[c,d]cRec(T)

if o(T)is a connected set. Wﬁ Aﬁ =
B

SuG- iﬁ%u Fass 1 R

RARY 75




Proof

Since o(T) is connected, it follows that Reo(T') is a segment onR .

To prove the proposition it suffices to show thatc,d € Reo(T) . Let us suppose the contrary for ¢

first,i.eme N ., c ¢ Reo(T).

- Let / be the straight lineRe A = ¢ . [ is disjoint from o(7’) since otherwise ¢ € Reo(T).
But o(T)is a connected set and thus it is strictly on one side of /. Suppose that it is on the right
side of /. Then we can find an & >0 such thatReo () 2c+¢.
Since T is convexoid, we have convo(T) = m .So W(T) c conva(T) and hence
ReW(T)>c+¢,1i.e,
Re(Tx,x) 2 (c+ g)”x”2 forall xe H.
Since Re(Tx,x)={(ReT)x,x) forall x e H, we obtain
{(ReT)x,x)y 2 (c+ g)“x“2 for gll ve H ,
e ReT 2 (c + €)I, which implies
||(ReT)x = ch“ > g||x” forall xe H.

This shows that
cgr(ReT)=c(ReT) (for ReT is self —adjoint)
and this contradicts the hypothesis that [c, d] is the smallest segment containingo(ReT) .

Likewise, dealing with d, we can show that d ¢ o(ReT) and this gives again a contradiction of

the hypothesis.

Hence c,d e Reo(T).
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Note

[c,d] is the smallest segment containing o(Re7) implies that

¢ =inf{(ReT)x,x):x e H and x| =1
d =sup{{(ReT)x,x): x € H and “x” =]

Moreoverc,d € o(ReT).

Proposition 4.2.6

If T € B(H) and o(T)is a spectral set for T, then o(ReT) < Re(O'(T ))

Proof

Since o(T) is a spectral set for T, we have

|/ (D) < sup{ f(A)]: 2 € 5(T)}

for all rational functions f without poles in (7).

Now

oy =sup{A]: A € (£ (D)}

By the spectral mapping theorem
o(f(T)) = f(o(T)).

Hence
Frary =sup{A|: 2 € f(o(T)}
=sup{|f(4)|: 4 € o(T)}
2| 7).

However || f(T )|| > 1, always and hence

Yray = ”f @)
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' This shows that f(T) is normaloid.

Taking f(A) = A —z ( where z is a constant), we see that 7 — z/ is normaloid , and this says that

T is transaloid. Therefore (by proposition 3.2.5 ) we have convo(T) = m ,

Let a € o(ReT) and suppose thata ¢ Reo(T'). Let / be the straight line Re A = a which is
disjoint from o (T') . Suppose that o (T) is on the left side of /. Then there exists an £ >0 such
that Reo(T') < a — ¢. But T is convexoid and hence we obtain that

ReW(T)<a-¢,ie., WReT)<a-¢ .Thus o(ReT) < a - ¢&, which is a contradiction since
a < a—¢ isnot possible.

- Incase o(T) is on the right side of / , we can proceed in the same manner.

If o(T) = 4, U 4, ,where A, is on the left of / and A; on the right side, then we can decompose

I'=T ®T7,,0(T,)=A4,,i =1,2 and we can apply the above result.

Proposition 4.2.7
If T € B(H) has the G;-property, i.e.,

“(T—/U)_1 ” =m forall 4 € p(T)

| then Re(o(T))c o(ReT),

Proof
Assume, without loss of generality that 7 (7) = P, (T') (see Berberian’s result).
This implies that

oo(T)cx(T)=P,(T).

Let a e Reo(T) and / be the lineRe A =a.
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Let A,be the point where / exits the spectrum of T; it is clear that it is a boundary point.
Obviously ReAd, =a.
We can construct a sequence of unit vectors(x,) such that

@) (T -A,D)x, >0

G) (@ -4'Dx, >0

and this implies that a € o(ReT).
For n=1,23,.., let D, = {z (A=A < l} :
n

1
a, _AO|SZ1—.

Since A, € o(T), the set D, contains a point a, € p(T') such that

Let b, be such that

dist(a,,o(T)) =

a, —=b,
In this case by, is in (T, and since T has G;-property, we obtain
Nyag = 77T"-b;1
Now let x, be such that
(T-bDx,=T" -b,"Dx,=0
and from the definition of b, we obtain that
(T-4,Dx, =0, -4,)x,
and
" -2 1), =) - 21,

Thus since (x, ) is a sequence satisfying the requirements and the proposition is proved.

Proposition 4.2.8

If T € B(H) has one of the following properties




1) o(T)is a spectral set for T

(i) T has the G;-property and o (T) is connected,

then T has the property Reo(T) = o(ReT).

- Proof

First, if o(T)1is spectral set, then by proposition 4.2.6

o(ReT)c Reo(T).

- Since T satisfies trivially the G;- property (by the fact that o(T) is a spectral set), the opposite
inclusion follows from proposition 4.2.7.

Now suppose that T has G,-property and o(7T') is connected. From proposition 4.2.7 we have one
inclusion.

For the opposite inclusion, we proceed as follows:

Let [a,b] be the smallest segment containing o(ReT’) and since T is convexoid, by proposition
4.2.4, it follows that [a,b] c Reo(T).

Thus we have

oReT)cla,bl]c Reo(T) c o(ReT)

and the second part follows.

Combining proposition 4.2.8 with proposition 4.2.3, we summarize:

Proposition 4.2.9

If TeB(H) and one of the following conditions holds, then T has the property
Reo(T)=o(ReT)

Si. T is hyponormal

Ss. T" is hyponormal

S;. o(T) is a spectral set for T

Ss. T has the G;-property and o(T’) is connected.
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xample (i)
Now part (S4) of proposition 4.2.9 does not generalize to arbitrary convexoid operators.

Let A be an operator with matrix

i

and B with matrix

a 0 0
0 a, O
0 0 a,

Dy ={z:|zlsl}.
2 2

| since the spectrum of 4@ Bis {0,q,,q,,q, }, it follows that
: 0eRec(4ADB).
Since Re(A® B)=ReA®ReB,
o(Re(4® B))=oc(Red)uoc(ReB)

= {—%,%}uReo—(B)

and thus

0¢ o(Re(4® B)).

where the eigenvalues lie off the imaginary axis and are vertices of a triangle containing the disc

- Since W(A)=D, and W(B) = conv{a,,a,,a,} > D,, it follows that T = 4 ® B is convexoid and
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4.3. FURTHER PROPERTIES OF NON-NORMAL OPERATORS

The following class of operators was introduced by Paul Halmos in the course of studying
reducible operators (Halmos, [7]).

: Definition 4.3.1

An operator 7 € B(H) isin ﬁl if T has an approximate reducing eigenvector, i.e., there exists

=1,

A, such that for any real ¢ <0 there exists x_,||x,

and

[T - 2,D)x,| <&,

(T = 2Dx, | <e.

From the definition it is clear that R, represents the closure of operators with one-dimensional
reducing spaces.

Halmos showed that R, contains the normal and isometric operators.

Proposition 4.3.2

If TeB(H)and A e o(T)with || =|T

, then
(i) I @ -ADx=0 then (I -ANx=0.

I _ _
G) If  (T—ADx, =0,then (T" —A'I)x, - 0.
n —

Proof

We prove the first assertion only.

Let x be such that (T —Al)x = 0. Then

[T =D =7 (T, 2y = a2, Ty + A o
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7 =

<[l -t =0
Hence (T* -A')x=0.
For the second part we observe that A € 0o(T) and hence belongs to the approximate point

N , We note

=|

spectrum of T ( Halmos,[8], pr.63, pg.228).Also since A’ € o(T") and

that A' € z(T"), the approximate point spectrum of T" since 1A' € do(T").

Corollary 4.3.3

If T e B(H)is normaloid, thenT € R, .

Proof

If T is normaloid, then »(T) = [[T ” . So there exists a A € o(T) (which is closed in C)such

that|4| = ”T || So Aen(T)and A" € n(T") and there exists for eache > 0 anx, € H with ||x£“ =1

that |(T — Al)x,

<¢.

<¢ and ”(T* - A Dx,

Definition 4.3.4

An operator T € B(H)is said to be spectraloid if its numerical radius is equal to its spectral

radius, i.e, w(T) = r(T). Note that every normaloid operator is spectraloid.

Then the corollary 4.3.3 is a consequence of the following result:

Proposition 4.3.5
If T e B(H) is spectraloid, thenT € R, .
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Proof
- Let A be such that 'ﬂ| =r(T)=wT).
- It suffices to show that if A is with the properties
1) Tx =A%
(i1) AedWw(T)
then T x=A"x.
By transformation of the form A4 — a4 + b, the point spectrum and the numerical range are
transformed in an obvious way and we can assume without loss of generality that A =0 and
ReT <0.
Since Re(Tx,x) =((ReT)x,x)
and since ReT is a self-adjoint operator, we obtain that (ReT)x = 0 and thus
Tx=0=(ReT)x +i(ImT)x, which gives Im7x =0 .
Now T*x = (ReT)x—i(ImT)x = 0. The case of a sequence of elements in H can be treated in a
similar way.
Since A € o(T), we can find a sequence of elements such that
Tx, - Alx, ——0
and from the above remark
T'x,— A Ix,——0

which proves the proposition.

Corollary 4.3.6

If T € B(H) is paranormal, then T € R,.

Proof

For paranormal operators are normaloid and thus spectraloid.
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Corollary 4.3.7

If T € B(H) is a hyponormal operator, then T € R, .

Proof
Every hyponormal operator is paranormal.
{Note

We know that
1
Lir < wny |,

( Halmos,[9],pg.33).

Since o(4) c W(A), we get r(T) < w(T') . Suppose T is normaloid, sor(T) = ||T H . Hence

w(T) = ”T || and consequently w(T') = r(T), i.e. T is spectraloid}.

In the case of operators in the above classés, we prove a more general result. We recall

Definition 4.3.8

Let T € B(H). A point A € o(T)is in the continuous spectrum of T if 7 — A/ is one-to- one

and the range of T — Al is dense in H but not equal to H.

Now it follows that A is in the continuous spectrum of T if and only if there exists a sequence of

elements (x,),|lx,|| =1, such that
@) Tx, — Ax, ——0

(1) X, =20 e (4.3.1)

n
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Since the continuous spectrum of T is 7z(7) — {I'(T) v P, (T)} (Halmos,[6], pg.41).
Here P_(T) is the point spectrum of T and I'(T) is the residual spectrum of T), it follows that
A € n(T) and hence there is a sequence (X,) of unit vectors such that property (i) holds.
Since (T — Al) is one- to- one, Ker(T —AI) = {0} and hence the range of T — A" is dense in H.
Now, for each y € H , we have
(x,,(T"=ADy)y={T-ADx,,y) >0 as n—>o.

Hence by (Bachman and Narici,[2], pg.235, theorem 14.3)

w

x. ——0.
Conversely, if property (i) holds, we see thatA € z(T).
Now, property (i) implies that
(x,,(T"=A1)yy—>0 asn—>oo  forall ye H.
Since x, —* 50, we see that the range of the set (7" — A'I) is dense in H, i.e; T — Al is one- to-
one.
Hence A ¢ P_(T). Also Range (T - ) # H (for if Range (T -l ) was H, then A € p(T') using

the Banach inverse theorem).
Thus we have proved contention (4.3.1).
Proposition 4.3.9

If T € B(H) is a hyponormal operator on H, then

{xe H: ”T"x” = ”T""x , for allk = 1,2,...}

= {er:T'kT"x=T"T”‘x}

©
k=1

and is a subspace which reduces T.
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Proof

It is clear that

{xe H ”Tkx” & HT*"x”, Sor allk = 1,2,...}
S(lre H: T =TT x)
k=1
and we note that

ke H:T*T*x = T*T*x}

" s

=

=1

is a subspace.

Now, for any x € {r € H :[T*x| = [1"*a], for allk =12,.. ||| = 7" x| implies

T'Tx=TT"x.
Since T is hyponormal

|2 =) @)

=[] 2|z,

and by the equation

[ = we hve

[T = |1 (1),

=[]
e

and hence

T*T(Tx) = TT" (Tx) and T°T(T"x) = TT" (T"x)
(we use: For a hyponormal T on H, |13] = |7*)| if and only if 7Ty = TT"y.

Since T'T-T1T* >0,
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-y =@ -0

o 1 S (4.3.2)

Since T"Tx=TT %,
T*T*’x =TT Tx = T*T"x and

TS T I RS TT R cmpenssissas i7 bsmmaiisss s (0 SRR G (4.3.3)

By (4.3.3) and the fact that T is hyponormal
|72 275
=|rr o =15
> 7775
=[rz =T 2]
and, by the equation |7°x| = |7**x|, we have
[ra=)=|r @)
=|r@ 10| =|r* (7 Tx)|
=[raT =)
=[raT )
=[]
=|r @)

and hence using (4.3.2) again

T'T(T*x) =TT (T*x), T'T(T'Tx)=TT"(I"Tx)




T'T(IT x) =TT " (IT x)and T'T(T"x) = TT" (T *x).
Hence by (4.3.2) and (4.3.3), we have
TI2=TT"T"x =TT [ =TT,
TT x=T"TT"?x=T"TT" x =T"Tx
and
T?T*x=T'TT'Tx=T"T*T’x=TT'TT"x
=TT T = T*T "%
By repeating the same argument as above, we have

=

7 @) =[r @) =|

g (T*x)“
and T"T*x=T'T"x forallk=1.2,....
Therefore

{xe H:“T"x“ =(T*kx

,forallK=1,2,...}

reduces T and

fxe H:|T"4 =]

T*kx“, forall £=12,...} c ﬂ{x eH:T*"T*x=T"T"*x}
k=1

Proposition 4.3.10

If T is a hyponormal operator on H, then
H}”)d_iff{x eH :“Tkx“ = “T*kx“, Sforallk = 1,2,...}
= ﬁ{x eH :T*"T*"x=T"T"*x}
k=1

is the maximal reducing subspace on which its restriction is normal.
If P® is the orthogonal projection on H onto H™, then P™ commutes with any operator which

commutes with T and T,
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Proof

Since H{"” is a subspace which reduces T,
P" T
and the restriction T H of T is normal.
If M is a subspace which contains H{"” and reduces T and if 7],, is normal, then, for any

xeM,

I = Jrtuo*o| =ty

o

M)kxll = T*kx“

and x € H and hence

M=H".

Corollary 4.3.11

If T e B(H) is a hyponormal operator and if H{" = {0}, then P_(T) = ¢.

Proof

If Tx = Ax, then T"x = Ax and for each k =1,2,..., we have

T*T*x = 25T x
= A 1% x

=L T e T
and, by proposition 4.3.10,x € H{" = {0} and hence x = 0.

Therefore, P (T)=¢.
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Definition 4.3.12

Let T € B(H) be hyponormal. The normal operator 7}, is called the normal part of T.

Proposition 4.3.13

If T e B(H) is hyponormal, then for any compact operator K € B(H),T +K € R,.

Proof

Since T is hyponormal, we can (using proposition 4.3.10) write 7 =7, ®T, on H, ® H, (here
H =H{"and H, = HOH{"” orH, =H nH{”), where T, is normal and P, (T,)=¢. The
assertion of the proposition is clear when H; is infinite — dimensional since we can choose an
infinite sequence of eigenvectors which are mutually orthogonal.

=1 such that

In the case dim H, < ,we choose a point A € o(7,) and find a sequence (x,),|x,

(T, - ADx, ——0

and also

W —

x, —>0.
From the hyponormality it follows that
(T} - A Dx,——>0
and the weak convergence of (x,) fo 0.
The fact that K is a compact operator implies that for a subsequence of x,'s (and we can
suppose that this is just x,),
(T, - Al +K)x, ——0

and
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(I, — 2 I+K")x, ——0.

Now we use the corollary 4.3.3 of proposition 4.3.2 to complete the proof.

Lemma 4.3.14

lim
Let T'e B(H)and (x,) be a sequence converging weakly to x, and “Txn =0.
n— o
Then Tx, = 0.
Proof

Since x, ——>x, as n = ©, 50 (x,,y) > (x,, ) VyeH.
Now
<Txn7y>=<xn’T*y>-_)<xO’T*y>=<Tx07y> ¢

Now

KTx,, )| <|Tx, =0

) lim
y” — 0 as n—> 0 since ”Txn
n—> o0

Hence

(Ix,,y)=0 forallye H .

Consequently,

(Ix,,y)=0 forall ye H,

i.e; T, =00,

Proposition 4.3.15

If for some sequence (x,),|x, | =1, converging weakly to 0 and
(T-ADx, >0, (T -2Dx, >0
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then for any compact operator K, T+K € R,.

Proof
Follows immediately from the definition of the class R, .

Definition 4.3.16

Forany T € B(H), let

7y ={A € o(T): there exists an x € H such that x # 0and (T — Al)x = 0,(T* —=A'I)x = 0}.

It is clear that if ¥, is a nonvoid set, then T € R, .

Also, if y, is an infinite set, then T € R, .

Proposition 4.3.17

If A¢ y, and there exists a sequence of unit vectors (x, ) such that
(T-ADx, ——0, (T'-AT)x,——0,

then T+ K € R, for any compact operator K.

Proof
We can assume, without loss of generality, that x, ——x,.
Then, by the Lemma 4.3.14 above

(T-ADx, =0, and (T* -A'I)x, =0.

Since A¢y,, it follows that x, = 0 . Thus, by proposition 4.3.15, it follows that T + K e R, for

any compact operator K.
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Proposition 4.3.18

If T € B(H) is with the sequential G-property and y, = o(T'), then for any compact
operatorK € B(H),

T+KeR,.

Proof

Let o(T) ={A,,4,,...,4,} and since o(T) =y, each A, is an eigenvalue for T, each 4,is a

normal eigenvalue.

- Moreover, if for some 7, the nullspace of T — 4,1 is infinite - dimensional, then

clearlyT +K € R, .

In the contrary case H = H, ® H,, where H, = ZN(T —A,I) . Since H; reduces T and o(T)is
a finite set, the restriction of T on H; is an operator with the sequential G;-property and y;, is
void.

In this case T, + K € R,.

Proposition 4.3.19

If T € B(H) is with the sequential G,-property, then for any compact operator

K e B(H),T+K €R,

Proof

We can consider the case y, is a finite set and different from o (7).

Since T is with the sequential G;-property for any point 4, in o(7') — ¥, there exists a sequence
(a,) c o(T) such that

1

”U—%Dﬂdewwdn)a“+

0°
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Since a, — 4, ¢ y, forany a, €o(T)—y, such that
‘amo —2,0’ < rnin{]lo —ﬂ,] :Aey,}, wehave
dz'st(am0 5 O'(T)) = ‘amO = I

for some 4, € o(T)-y;.

Thus we obtain that

a4 1 L
“(T ~a,) |- distla, ,o(T)) @, = 2|

and ﬁ—ea((T—amol)_l).

my my

Then by proposition 4.3.2, there exists a sequence (x,) of unit vectors such that

!:(T—-amol)‘l —zﬂlﬁl)::,.xn —>6
my _amo
[(T* ') —al—)}c Ny
my —a m )

and from this we see that a,, is notin y,.

The assertion of the proposition follows then from proposition 4.3.17.

Corollary 4.3.20

If T e B(H) has the G;-property, then for any compact operator K, 7 + K e R,.

Corollary 4.3.21

If T e B(H)is an isometric operator, then for any compact operator K,7 + K € R,.
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4.4. CONCLUSIONS
From the study we can make the following conclusions:

We could consider the class C of operators 7 € B(H ) which satisfy the property:

For any x € H whichisnot 0 the sequence

’T"x
=

So every paranormal operator has this property. It is clear that any power of T is also in the class

1S monotone.

C. It would be an interesting problem to investigate if operators which are k-paranormal are also

of class C?

If T € B(H) is hyponormal then it is paranormal and consequently T? is paranormal but T” is not

hypornormal.

A necessary and sufficient condition for W(T')to be a spectral set for T is if there exists a strong

normal dilation N of T such that W (T)=W(N).

If T € B(H) and one of the following conditions holds, then T has the property
Reo(T)=0(ReT):

e T is hyponormal

e T"is hyponormal

e o(T)isaspectral set of T

e T has the G;-property and o(T") is connected.

Finally, we can say that if T € B(H) is normaloid, spectralod, paranormal, hyponormal and T

+K, where T € B(H) is isometric,or has the G;-property and K is compact, then T'+ K € E
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4.5. RECOMMENDATIONS

As we have seen, a normal operator satisfies quite a number of conditions weaker than
normality, for example, hyponormality, convexoidity, transloidity.
Results in the converse direction can be obtained by supplementing or strengthening such

conditions.

Quite possibly, the supplementary conditions may refer to the spectrum, finite- dimensionality,
compactness, etc. The work on non-normal operators may be pursued in this direction. To
mention a few cases, an interesting characterization of normality was obtained by Stampfli G.J

using the class of hyponormal operators:

» If T e B(H) is a hyponormal operator and for some positive integer p,I” is normal, then

T is normal.

Ando, T. [1] extended this result to paranormal operators:

> A necessary and sufficient condition for an operator T € B(H) to be normal is that for

some integer p > 1the operator T is paranormal.

The work of this thesis can be moved in the reverse direction and we would suggest some
problems deserving attention, but the means through which the answers may be obtained may be

far reaching and too involved:

(1).If T is paranormal and for some p, (T")P is paranormal, does it follow that T is normal?
(2).If T is hyponormal (or paranormal) and for some integers p and q, (T") (TY is
hyponormal, is T normal?

(3).If T € B(H) has the property that for all 1 € C,T + A[is also paranormal, and then is T is

hyponormal?
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