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Abstract

The development of simple analytical methods for solving the first-order wave
functions and the second-order energy for two-electron atoms has remained
a major challenge of theoretical atomic physics. The failure to overcome
this challenge has motivated progress in the variational-perturbation method
which has yielded accurate approximations for second-order energy using
arbitrary first-order trial wave functions. However, the main drawback of
the variational-perturbation method is that, apart from determining optimal
parameters to specify an nth-order wave function through sophisticated com-
puting software, it fails to directly account for the mechanisms which cause

nuclear charge screening usually introduced as one of the parameters.

The problem investigated in the present thesis is to obtain a simple analytical
solution to the Schrédinger equation for two-electron atoms based on a model
which formulates the role of the repulsive electron-electron interaction term
in nuclear charge screening. The objectives of the study are:- First, to de-
velop a model that specifies the direct role of the repulsive electron-electron
interaction term in nuclear charge screening in two-electron atoms. Second,
to determine analytically the first-order perturbed wave function for two-
electron atoms. Third, to calculate the ground state energies of two-electron
atoms based on the model, through application of perturbation theory to

second-order approximation.

We have analyzed the repulsive electron-electron interaction between the two
electrons to determine its role in nuclear charge screening and dynamics in
two-electron atoms. The Hamiltonian governing the general dynamics of the
system is composed of a component describing the stable state of the system

under the anti-parallel orbit orientation and the other describing the binding
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gner@les treated as perturbation. The calculated ground state energies to

- first-order perturbation are far much better than those obtained within the

ependent electron approximation.

~we have developed a simple analytical calculations for the first order
-wave functions for two-electron atoms in the model. The resulting
wave fuﬁctions are applied to calculate second-order energy within
‘ e calculated ground state energies to second-order perturbation
with those obtained in a perturbation scheme based explicitly

ock approximation.
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Chapter 1

1 Introduction

The two-electron atoms (or ions) consist of a nucleus of charge Ze and mass
M and two electrons of mass m. We denote r; and ry as the relative coor-
dinates of the two electrons with respect to the nucleus as show in figure 1

-4

Nucleus mass M charge Ze

Figure 1: Coordinate system for two-electron atoms.

Each electron is then understood to experience an attractive Coulomb inter-
action with the nucleus and a repulsive Coulomb interaction with the other
electron. The Hamiltonian governing the binding or dynamics of the two

electrons is given in atomic units by [5 — 7]
H==-—"b = - — - —  — (1.1a)

where
Vie —+-— Ci=1,2 (1.1b)



(\

is the Laplacian operator, Z is the atomic number, r; and ry are the electron
j distances from the nucleus and 75 is the distance between the electrons,
defined by

ri=Iril sre=ra] 5 rie=r; -1y (1.1c)

In (1.1a) the nucleus is taken to be infinitely massive, and relativistic effects

are ignored. The Schrédinger equation for the two-electron atoms is
2 2

(Z-B-Z.2, LV gy

where W is the eigenfunction and E the corresponding eigenvalue of the

Hamiltonian (1.1a). It has proved impossible to find an analytical solution to

(1.2), due to the presence of the electron-electron repulsive interaction term

/

e m— (1.3)

which prevents solutions through simple separation of variables [8 — 10].

However, many approximate methods, including the perturbation theory

method, variational perturbation method and Ritz variation method, have

been used to give a reasonable calculation of the correlation effect between

two electrons in the system [11].

In standard quantum mechanics textbooks [1 — 10] and in some other re-
search literature [11 — 15], the ground state of two-electron atoms is treated
as an elementary application of the perturbation method. The method starts
by neglecting the electron-electron repulsive interaction term (1.3) in (1.2),
Le., the independent electron model. The Schrédinger equation (1.2) reduces
to

v vV oz z

(-3-3-Z- g) VO (e, 1) = BOUO (1, r), (14)

which may be solved independently for the two one-particle hydrogen-like




equations [1, 2, 5]. The unperturbed wave function becomes

Z3
VO (ry,ry) = — exp(=Z(ry +12)) (1.5)

and its corresponding energy eigenvalue is given by
EO = _72 (1.6)

Thus for Helium atom (Z=2), the ground state energy E") = —4.0000 a.u.,
about 37.76% lower than the experimental value E®) = —2.9037 a.u.. Hence,
the independent electron model gives the unperturbed ground state energy
lower than the experimental values because the electron-electron repulsive
interaction term (1.3), whose effect is clearly to raise the energy levels, has

been neglected.

The effect of the neglected electron-electron repulsive interaction term H’
on the ground state energy can be estimated using Rayleigh-Schrodinger
perturbation theory [1, 2, 5]. The first-order perturbation energy E() is

readily evaluated with the results

EW = <‘I’(0)|7‘1_21|‘I’(0)>

=§Z (L.7)

The ground state energy to first-order perturbation becomes

E=E9 4+ gV

=72+ g-Z (1.8)

This gives for Helium atom (Z=2) E = —2.7500 a.u., about 5.29% higher
than the experimental value £(¢*) = —2.9037 a.u.. Further improvements on
the ground state energy was achieved by addition of the second-order and

higher-order perturbation energies [11, 12, 13].
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The second-order perturbation energy is given by
E@ = (3O g — EO)gD) (1.9)

where U is the first-order perturbed wave function which can be obtained

by solving the equation [14, 15]
(HO — EOY oW 4 (' — EW)w©® = ¢ (1.10)

However, in the case where the electron-electron repulsive interaction term
(1.3), is treated as a perturbation, analytical solutions of the homogenous dif-
ferential equation (1.10) have not been found. Faced with this situation, there
has been increasing recognition of the fact, that one can often get satisfactory
variational approximation to the individual terms in the perturbation series,
Le, variational perturbation method [16, 17, 18]. The second-order pertur-
bation energy is obtained using variational perturbation method by varying

the functional
R[] = 2(WH — BN 4+ (V4 [HO — FOwt) (1.11)

which, because of the completeness of the eigenfunction of H® gives the
variational principle for £ [14]. The first-order trial wave function ¥! may
be chosen from either the Hylleraas type of basis function or the configuration
interaction method or a hybrid of both methods [11, 14]. For example, in
previous works, Hylleraas and Midtdal [19], Schwartz [20] and Knight and
Scherr [21] have calculate numerically the second-order perturbation energy

of two-electron atoms, to obtain
E® = —0.15766625 a.u. : (1.12)
The ground state energy to second-order perturbation becomes

E=-7%+ g —~0.157666 (1.13)
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Thus, for Helium atom, the ground state energy become £ = —2.907666 a.u.,
which is 0.003942a.u. lower than the experimental value E(*) = —2.9037 a.u..
Addition of higher-order perturbation energies using variational perturbation
method have led to the ground state energy for two-electron atoms similar to
the experimental values, for example, the works of Knight and Scherr [21, 22]

and Midtdal [23].

The main challenge of treating the electrons as entirely independent, i.e.,
the independent electron model, is that, it does not seem possible that in
an atom of finite size, we can have two electrons infinitely separated from
each other to justify zero repulsive interaction, i.e., each electron moves in
the fully unscreened field of the nucleus. This explains why the ground
state energies to first-order perturbation in this approximation are generally
poor. The vast improvement achieved through the addition of higher-order
perturbation energy terms using variational perturbation method is mainly
attributed to the inclusion of nuclear charge screening effects as one of the
arbitrary parameters in the trial wave functions. But the variational method
does not directly account for the mechanisms which cause nuclear charge

screening.

This thesis is an effort to address the apparent contradiction of having two
electrons infinitely separated in an atom of finite size, by developing an al-
ternative model of the quantum theory of the two-electron atoms; this for-
mulates the nuclear charge screening in terms of electron-electron repulsive
interaction and determines its direct role in the dynamics of the atom. The
ground state configuration with the two electrons equidistant from the nu-
cleus and in anti-parallel orbit orientation gives the ground state energy for

helium to be —3.06 a.u. which is about 5.5% lower than the experimental
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value. Application of first-order perturbation gives the ground state energy
E = —2.84 a.u. which is about 2% higher than the experimental value. We
proceed to evaluate the ground state energy to second-order perturbation
within the model by first solving the first-order perturbation equation (1.10)
analytically for the first-order perturbed wave function U\ and then apply-
ing the resulting function in (1.9) to calculate the second-order perturbation
energy E. The direct calculation of the first-order perturbed wave function
and second-order perturbation energy is a major achievement of the thesis.

Part of the results have been published in refereed journals [24, 25].

1.1 Statement of the problem

The problem was to obtain a simple analytical solution to the Schrodinger
equation for two-electron atoms based on a model which formulates the nu-
clear charge screening in terms of electron-electron repulsive interaction and
determines its direct role in the dynamics of the atom. The ground state en-
ergies to second-order perturbation approximation of the two-electron atoms
will be calculated using analytically determined first-order perturbed wave

functions.

1.2 Objectives of the study

The objectives of the study are

1. To develop a model that specifies the direct role of the electron-electron
repulsive interaction in determining nuclear charge screening in two-

electron atoms.

2. To determine analytically the first-order perturbed wave function for

two-electron atoms.




3. To calculate ground state energies of two-electron atoms based on the
model, through application of perturbation theory to second-order ap-

proximation.

1.3 Significance of the study

The calculation for the ground state energy of two-electron atoms are nor-
mally based on correlated wave functions using variational or variational-
perturbation methods. However, neither the variational method nor the
variational-perturbation method permits one to express analytically the ground
state energy of the two-electron atoms. However, it is widely believed that
there are distinct advantages to viewing problems of physics within the frame-
work of simple analytical models. In the present thesis, we develop an alter-
' native model of the quantum theory of the two-electron atoms and obtain
analytically the first-order perturbed wave function and the second-order per-
turbation energy. The development of an appropriate quantum-mechanical
model for two-electron atoms, which leads to analytic solutions of Schrédinger
equation, will provide a clear understanding of the dynamics within two-
electron atoms, thereby leading to far reaching applications to studies of the
multi-electron atoms. The general analytical structure of the wave functions

- is an important guideline in the choice of the trial wave functions for the vari-

ational calculations. The trial wave function chosen with the correct analytic

structure has been shown to be very efficient in giving variational energies of

a very high level of accuracy.




Chapter 2

2 Literature review

The theoretical description of ground state energy of two-electron atoms has
been a subject intensively investigated since the advent of quantum mechan-
ics. Unlike the solutions for the one-electron atom, the solution for the eigen-
functions ¥ and energy eigenvalues E of (1.2) cannot be expressed in closed
analytic form. Therefore various approximation methods namely the per-
turbation method, Ritz variational method and Hylleraas variational pertur-
bation method have been applied to obtain approximate solution to (1.2)

[1, 2, 10, 11].

The perturbation method and variational perturbation method have been

discussed in section 1.

The variational method with elaborate trial wave function, have also been
applied to calculate the non-relativistic ground state energy of two-electron
atoms. The method starts by guessing a parametrized form of a trial wave-
function U, where a = (ay,aq,...... , ) denotes a set of variational pa-
rameters. The variational parameters are then optimized in accordance with
the variational principle and the energy expectation value of a variational
wave-function provides an upper bound to the true ground state energy E

2, 5], i.e.,

[Wn HW, dr
LSS i N .
[v2dr = 5 el

In the one-parameter variational approach, a simple trial wave function for

the ground state of two-electron atoms is expressed in terms of the indepen-




dent electron model wave function (1.5) as

Vi = O(r1,72)
3
= Zegzritry) (2.2)
™

where Z, is the effective charge which incorporates nuclear charge screening
and is considered as a variational parameter. The mean energy E;, = F (Ze)
is given by [2, 5]

B(Z)= -2}, (23)

the minimum being reached for an effective charge

5
=7 — — 4
Z.=7-1 (2.4)

The calculated ground state energy for Helium atom is E(Z,) = —2.8477a.u.,
higher than the experimental value E(*® = —2.9037 a.u. by about 2.27%.
This gives an improved results, compared to E = —2.7500 a.u. obtained in
the independent electron method up to first-order perturbation (1.8). Thus,
the variational results (2.3) corresponding to the effective charge Z, (2.4), is
lower and hence more accurate than the ground state energy to first-order

perturbation (1.8) [1, 5].

Great progress has been made in the variation approach by including more
parameters in the trial wave function that are suitable for numerical eval-
uation, leading to very accurate values of the non-relativistic ground state
energy of the two-electron atoms. In his pioneering work, Hylleraas adopted

a trial wave function of the form [16]

N
®(ry,ry) =™ E cl,Zm,nslumt”. (2.5)
l,m,n=0
where
S=7Ty+ 1y t=1r1—r9; W =g, (2.6)
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the coeflicients ¢; o, ,, are linear variational parameters and x is a non-linear
variational parameter similar to the effective charge Z. used in the simple
one-parameter trial wave function (2.2) and the number N determines the
maximum number of terms. The Hylleraas approach, which accounts ex-
plicitly for the correlations between the motion of the two electron through
the variable u = 719, has been very successful in getting accurate values
for the ground state energy E of two-electron atoms. For example, with a

6-parameter trial wave function

1
(s, t,u) = (co + cru+ cat® + ¢35 + 48 + csu?) exp(—ins), (2.7)

of the form (2.5), Hylleraas [16] obtained numerically, the ground state energy
of Helium atom as £ = —2.90324a.u. which differs from the experimental
~ value by only —0.00048au. Since then several improved Hylleraas-type trial
wave functions have been extensively studied in the literature; for example,
the works of Pekeris [26], Wang and Guan [27], Drake et al [28] and Korobov

[29] who obtained accurate values for the ground state energy of Helium atom.

Table 2.1. The historical data concerning the improvement of the ground
state energy of Helium atom using variational method. Here N is the

number of basis functions.

Scientist Year N E(a.u.)
Hylleraas [16] 1929 6 -2.9032

Pekeris [26] 1958 6 -2.903724377

Wang and Guan [27] 2001 168 -2.9037161

Drake [28] 2002 2114  -2.903724377034119596
Korobov [29] 2002 2200 -2.903724377034119598296

The historical data, concerning the improvement of the ground state energy
of Helium atom using variational method, is given in Table 2.1. The non-

relativistic ground state energy of the two-electron atoms obtained by Pekeris
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[26] using improved Hylleraas-type trial wave function are given in Table 2.2

for H~ to Neb+.

Table 2.2. The non-relativistic ground state energy of the two-electron atoms

(H~ to Ne®") obtained by Pekeris.

Atom 7 Llees)
H- 1 -0.52775101
He 2 -2.903724377
Lit 3 -7.2799134
Be*t 4 -13.655566
B3+ 5 -22.030972
i+ 6 -32.406247
N3t 7 -44.781445
o°t 8 -59.156595
F™ 9 -75.531712

Nedt 10 -93.906806

We note in Table 2.2, that the ground state energy value obtained by Pekeries
[26] for Helium atom is similar to the experimental value; thus, in this thesis,

we will refer to this values as the exact energy E(¢*®),

The accurate Hylleraas-type trial wave functions determined by Rayleigh-
Ritz variational method have been used to calculate expectation values of
various operators, oscillator strengths and transition probabilities [11, 16, 26].
However, in many cases of practical interest, it is convenient to use less
accurate, but more tractable wave function, which does not involve explicitly

the interelectronic coordinate r15. It is then natural to use the ground state

11




trial wave functions which are expansions in Legendre polynomials,

U(ry,ra) = — S Fi(r1,72) Pi{cos ), (2.80)

4

FM»
S

where the subscript | refers to the relative partial waves [5, 11, 30]. This
approach is known as the configuration interaction (CI) method. If we set
A = 0 in (2.8a) so that the trial wave function is restricted to the pure s
wave (I = 0), only radial correlation between the position of the two elec-
trons are introduced in the wave function. In this way, a radial limit for the
ground state energy is approached when an increasing number of parameters
are included in the function Fy(ry,ry). For example, in Helium atom, the
radial limit is —2.87903 a.u. which differs from the experimental value by
—0.02469 a.u. [5, 31]. This difference is due to the radial and angular corre-
lations distributed among the higher relative partial waves in the expansion
of (2.8a).
The simplest choice of the functions Fj(ry,72) in (2.8a) is given by

17y, r2 Z AD pbrb (pmel 4 pipm) g olr1tra)/2 (2.8b)

m<n

where m 4+ n < pu, a is a non-linear variational parameter and the coeflicient
A(l) are linear variational parameters . These yield an upper limit of £ =
—2.90227 a.u. for the ground state energy of Helium atom with A = 3 and 15

parameter in each relative partial wave [31, 32].

In previous works, several simple trial wave functions, that contain only a few
wvariational parameters and are products of hydrogenic one-electron solutions
and a fully correlated part have been suggested. For example, Myers et al

[33] suggested the following trial wave function:

W ptyers (T1, T2, T12) = G_Z(”Jr”)’e%z (2.9a)
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The correlation factor e"2/2 in equation (2.9a) allows one to correctly describe
the behavior of the wave function when the two electrons are close to each

other. The mean energy was found analytically by applying the expression

(1—BZ 43852 < $A2%)2Z ~ 1)

Eryers(Z2) = 2.9b
Myers(Z) 4(1-10Z + 322?) )
The mean energy for Helium atom, Epyes(Z) = —2.8555 a.u., differ from
.I the experimental value by —0.0482 a.u..
Patil [34, 35] considered a simple trial wave function
U pquit (r1, T2, Tpp) = e~ Z01+72) (1 % %—2—) (2.10a)
to obtain the mean energy in the form
" 35 — 162 — 10022 — 642%)Z
4 Epou(Z) = Lk = = ) (2.100)

4(24 + 357 + 1622)
The mean energy for Helium atom, Fpy(Z) = —2.8766 a.u., differ from the

experimental value by —0.0271 a.u..

F Ancarani et al [36] develop’ed a simple parameter-free trial wave function

U pne (11, 19) = NeZ1+72) (1 v %3) [14c(2+12)] (2.11a)

where ¢ is a variation parameter and N the normalization constant. The
b mean energy was evaluated analytically in terms of ¢ and Z from the expres-

sion is

y Z (
3 Eune(2) = —ﬁ[24(—35+162+10022+6423)+c22(—567+864Z+179222+76823)

3.
+—8—c2(—10065 + 199687 + 2761222 + 87042%))] (2.11b)

where
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A = 9c%(460 + 33552/8 + 1122°) + 3¢Z(168 + 189Z + 6422)

+2%(24 + 35Z + 162?) (2.11c)

Thus, for Helium atom it was found that Ea,.(Z) = —2.8954 a.u. which
differs by —0.0083 a.u..

It can be seen from equations (2.9a), (2.10a) and (2.11a) that the addition
of the electron-electron interaction term ry, in the trial wave function is able
to improve the accuracy of the mean energies obtained in equations (2.9b),
(2.10b) and (2.11b), respectively. Therefore, the variational calculations de-

pend crucially on the form of the trial wave-function used.

In general analytical solution for the Schréodinger equation (1.2) for the two-
electron atoms has not been found to date. However, it is widely believed that
there is distinct advantage in viewing problems of physics within the frame-
work of simple analytical models. This has led some authors like Auzinsh
and Damdburg [37] a;ld Sakho et al [38] to set up much simpler models for
the ground state of two-electron atoms, permitting one to obtain fairly accu-
rate results that can be used as first estimates or ds starting point for more

complex calculations.

Auzinsh and Damdburg [37] combined the one parameter variational ap-
proach with the Niels Bohr "old” quantum theory ideas about electron cor-
relation in a two-electron atom, to obtain a very simple expression for the

ground state energy

1 P 2
Fans(1,2) = — <Z— Lty i_ZO/Z) , (2.12)
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where Z ~ 0.85355 is the smallest nuclear charge for which stable two elec-
tron negative ion will still exist. The ground state energies E4,.(1,Z) ob-

tained using (2.12) for Z = 1 — 6 are given in Table 2.3.

Sakho et al [38], in combining the perturbation theory with the Ritz variation
method, developed a technique for analytic calculation of the ground-state
energy, the first ionization energy and the radial correlation expectation value

for two-electron atoms. The analytical expression of ground-state energy was

72 0.625\ *
Bsae =~ [1 4 <1 = 7) } (2.13)

The ground state energies Egq obtained using (2.13) for Z = 1 — 6 are given

in Table 2.3.

given by

Table 2.3. The ground state energy obtained by Auzinsh et al Fa,.(1,Z)
and Sakho et al Egq for Z = 1 — 6 compared with the exact energy

Fleza)
Atom H- He  HY - Bt B o
7 1 2 3 4 5 6

FEsuk -0.5703 -2.9453 -7.3203 -13.6953 -22.0703 -3‘2.4453
Ean.(1,7) -0.5272 -2.8091 -7.2745 -13.6498 -22.0250 -32.4002
Bles) 05275 -2.9035 -7.2798 -13.6556 -22.0310 -32.4062

It is noted that, the ground state energies E4,,(1, Z) and Eg4 obtained in
Table 2.3 have almost the same accuracy as the exact energy E(¢*®. The
émalytical procedure adopted by Sakho et al [38] (i.e. the screening constant
by unit charge) has been extended to the calculation of the total energies,
total electron-electron interactions and the excitation energies for the doubly

excited states of the Helium and Helium-like ions [39, 40] without having

15




to appeal to a computer program and/or to large basis-set computations

invoking a fair amount of mathematical complexity.

We observe that the variational method and the variational-perturbation
method have been applied to calculate ground-state energies and other prop-
erties of atomic and molecular systems with a high degree of precision. The
development of suitable many-parameter trial wave functions with good con-
vergence properties required for calculations in variational and variational-
perturbation methods have continued to date. However, a major weakness of
the variation method and variational-perturbation method is its inability to
account for the mechanisms which cause important physical phenomena such
as nuclear charge screening, usually introduced as one of the parameters to
be determined through optimization. The thesis is an effort to develop a sim-
ple analytic solution to the Schrodinger equation for the two-electron atoms
based on a model that formulates the nuclear charge screening in terms of

electron-electron repulsive interaction.

.
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Chapter 3

3 Repulsive electron-electron interaction and
nuclear charge screening

In this chapter, the main ideas of the model developed in [24] that specify
the role of the direct role of repulsive electron-electron interaction in nuclear
charge screening are summarized. Considering that the distance o (1.2)
between the electrons is invariant under the interchange of the coordinates of
the two electrons, i.e., rio = ry1, we express the repulsive Coulomb interaction

term 1/ry2 (1.4) in the symmetrized form,

H' = Hiy + H,

171 1 '
=—|—4— 3.1
2 ("‘ 12 T 21) ( )
This provides for two equivalent interpretations of the repulsive Coulomb

interaction term. In one interpretation

=5 (3.20)
represents the repulsive interaction term due to the motion of electron-1 in
the Coulomb field of electron-2. Electron-2 thus shields the nucleus from
electron-1, leading to the screening of the nuclear charge seen by electron-1.

This describes an orbit configuration in which r; > ry. In the alternative

interpretation
1

27‘21

/ —
21 —

(3.2b)
represents the repulsive interaction term due to the motion of electron-2 in
the Coulomb field of electron-1. Electron-1 thus shields the nucleus from
electron-2, leading to the screening of the nuclear charge seen by electron-2.

This describes an orbit configuration in which ry > 7.

17




By applying equation (3.1) in equation (1.1a), the Hamiltonian becomes

H=H,+ H,, (3.3a)
where,
Hy= Vi~ § T 2—11- > (3.30)
and
Hy = —%Vg - ;Z; 4k 57}—2—1- y Ta 2T (3:3¢)

are one-electron atom Hamiltonians each describes the motion of a single

electron in the Coulomb field of the nucleus screened by the other electron.

To determine how the nuclear charge screening arises, equations (3.3b) and

(3.3c) are rewritten in the general form as

1 VA 1

- 5 T 27‘ij

5 Ti er) Z,]= 112 (34)
where the distance r;; between the electron pair (4, 5) is expressed as

rig = |t — ;]

1

with ¢ being the orientation angle between the position vectors r; and r; and

the parameter S;; is defined by

' 1
2 . i
Si; = (1 £ <;l> -2 (7;1—) 00319) ; Ty 27y (3.50)

thus, by applying equation (3.5a), equations (3.2a) and (3.2b) may be ex-

pressed, in general form as

18




g :
Y 2Tij
1
= —QTiSij’ Ti 2 r; - (36)

Further, the substitution of equation (3.6) into equation (3.4) yields

b, 1
s = | F £
H = -1¥" m( 25])

1 L

which is the Hamiltonian of a one-electron atom with an effective screened

nuclear charge

Zz'j =7 - %Sija T Z ] (37b)

due to the repulsive Coulomb interaction. The one-electron atom Hamilto-

nians in equations (3.3b) and (3.3c) are now expressed in the form

1 s 1
H1 = —~V% ki x5 (Z i —S12> 5 Ty Z T9 (380,)
) 2 ; T 2
and
Lastelyel 1=
H2 = -~2-v2 = T‘—g Z — 5521 3 g _>_ T (38b)
: respectively.

Therefore, the parameter S;; as defined in equations (3.7a) and (3.7b), is
recognized as the nuclear charge screening parameter that determines the
shielding of the nucleus by electron-j; it leads to screening of the nuclear
charge seen by electron-i. According to equation (3.6) the nuclear charge

screening parameter arises entirely from the repulsive Coulomb interaction

term.
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3.1 Nuclear charge screening parameter, 9,

The nuclear charge screening parameter S;; as defined in equation (3.5b), is
essentially a number which takes a set of values depending on the relative
positions and orientations of the electrons in the pair (7, ) within an atom.
To specify the form of S;; and establish its role in determining the appropriate

one-electron atom Hamiltonian, simplifying notation

v =cos? ; h:% Loy, (3.9)

are introduced in equation (3.5b), to obtain

Sij = S(h, 23)

1
2

= (1 - 2ha + h?) (3.10)

The orbit condition r; > r; means that h, as defined in equation (3.9),

satisfies the condition,

h<1 (3.11)

Hence, to specify the form of S;; = S(h,z), the two conditions h < 1 and
h =1 are considered separately, since they form two distinct configurations

of the dynamics of each electron within the atom.

5.2 Configuration h <1 (r; > r;)

The configuration h < 1 (r; > r;) characterizes electron dynamics in which
one electron is nearer the nucleus than the other. Therefore, the nucleus is
effectively shielded by electron r; through the repulsive Coulomb interaction.
In the configuration h < 1, equation (3.10) is recognized as the generating
function for the Legendre polynomial satisfying a power series expansion in

h [41]
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sk
2

= (1—2hz + h?)

=Y PB(x)A, h<1 (3.120)
1=0 ‘
Hence, in the configuration h < 1, equations (3.10) and (3.6) are expressed

in the form

Z <-T-’> Bycosd), ri>r; (3.12b)

I= ¢ ‘
and l

1 oo

= o P
8y =55 ; <r> Fy(cosd), ri>r, (3.12¢)

respectively.

Since r; and r; are two vectors having polar angles (6;, ¢;) and (6;, ¢;), re-
spectively, and ¥ the angle between them, then the addition theorem for

spherical harmonics gives [5]

P, (cos¥) =

lml 92) ¢z lml (937 ¢]) (313(1)

which when substituted into equations (3.12b) and (3.12¢) leads to

00 l 4
S Z Z 7T (;-7) Yzml(gzv(pz) lml(ej,(bj) 7'i‘\>7"]- (313b)

l
ij 2T Z Z il (B-) YZm[ (ei)d)i) imy (HJ’CbJ) ri > T, (3130)

respectively. According to equation (3.13b), nuclear charge screening due to
the electron-electron repulsive interaction in the configuration h < 1 (r; > r;)
depends on the relative distances and the polar angles of the two electrons.

Equation (3.13¢) is generally applied in the evaluation of the expectation
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value of the repulsive Coulomb interaction energy treated as a perturbation

in the standard quantum theory of two-electron atoms [2, 5].

To see how Sj; in the mode r; > r; influences the dynamics of the system,
a special case where one electron-j is very near while the other electron-i is

very far away from the nucleus is considered. In this case

ry >>Tj, (314a)
h<<1 (3.14b)

and
hx ~ 0 (3.14¢)

Substitution of equations (3.14b) and (3.14¢) in equation (3.10) gives the

maximum value of nuclear charge screening parameter
Sth<< 1,2) = 8

=] Ty S50 (3.14d)

With one electron very close to the nucleus, the repulsive Coulomb interaction
term is no longer symmetrical. Considering electron 1 to be closer to the

nucleus, ry >> 7, the Hamiltonian equations (3.3b) and (3.3c) are now

~ written as

1, Z

H1 = —-§V1 = ;1* (314—6)

and

1 Z -5

Hy — —= 2 max

2 2V2 .’I“g
1 Z -1
=—Vi-" py>>7, (3.14f)

2 T9

respectively. This represents the well known Heisenberg model of excited

states [1, 5].
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In the present work, equation (3.13b) completely determines the nuclear
charge screening factor Sj; under the condition r; > r;, where electron-j
is closer to the nucleus, thus shielding it from electron-i. It generalizes the
Heisenberg model by including the intermediate values of the nuclear charge

screening for any configuration r; > 7, i.e., h < 1.
3.3 Configuration h =1 (r; =1;)
The configuration h = 1, where
rie=wy , L, (3.15a)

constitutes a special case of the electron-electron interaction, in which the
two electrons in the pair (4, j) are equidistant from the nucleus, but satisfy
the condition j # ¢ to exclude the physically unacceptable possibility of both

occupying exactly the same point in space.

The position vectors r; and r; of the two electrons now differ only in their
orientations, with angle ¥ between them. We define the position vectors r;
and r; through the unit vectors f; and r; in their respective directions in the
form

penl | o=k ent g J#E1, (3.15b)
satisfying the orbit orientation condition,

By« ;= cosd (3.15¢)

which implies that

ri-r; = 7‘2-2 COS 19; Tif'j = T]'f'j (315d)

A good example of electron trajectory satisfying the orbit condition given

by equations (3.15a)-(3.15d), is the s-orbital, which is spherical in shape and
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provides circular orbits. Elliptic orbits would also be possible, depending on

the orientation angle.

By substituting h = 1 into equation (3.10) it is found that

= (2(1 —cos®)) 2, (3.16a)

which on applying the trigonometric identity [41]
ol
2sin —2—'19 =1—cosv, (3.16b)

reduces to the form
1

Sy = ———
v 25in%19

Thus, the nuclear charge screening parameter in the mode r; = r;, j # 1,

(3.16¢)

depends only on the orientation angle ©. The values of the orientation angle
¥ would determine suitable orbitals for the repelling electron pair (7,7). In
the case of two-electron atoms, the orbit condition ro = ry, j # ¢ places
both electrons in the.s-orBital which specifies the normal or ground state

configuration 1s2.

Further, by substituting equation (3.16¢) into equations (3.7a) and (3.7b), the
individual one-electron atom Hamiltonian and the screened nuclear charge

are rewritten as

and
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Zij = Zy
1
4 sin %19’

respectively. It is observed that the configuration h = 1 effectively decouples

=7 - (3.17b)

the two-electron atoms Hamiltonian into two equivalent one-electron atom
Hamiltonians, H; = Hy = Hy (3.17a), each describing the motion of a sin-
gle electron in a screened Coulomb field of the nucleus. The two electrons
are equidistant from the nucleus and they experience equal nuclear charge

screening depending only on their orbit orientation angle .

The total symmetrized Hamiltonian for the two-electron atom is defined ac-

cording to equations (3.3a) and (3.17a) as
H =2H, (3.18)

Thus a desired separation of the two-electron atom Hamiltonians has been
achieved. In contrast to the independent electron model adopted in standard
quantum mechanics textbooks [2, 5], the separation achieved here maintains
the repulsive electron-electron interaction whose role in the dynamics is char-
acterized by nuclear charge screening depending only on the the orbit orien-
tation angle ¥ as an adjustable parameter. The dynamics generated by the
symmetrized Hamiltonian defined above in the configuration A = 1 includes

the para-states of the two-electron atoms.
3.3.1 Minimum nuclear charge screening parameter

According to equation (3.16¢), the only adjustable parameter which governs
the repulsive electron-electron interaction and, therefore, determines the nu-
clear charge screening parameter in the configuration h = 1 is the orbit

orientation angle /. Decreasing ¢ towards zero brings the electrons closer
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together leading to an increase in the repulsive interaction and a correspond-
ing increase in the nuclear charge screening parameter, whereas increasing
away from zero pushes the electrons farther apart leading to a decrease in
the repulsive interaction and a corresponding decrease in the nuclear charge

screening parameter.

We notice that according to equations (3.16¢) and (3.17b), the nuclear charge
screening parameter Sy becomes infinitely large, while the screened nuclear

charge Zy become ill-defined for values of ¥ given by

P=2nmr, n=0123 .., (3.19a)
which implies that
1
sin 519 = () (3.19q)
leading to
Setnr =00, B=0,1,2 3. (3.20)

In general, the orbital orientation angle ¥ = 2nx forn = 0,1, 2, 3, ..., are to be
discarded since they lead to large values of the electron-electron interaction

energy, thus driving the atom towards a state of instability.

The optimal value of ¥ that gives minimum nuclear charge screening param-

eter is determined through,
25, _
09
which on substituting Sy (3.16¢), yields

0 (3.21)

cos 19
e (3.22)
sin? %’19

Since in equation (3.22), sin %19 # 0, then

cos %19 =0 , (3.23a)

26




which is valid if and only if
¥=(2n+ ), mi=i03 12030 (3.23b)
Therefore, the optimal values of ¥ = (2n + 1)7 that leads to
cosd = cos (2n + )7 = —1, n=20,1223,.., (3.24)
constitute anti-parallel orbit orientation.

The two electrons in the repelling pair (i,7) then satisfy the anti-parallel

orbit condition
rj = —r, .7 %Z ) (325)

leading to corresponding relative position vector
Tij = !I’i — I‘jl = 27'2’, r, = Tj (326)

This condition reproduces the Bohr "old” quantum theory ideas about elec-
tron correlation in a two-electron atom, where it was assumed that the elec-
trons were permanently located exactly at the opposite sides of the nucleus,

so that r; = —ar, (a being positive) [42, 43].

It can be seen from equation (3.25) that the two electrons have equal, but

- opposite linear momenta,
Pj = —Pi; p; =mf;, Pp; =mr; (3.27)

Further, equations (3.25) and (3.27) show that the two electrons have equal

kinetic energy and orbital angular momenta expressed as

2 2
BBy
o2m - 2m (a228)
and
L=r;xp;=-r;x —p;, (3.29)
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respectively.

Thus, substitution of ¥ (3.23b) into equations (3.16¢), (3.17a) and (3.17b)

yields the minimum nuclear charge screening parameter as

S19=(2n+1)1r = Smin

1
= I 30
3 (330)
the effective one-electron Hamiltonian of the form
H19=(2n+1)7r =H
1 1 1
= Wt | £ = =
H(2-3)
Ll (3.31a)
r
and the effective nuclear charge as
Zﬂ=(2n+1)7r =(
=7 E (3.310)
s T 2

respectively.

Equation (3.31a) represents an optimal Hamiltonian describing the stable
state of the two-electron atoms when the repulsive Coulomb interaction term
H;; (3.6) takes a minimum value given by,

1

Fmn) .
* 2r

Shins Ty =T =T (3.32a)
which becomes
Cpr(man) min
H T, o (i
— (3.32b)

after substituting for S, (3.30).
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Equation (3.32b) may be expressed as

1
H=—e¥ - —7Z— + %
= [lind) 4 gy(min) (3.32¢)
where
Ftind) _ _%w _ g (3.32d)

represents the Hamiltonian of an entirely independent electron in the Coulomb
field of nucleus of charge Z and H™™ is the minimum repulsive Coulomb
interaction term (3.32b). Therefore, under the anti-parallel orbit orientation,
the two electrons are on opposite sides of the nucleus, experiencing equal
minimal shielding from the nucleus due to their minimal repulsive Coulomb

interaction (3.320).

The total Hamiltonian H (3.18) of the two-electron atoms under the anti-

parallel orbit orientation, takes the form
- H= 2H; Hl = Hg = (333)

which represents the sum of independent one-electron atom modes in a cen-
tral field in which the two electrons maintain minimal repulsive Coulomb
interaction. The two electrons then behave independently but maintain a
finite distance (< 00) between them due to the minimal repulsive interaction
energy captured through the minimum screened nuclear charge ¢ occurring
in the definition of H (3.31a). The minimum values of the repulsive inter-
action energy and the Hamiltonian, under the anti-parallel orbit orientation
are consistent with the “stretched helium” cohﬁguration applied in studies of
chaotic behavior in helium, where the lowest energy state is achieved when

the two electrons are on opposite sides of the nucleus [44, 45]. The ground
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state configuration 152 occurs in this mode (h = 1) with both electrons oc-
cupying opposite points on the K-shell which is a circular orbital with radius

i,
3.3.2 The Ground state energy

Using the effective one-electron Hamiltonian (3.31a), the Schrodinger equa-
tion describing the motion of a single electron in the Coulomb field of the
nucleus screened by the other electron takes the form

2
<-%ué>wn:8wm (3.34)

after introducing the one-electron atom eigenfunction ¥(r;) = ¥(ry) = ¥(r)
and energy eigenvalue & = & = &, related to the two-electron-atoms eigen-

function ¥(ry, ro) and total energy E by

‘I/(I‘l,rg) = \I’(I’l)\l/(rg)

= U%(r) (3.35)
and
Ef=6+6&
= 2€, (3.36)
respectively.

The hydrogen-like atom Schrodinger equation (3.34) is easily solved to obtain

the eigenfunction and energy eigenvalue (3, 4, 6]
3
vO(r) = = exp(—(r) (3.37)

£="2 | (3.38)

and




respectively.

To test the consistency and accuracy of the optimal stable state theory de-
veloped here, the optimal ground state (i.e., 1s* configuration) eigenfunction
and energy of the two-electron atoms under the anti-parallel orbit orienta-
tion in the mode h = 1 are calculated. Then, on applying equation (3.37) to
equation (3.35), the eigenfunction

3

U(ry,ry) = %exp(—2r§) (3.39)

is obtained. Similarly, application of equation (3.38) to equation (3.36) yields

the ground state energy of the two-electron atoms in the model as

o (z " }1)2 (3.40)

after substituting for ¢ (3.31b). Exactly the same results were obtained in
the Bohr 1913 model for the ground state energy of Helium-like ions in which
the two electrons revolve in a single circular orbit on the opposite ends of the

diameter [42, 43].

The theoretical results of the ground state energy under the anti-parallel or-
bit orientation Eégz) (3.40) for Z = 1—10 are given in Table 3.1 and compared
with £ (1.6) obtained using the standard independent electron approxima-
tion [5] and the exact energy £“*® [26]. It is noted in Table 3.1 that the the-
oretical results for the ground state energy Eﬁgg under the anti-parallel orbit
orientation are closer to the exact energy E(¢* compared to the ground state
energy E(©) obtained using the independent particle approximation found in

textbooks of quantum mechanics. In particular, the present model gives the

ground state energy of helium atom as £ = -3.0625 a.u which is about

cal —
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5.47% lower than the exact energy, while the standard independent electron
model gives the ground state energy of helium atom E© = —4.0 a.u. which

is about 37.76% lower than the exact energy.

Table 3.1. The ground state energy under the anti-parallel orbit orientation

% EY for Z =1 — 6 compared with £© and the exact energy E(c*®

cal

Z Atom  EO© EY Eleza)
1 H-  -10000 -0.5625 -0.5278
2 He -40000 -3.0625 -2.9037
3 Lit  -0.0000 -7.5625  -7.2799
4 B -16.0000 -14.0625 -13.6556
5 B™ 250000 -22.5625 -22.0310
6 C*  -36.0000 -33.0625 -32.4062
I 7 Nt -49.0000 -45.5625 -44.7814
8 O 640000 -60.0625 -59.1444
' 0 F™  -81.0000 -76.5625 -75.5317

10 Ned* -100.0000 -95.0625 -93.9068

The remarkable improvement is due to the minimal repulsive interaction
energy maintained in the present model as can be seen in equation (3.32c),
whereas in the standard independent electron model, the electrons are treated
as entirely independent as shown by equation (1.4), i.e., have zero repulsive
4 interaction energy. However, it does not seem possible that in an atom of
finite size, the two electrons can be separated from each other by an infinite
distance (within an atom of finite size) to justify zero repulsive interaction
énergy, i.e., each electron moves in a fully unscreened field of the nucleus.
These confirm our interpretation that the anti-parallel orbit orientation which
incorporates nuclear charge screening provides a stable or normal state of the

two-electron atoms.
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It is also noted in Table 3.1 that the calculated ground state energy Eig? of the
two-electron atoms are lower than the exact energy E(**®. Improvement on
the results will be done by considering a general dynamics of the two-electron

atoms that combines the configurations h = 1 and h < 1.

3.4 General dynamics: perturbation theory

To study the dynamics of the two-electron atoms over the broad range of
locations and orientations of the electrons, the Hamiltonian as presented in
equation (3.7a) which applies under configurations h = 1 and h < 1 is con-
sidered. The analysis so far shows that the configuration h = 1 characterizes
optimal stable state dynamics, while the configuration h < 1 characterizes a
general repulsive interaction of the electrons which under certain orientations

may drive the system to states of excitation or instability.

If a nuclear charge screening parameter is defined as

1
551']' T4 Z 7"]', h S 1 , (341)

O'ij =

then, in accordance with equations (3.14d) and (3.30), the minimum and

maximum screening constants,

1
max — "Smax
Tmax = 5
1
=z i h<<l (3.42)
and
1
Omin = ésmin
e Rl (3.43)
. 4 ) 1= - .

are obtained, respectively. These results agree exactly with the conclusions

drawn under similar conditions in [45, 46], where the calculation of the nuclear
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charge screening parameter, i.e., 0;; = o is based on the interaction between

an electron and the average charge distribution of the other electron(s).

From the above observations, it is necessary to decompose the Hamiltonian
presented in equation (3.7a) into two components. One component, Hfo),
composed of an effective one-electron atom Hamiltonian describing stable
state dynamics in the configuration h = 1, and the other component, H],
composed of interaction energy terms which may be treated as perturbations
arising from the configuration h < 1. Recalling that the stable state dccurs
under the anti-parallel orientation, equation (3.7a) can be rewritten in the

alternative form as

Lot 1 1 1

Ty 2T (3.44a)

where we have introduced the minimum repulsive interaction term Hl(;” i
(3.32b) under the central field approximation to obtain an effective separation

from the configurations h =1 and h < 1.

The first component in equation (3.44a)

O - _lg2 1 (Z_ 1)

¥ 2 ¢ Ti 4
gl b (3.44b)
2 i

represents the unperturbed Hamiltonian which is just the effective one-electron
Hamiltonian H (3.31a) in the configuration h = 1, whereas the second com-

ponent in equation (3.44a)

.1 1
Hz- = 2—n (Sij - ‘2‘) (3440)
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represents the interaction energy treated as a perturbing Hamiltonian in the
configuration A < 1. By applying equation (3.44a) the Hamiltonian of the

two-electron atoms (3.3a) under the perturbation theory, may be expressed

in the form
beos - Logiml- £ .0 1 1 1 1
RPN e, SR S L O S e} Sl f B e =
H 2V1 2V2 o + T Si2 5 + oy 275
A = HY L B (3.45a)
The unperturbed Hamiltonian in equation (3.45a)
1 1 ¢ &
PRy v e . S N ) 3.45b
" Vi3V T (3.450)

is interpreted as the effective Hamiltonian for the two-electron atoms and
represents the sum of independent one-electron atom modes in a central field
in which the two electrons maintain minimal repulsive Coulomb interaction
energy under the anti-parallel orientation. It differs from the generally used
Hamiltonian in the standard independent electron approximation through
the inclusion of the minimum repulsive Coulomb_ interaction term (3.32b).

The perturbing Hamiltonian in equation (3.45a)

'_ 1 1 1 1
E 4 — g sl =
1 H T <512 2) == o <521 2)
1/1 1\ 1/Sp S
= —+ )+ 2 P12 e ~21
4\ry 1y 2\ r Ty

=H +H (3.45¢)
P is, generally, understood to be the binding energy associated with the mag-

mag rep

netic shielding term [11, 13]

1/1 1
£ Ay A el :
mag 4 <'I"1 # ‘7‘2) (3 46(1)

and the repulsive Coulomb interaction term
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i 1 /S Sy
Hrep = 5 (_—“ + ~>

r ra

— (3.46b)

T12

Hence, application of equation (3.46b) in equation (3.45a) leads to the Hamil-

tonian of the form

1, 1 &, ok A FE - 1
H s s P - C IR CEIRE o = o
AL LTy 4< - )+

=HO 4 g (3.47)

Thus, equation (3.47) completely specifies the Hamiltonian to be used for

perturbation calculations in the present model.
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Chapter 4

4 Methodology

The Schrodinger equation for atoms is exactly solvable only for single-electron
atoms. However, the majority of the problems in quantum mechanics lead
to equations which are too complex to be solved exactly. In such cases ap-
proximation methods, such as perturbation theory, variational approach and
variational-perturbation approach are used. In the thesis, the perturbation

theory shall be applied.

Perturbation theory is an approximation method applied to those cases in
which the real system can be described by a small change in an easily solvable,
idealized system [1, 5]. The Hamiltonian H of the system is expressed in the

form,

H=HY + \H', (4.1)

where H® | the unperturbed Hamiltonian, is the Hamiltonian of the system
for which the Schrodinger can be solved exactly, H' is the small change treated
as a perturbation and ) is a real parameter which allow the expansion of the

wave function and energy into a power series in A.

In this form,a great number of problems encountered in atomic physics, in
which the nucleus provides the strong central potential for the electrons can
described. Furthermore, interaction of less strength, such as magnetic inter-
action (spin-orbit coupling), the electrostatic repulsion of electrons and the

inﬁuence of the external field can be described by perturbation theory [1, 5].

Perturbation theories are of two kinds, that is, the time-independent per-

turbation theory where the Hamiltonian does not depend on time and the
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time-dependent perturbation theory where the Hamiltonian depends explic-
itly on time. In this chapter only the approximate determination of the en-
ergy eigenvalues and corresponding eigenfunctions for the stationary states

of a time-independent Hamiltonian are discussed.

4.1 Time-independent perturbation theory

The discrete set of all the eigenvalues F(*) and the orthonormal set of eigen-
functions ¥© of the 'unperturbed’ Hamiltonian H® of a system satisfy an

eigenvalue equation [1, 2, 5, 14]
HOpO) — p0)y(0) (4.2)

If a small perturbation is added to the system so that the Hamiltonian
changes to H = H©® + \H’ (4.1), then the energy levels and the station-

ary states of the system are described by
HY = EV (4.3)

Usually this equation is not exactly solvable for the two-electron atoms. The
perturbation theory provides a systematic method of successive approxima-
tion of the eigenfunction ¥ and eigenvalues E in terms of the unperturbed

eigenfunctions W®) and eigenvalues £©).

The eigenfunctions ¥ and eigenvalues F of H are expanded in terms of the

perturbation parameter A, i.e.,

T = AT = O 4 ag® o \2g@ (4.4a)
n=0
E=) MVEW =FO 4 x\gW 4 @ 4 , (4.4b)

n=0

where the index n refers to the order of the perturbation [1, 2, 5].
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Hence, substitution of equations (4.1), (4.4a) and (4.4b) into equation (4.3)

and group the terms of the same order of A together, yields
20 {(H(O) — E(O)) \I/(O)} + )\ {(H(O) = E(O)) g 4 (H' - E(l)) \11(0)}

A2 {(HO - EN 0@ ¢+ (7' - EM) oW - EOWO} 4 . =
(4.5)
Since A # 0, then each individual term in the curly bracket is equal to zero,

leading to a family of perturbation equations

(H(O) — E®)g® = (4.6a)
(HO - E®) ¢ 4 (' - EM) ¢® =0 (4.60)
(H(O) B E(‘”) v@ 4 (H' - E(U) g — p@g© = o (4.6¢)

(H(O) - E(O)) w4 (H' — E(l)) - E};ﬁE(k)\P(k_") =i

Equations (4.6a), (4.6b) and (4.6¢c) are identified as the zero-order, first-
order and second-order perthrbation equations respectively. The remainder

are higher-order perturbation equations.

The zero-order perturbation equation (4.6a) has a whole spectrum of solu-
tions. One particular solution of equation (4.6a) is considered, where ¥(© and
E© are known completely with W(®) normalized. By multiplying equation
(4.6a) by ¥(©* and then integrate over the volume element dr, the zero-order

energy is obtained as
50 _ / O O g0 g

= (0O HO |gO) (4.7)
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Similarly, multiplication of equation (4.6b) by ¥(¥* and then integrate over
the volume element d7, noting that H(® is Hermitian, the first-order pertur-

bation energy is obtained as
EY = / v g g qr
= (0O 7' |pO)y (4.8)

Thus, a knowledge of the zero-order wave function ¥ for one particular

state alone yields both E() (4.7) and EW (4.8) for this state.

In equation (4.6b), for the particular state considered, the constants £ (4.7)
and B (4.8) and the eigenfunction ¥(*) are known. Therefore, equation
(4.6D) is an inhomogeneous differential equation for the first-order perturbed
wave function ¥ which does not contain any unknown eigenvalues. Since
UM must satisfy some definite boundary conditions, then equation (4.6b)
determines the function ¥ for the particular state uniquely. However, in
the case where the electron-electron repulsive interaction term is treated as a
perturbation, i.e., H' = 1/ry5, analytical solutions of equation (4.6b) for ¥®)
have not been found t‘o date. This is one of the objectives of the thesis, as
we shall discuss a practical method for direct calculation of equation (4.6b)

in the next chapter.

Once U has been found, then the second-order energy E® can be evaluated
as follows. By multiplying equation (4.6¢) by U(©* and then integrating over

the volume element d7, the second-order perturbation energy is obtained as
E® = /\II(O)* (H' - E(I)) v gr
= (VO 7' — ED |gW) (4.9)

The first-order perturbed wave function () can also be applied to determine

the third-order perturbation energy expressed in the form
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E® _ /q,(l)* (H' = E®) ¢Wdr - E(2)/\I/(°)*\If(l)d7
- <\11(1)| (H' - E(l)) |\1/(1)> — E(2)<\Il(1)|\1/(0)) (4.10)

After E® and ¥ have been found, equation (4.6¢) determines the function
U@ (in principle), and so on. Once ¥ has been found, two additional
eigenvalues, E® and E®, can be evaluated. In general, the knowledge of
the nth-order wave function is sufficient to determine the perturbation energy

to order (2n + 1) [1, 14].
The total energy, in terms of the perturbation energies, is
E=EQ4+EMVLE@LE® 4 . (4.11)

In this thesis the ground state energy up to second-order perturbation is

calculated, i.e.,

E=E9 +EY + E® (4.12)

4.2 Reduction of the many-electron equation

In this subsection, the method for reduction of the many-electron atom prob-
lem discussed in section 4.1 to one-electron atom problem in the simplest case
is outlined. This is possible when the total Hamiltonian H is the sum of one-

electron atom Hamiltonians H;, that is
H=> H (4.13a)

and

H; = h9(3) 4+ Mv(s), (4.13b)

where h(¥)(7) and v(i) are the unperturbed and perturbed Hamiltonians, re-

spectively [14]. The Schrodinger equation for one-electron atom becomes
Hipi = eigi, (4.14)
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where the eigenfunctions ¢; and the eigenvalues ¢; of H; are expanded in

terms of the perturbation parameter A as

5= 30 AP

n=0
= ¢ 4 2 + 227 (4.15a)

=0
=P 4P+ 22D L (4.15b)

Following steps in equations (4.5)-(4.6c), a family of one-electron atom per-

turbation equations are obtained as

| (h“”(i) ~ eEO)) ¢ =0 (4.16a)
(h0@) = ) 62 + (v(i) = ¢?) 3 = 0 (4.165)
; (h(o)(i) _ e§°)> o + (v(i) _ 651)) ¢§1) - 6§2)¢50) i (4.16¢)

(KOG - &) 6 + (o) = &) " — Sp_oelt =0

Equations (4.16a), (4.16b) and (4.16¢) are identified as the one-electron atom
zero-order, first-order and second-order perturbation equations, respectively.

The remainder are one-electron atom higher-order perturbation equations.

This procedure leads to simple sums over the electrons for all the perturbation
energies; for example, the zero-order energy (4.7), first-order energy (4.8) and

second-order energy (4.9), become
E(O) = EiEEO)

= {0, KO )¢"), (4.17a)
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EM = x5,

= 28, v(i)9”) (4.170)
and
E® =5,?
= Ti(g", (v(3) — &), (4.17¢)
respectively.

4.3 Rayleigh-Schridinger 1/Z perturbation expansion

The Rayleigh-Schrodinger 1/Z perturbation expansion provides a powerful
means of studying the atomic characteristic of atoms and ions [1, 14]. Hyller-
aas [17], observed that the scaling transformation of the space co-ordinates
r — r/Z applied to the non-relativistic Hamiltonian (1.1a) of a two-electron

atomic ions of nuclear charge Z yielded a scaled Hamiltonian
- ¢ .3 | 1
H=Zz<—&—&—————+——> (4.18a)

The Rayleigh-Schrédinger perturbation theory can be applied to the Hamil-

tonian by letting the unperturbed Hamiltonian be
2
A e ol L e (4.18b)

the perturbing Hamiltonian H' = 1/r;5 (1.1a) and the perturbation param-

eter

A=— (4.18¢)

Then the eigenvalue E()) and eigenvector U()\) of H(\) = H® + (\)H’ can

be expanded as power series in A (4.18¢), in the form

1

= yo° pm)
E(/\) En~0 7n

(4.19a)

43




and

T(N) = 2;;‘;0\11“)%, (4.19b)

respectively. For ground state energy of the two-electron atoms, the first two
coefficients of equation (4.19a), expressed earlier as equations (1.6) and (1.7),

become E©® = —1a.u. and BV = 5/8 a.u., respectively.

In the thesis, the Rayleigh-Schridinger 1/Z perturbation expansion shall be
applied when developing appropriate equations for solving equation (4.6b)

for the first-order perturbed wave function g,

4.4 Expectation values

The expectation value of an operator L in the kth state of the system may

be expanded into different orders [11, 12, 14]

(Ul L|T4)
iy e Sl |l
e = ")
O 5 T 4 T ; (4.20)

where L;co) is the zero-order dpproximation to the diagonal matrix element of

any dynamical variable given by
LY = (w2 |L| ) (4.21)
and Lfcl) the first-order correction given by
LY = 2| (1 - L) 19) (4.22)

To first-order approximation, the expectation value of an operator L is given
by
(L) = L + LY

= (@I + 200 (- ) 19) (423)
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which may be written in alternative form [12] as
£y = 19 1 1

= (POILIE®) +2 (" 1H9) — BV 1w (4.24)

after taking L = H', L = EW and ¥ = x!") The first-order wave
function XS) then satisfy the first-order perturbation equation of the type

The integral in equation (4.25) is usually tractable if L is a one-electron
operator. The mathematical problem is therefore to solve one-electron first-
order wave equations (4.25) for Xfcl). Once Xfcl) has been found, the first-order

correction can be evaluated as

LY = 2647 (£ - L) 19) (4.26)
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Chapter 5

5 Ground state energy to second-order per-
turbation

In this chapter the time independent perturbation theory is applied to cal-
culate the ground state energy to second-order perturbation by using the

Hamiltonian (3.47) which represents the general dynamics of the two-electron

atoms. The Schrodinger equation becomes

¥i M & & JFx, i 1
( 5 —2————77—7;———[—1— 7—;—/——— + — | W (r;,r2) = £V (r;,r2)

72 712

(5.1)
The main difficulty in finding an exact solution to equation (5.1) has to do
with the fact that the Hamiltonian is not separable due to the presence of
the repulsive Coulomb interaction term HJ,, (3.46b) in the perturbation term
(3.45¢). If we ignore the perturbation term (3.45¢) in equation (3.47), the
Hamiltonian becomes separable and is given by the unperturbed Hamiltonian
HO) (3.45b) for the stable state dynamics of the two-electron atoms. Hence,
the Schrodinger equation for the unperturbed Hamiltonian H ©) (3.45b) takes

the form

2 2 7‘—2) v (ry,1) = E®© (ri,r2) (5.2a)

Equation (5.2a) may be separated by writing the zero-order wave function

¥ (r;,ry) and energy E© as

TO(ry,15) = TO (1)) 0O (ry) (5.2b)

and

E® = E® 4 EQ, (5.2¢)
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respectively. Substituting equations (5.2b) and (5.2¢) into equation (5.2a)

leads to two independent Schrodinger equations

1
<‘§V? 5 "C; > O (r)) = B0 0O (r,) (5.30)
and
1
("5‘73 - 'C“) TO(ry) = B 0O (ry), (5.3b)
2

one for each hydrogen-like atom describing the motion of a single electron
in the Coulomb field of the nucleus screened by the other electron. " The
hydrogen-like atom Schrédinger equations (5.3a) and (5.3b) are easily solved

to obtain the zero-order wave functions and energy

O () = @exp(—(rl), [5.3e)

3
¥O(r;) = /% exp(~¢r) (5.30)
and
IR
'El = E2 = "‘5—, (5.36)
respectively.

The application of equations (5.3¢c) and (5.3d) in equation (5.2b), yields
\P(O)(rl,rg) = lIJ(O)
<3
P expl~Ciry+ o) (5.4a)
Similarly, the application of equation(b.3¢) in equation (5.2¢), leads to

EO = EQ? + B’

= (5.4b)
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It is noted that the zero-order energy (5.4b) has the same form as the ground
state energy E( ) (3.40) under the antiparallel orbit orientation. The theoret-

ical results of the zero-order energy EY = O (5.4b) for values Z =1 - 10

cal
are given in Table 3.1. Further, Table 3.1 shows that the zero-order energy
are lower than the exact energy FE(¢*®) because the perturbation term has
been neglected. The effect of the neglected perturbation term (3.45¢) on the

ground state energy is usually estimated by perturbation theory.

5.1 First-order perturbation energy

When the perturbation term H’ (3.45c) is substituted into equation (4.8),

the first-order perturbation energy is obtained as

EW = EQ). + Bl (5.5)
where
EQ)y = (VOIH,,,,|¥)
1 1 1
— o TOMIY L L Y e .
=N 2 )im0) (560
and
Eﬁé;—<w<°>lH’ v ©)
= (FO]— |w<°)> (5.6b)

are components of E() due to the magnetw shielding term H,,,, (3.46a) and

repulsive Coulomb interaction term H/,, (3.46b), respectively. The expecta-

rep

tions values in equations (5.6a) and (5.6b) are expressed in alternative form

E?%t)zg = ‘"// v ( ) VOdr dr (5.7a)

EY = / / g L g Vdrydr, (5.7b)

T12

as

and




respectively. The volume elements d7) and dr,, in spherical polar coordinates
(11,61, 01) and (12,62, ¢,), are defined as

dTl = rfdrlsmHldHld(m (58(1)
and

dry = ridrysin O2d O2d ¢o, (5.8b)

respectively. The polar angles (6,,¢1) and (6. #2) of the two-electrons with

position vectors r; and ry respectively are shown in figure 2.

Z
L
|
I r
1 \%1 ¢ |
l : |
l 9 |
| |
I P e
| 0, d |
| /% N
/

(i

x I/
Vv

Figure 2: Polar angles of two-electron atoms.

5.1.1 First-order perturbation energy due to magnetic shielding

‘term

By substituting equations (5.4a), (5.8a) and (5.8b) into (5.7a) and integrate
over the polar angles (6, ¢1) and (62, ¢2), it is found that
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o0 oo
EQ) = —4¢® /0 rye X dry /0 G

-4{6/ rfe"zcrldrl/ ro e 22 dry (5.9)
0 0

Hence, on application of the standard integral [47]

* n!
/0 e Hidp = e (5.10)

in equation (5.9) yields

1 1
1
EQly==4¢° (16{5 " 16(5)

= —% (5.11)

Equation (5.11) is the component of the first-order perturbation energy due
to the magnetic shielding term H, . (3.46a).

mag

5.1.2 First-order perturbation energy due to repulsive Coulomb
interaction term

Using equation (3.13b), the repulsive Coulomb interaction term (3.46b) may

be expressed as

oo+l
'V‘ep Z Z l < ) Yilml (917 ¢1) lez’mz (027 ¢2) (512)
1=0 m=

where 7 is the smaller and rs is the larger of r; and 7. By substitut-
ing equations (5.4a), (5.8a), (5.8b) and (5.12) into equation (5.7b) and then
integrating over the polar angles (61, ¢1) and (6, ¢2) yields

EY) =16¢° / dry 73 / drry g e~ 2nt)
p Z Z 21+1 Vs

(7”<)l

X ————
(>

5&,0 6ml,0 (513)
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after applying the orthogonality relation of spherical harmonics

/ g (05 9) Yim, (6, 0) dQ = bur Sy (dQ) = sin OdAde) (5.14)

7, 8]. The sums in the double sum in equation (5.13) vanish, except the first

one for which | = m; = 0, resulting in

EQ = 16(6/ ridr; e %"
0

rep
" rddr * r3d ‘
X [/ ol 26_2<T2+/ 1202 r2e—2m] (5.15)
0 1 o] T2

where the first integral in the square bracket arises when r; > 7o and the
second when r, > 7 with appropriate integration limits. Thus, using the
standard integrals [47]

& | n /s

4 n! / nl o r
Tne—urd,r - —F e"l“‘ _ (516(1)
+1 Z | 1
A /J‘n ’ g=0 o !,l,('"‘ i

and

oo n /s
/ rRer Hidne= €—url Z —1-——-7‘—:“ (516b)

| y(n+1)
g A =0 S.,U;n X

in equation (5.15) leads to
.

2! oA p3
EW — 16¢8 /°° ~%r g =2 E : & _h
" . 0 e . (20)? ‘ P sl (20)%

=0

+16§6/0 241 g Z ST QC 2 p (5.17a)

which becomes

1 6
E{) = 16¢ {

2
2 (s+ 1) (s+2)
Z; 3s4gs+2+25| 234Cs+3}

_ 5 | (5.17b)
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after applying standard integral (5.10). Equation (5.17b) is the component of
the first-order pefturbation energy due to the repulsive Coulomb interaction

term HJ,_, (3.46b).

TEP

By substitution of equations (5.11) and (5.17b) into equation (5.5), the first-

order perturbation energy in the model is obtained as

m_ ¢
BO = 2 (5.18)

Using equations (5.4b) and (5.18) the ground state energy to first order per-

turbation is found to be

Ee = B9 + EW

= - (42 - -é-) (5.19a)

Z
Eou = -2%+ %- —0.09375 (5.19b)

which becomes

after substituting for ¢ (3.31b). By comparing the results in equation (5.19b)
with the ground state energy to first-order perturbation (2.5) obtained within
the standard independent electron approximation, then the value —0.09375

would be interpreted as a contribution to the second-order perturbation en-

ergy.

The calculated values of the ground state energy to first order perturbation
(5.19b) compared with the ones obtained using the standard independent
electron approximation (1.8), simple one parameter variational method (2.3)
and the many parameter variational method [26], respectively, are presented
in Tables 5.1. In Table 5.1, it is noted that the ground state energy to first-
order perturbation, F.,, obtained using the model under consideration, gives
better results than the energy, E, given by equation (2.5) obtained by apply-

ing the standard independent electron approximation. However application
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of the simple one-parameter variation method leads to the energy, (E(Z.),
given by equation (2.8), which are nearly the same results, although it does
not either account for the mechanism which causes the nuclear charge screen-
ing or provide for improvement of results through higher order expansions
like in the present theory. The close agrement of E., to the exact energy
E(¢*9) is also remarkable; it is attributed to the minimal repulsive interac-
tion energy maintained between the electrons under the anti-parallel orbit

orientations.

Table 5.1 The ground state energy to first-order perturbation F,, for Z =
1 — 10, are compared with energies E (2.5), E(Z,) (2.8) and E¢*®),

respectively.
Z  Atom E., E E(Z,) Eeza)
1 H=  -04688 -0.3750 -0.4727  -0.5278
2 He  -2.8438 -2.7500 -2.8477  -2.9037
3 Lit  -7.21875 -7.1250 - -7.2227  -7.2799
4  Be®t ,-13.5938 -13.5000 -13.5977 -13.6556
, 5. B 210688 -ZLRYRG #8727 -22.0310
j 6 O  -32.3438 -32.2500 -32.3477 -32.4062
7 NSt 447188 -44.6250 -44.7227 -44.7814
8 Ot -59.0938 -59.0000 -59.0977 -59.1444
9 F™ 754688 -75.3750 -75.4727 -75.5317

10 Nebt  -93.8438 -93.7500 -93.8477 -93.9068

The next problem is to determine the first-order perturbed wave function,
this is considered in section 5.2. The result obtained will be used to calculate

i the second-order perturbation energy as explained earlier.
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5.2 First-order perturbed wave functions

The analytical calculation of the first-order perturbed wave function ¥
using equation (4.6b) with H H', ¥ E© and ED given by equations
(3.45b), (3.45¢), (5.4a), (5.4b) and (5.18), respectively, is complicated due
to the repulsive Coulomb interaction term H,,, = 1/r15. Consequently, the
Rayleigh-Schrédinger 1/Z perturbation expansion (section 4.3) will be ﬁrst
applied and latter case where the two-electron atoms first-order perturba-
tion equation (4.6b) can be separated into one-electron equation (4.16b) is

considered.

By applying a scaling transformation of the co-ordinate r — r/¢ [17] to the

Hamiltonian H (3.47), a scaled Hamiltonian

He= 33
:_ﬁ__v.ﬁ_l_}__l(l(i i) i)
2 27wl w0 N S T12
=L % , (5.20a)
is obtained, where oy eipqinig ey
Hgg) - __?1 o E e _2_2. s ;; ’ (5.200)

is the scaled unperturbed Hamiltonian (expressed earlier as (3.45b)) and H'

is the perturbing Hamiltonian (3.45c¢).

The ground state energy (4.12) to second-order perturbation is now expressed

as a series in powers of the perturbation parameter 1/¢
E=CEQ +(EY + E? (5.21)
The hydrogen-like wave functions and energy in equations (5.3¢c) and (5.3d)
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and (5.3¢) becomes

VD (ry) = \/g exp(—r1) (5.22a)
T (rz) = \/g exp(—r2) (5.22b)

and
B = B = -3, (5.23)

respectively. Consequently, the zeroth-order perturbation equation (4.2), is

now expressed as
HQUQ = EQw( (5.24)

sc )

where

T = U (r) D (r2)
= %exp(—(n +12)) (5.25a)
is the scaled zero-order eigenfunction (expressed earlier as (5.4a))and
BPEEBE
= -] (5.25b)
the corresponding scaled zero-order eigenvalue(expressed earlier as (5.4b)).

Similarly, the first-order perturbation energy (5.18) become

B = B, + B,
- .;. (5.26)
where
BC. = —% (5.274)
and
ES) = -Z- (5.27b)
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which were expressed earlier by equations (5.11) and (5.17b), respectively.

Thus the first-order perturbation equation (4.6b) in scaled form is expressed

as

(B - BQ) o0+ (H - BQ) 1) =0 (5.28)

Noting that H' = H!,. + H',, (3.45¢) and EY = E&,.. + B, (5.26),

mag rep
then the scaled first-order perturbed wave function \Ilglc) can be expressed in
equivalent form as

v =g gl (5.29)

magsc T€Psc

By substituting equations (3.45¢), (5.26) and (5.29) into equation (5.28) and

then rearrange, a pair of first-order perturbation equations

(HY — EQ) Q)+ (Hpy — ES),.) ¥ =0 (5.30)
(HO - EQ) o) + (H., - ES).)¥9 =0 (5.300)

for \115,%219“ and \Ilﬁg,sc, respectively, are obtained; similar equations were ob-

tained by Dalgarno and Stewart in 1960 [13].

5.2.1 The first-order perturbed wave function due to magnetic
shielding term

The first order perturbation equation (5.30a) can be solved directly for the
first-order perturbed wave function due to magnetic shielding term \Ifﬁilg as
follows. Substitution of equations (5.20b), (5.25b), (3.46a) and (5.27a) into
equation (5.30a) yields

vV i 1 ¥ 1 Bl 1 1
(X 2 X2 ) g b Bt 1y = 31
< 2 " 9 7_2> magee T ( 4 (7“1 T+ ,,,2) + 9 sc 0 (5.31a)

which can be expressed in alternative form as
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V2 L
<—7—E> \IISTLQL!}SC+ ~E+Z \Ilgc)

Vi i 1 1
2 _ - (1) _ - 0) _
(70t (g y) =0 G

In equation (5.31b), the two-electron atoms first order perturbation equation
(5.31a) is expressed as a sum of individual one-electron equations. Thus, in
general equation (5.31b) may be rewritten as
L B | 1 1
et o 2 [ D ——+-]00 =9 j=1,2 5.2
( 2 Ti) magse + 4r, S 4 sc ) ¢ ) ( CL)

which becomes

SE T 5 g Sopie o | Q) = =1,2
( 2 d’l? T d’/’i Vi + 2> magsc + ( 4” + 4> sc O, 7 :
(5.32b)

after applying equation (1.1b). The solution to the ordinary differential equa-
tion (5.32b) is of the form [48] '

W = gl Bl =i (5.32¢)

where g(r;) is an arbitrary first-order radial function dependent only on the
electron distance ;. Hence, substitution of equations (5.25a) and (5.32¢) into

" equation (5.32b), for i = 1, leads to

1d2g(ry)  dg(ry) 1 dg(r) 1 1
= -2 u =l 5.33
2 drf dry 7, drp  4n 3 L

which has a simple solution
glr) = —— (5.33b)

, Similarly, for 7 = 2, substitution of equations (5.25a) and (5.32¢) into (5.32b)
yields
glra) = =22 (5.34)




is an effective scaled one-electron Hamiltonian and the zero-order perturba-

tion equations for Hamiltonians HI(O) and HZ(O) are

HOUO@r;) = EQvO(r,) (5.39)
and
HPWO(r;) = EP 0O (1), (5.390)

respectively. Hence, substitution of equations (5.25b) and (5.38a) into terms

on the left hand side of equation (5.37) and then rearranged, it is found that
[ 926 (B - 1) ¥, ar = [0 (B - 112 08, an

+ [ 99 (BY - BE) 3, an (5.400)

C

Then, the application of equation (5.39a) to the left hand side of equation
(5.40a) and noting that the Hamiltonian H () is Hermitian yields

1sc

[0 (80— 1) 98, i = (B - 1) [ 4D e 98,
(5.400)
Further, the substitution of equations (5.23) and (5.38b) into the left hand

side of equation (5.40b) and then applying equation (1.1b) leads to the result

T€ePsc

[wOw) (B - ) 9, ar,

14> 1d 1 1
=lc—s+———+——=) [ VO gl 4 40
(2 dr3 ¥ ro dro > T9 2) / s (T1) repsc 171 {5.400)
The right hand side of equation (5.37) may be rewritten as
[ v (- BG,) ¥
- [¥0eH, v - 5, [ 00 @)uan (5.41a)
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The first term on the left-hand side of equation (5.41a) is evaluated by sub-
stituting equations (5.12), (5.22a) and (5.25a) and then integrate over the

polar angles (0, ¢;1) and (s, ¢2) taking | =m = 0, to get

i e
/ U (r1) Hy oy U dry = 4 (;» / rie”*dr + / r e””ldm) v (x)
2 Jo T
’ (5.41b)

which reduces to

/‘Qgg)(rl)H' Odr = l (1 — (L4 1p) e727) w0 (r,) (5.41c)

rep * sc T

after the application of standard integrals (5.16a) and (5.16b), respectively.
The second term on the left-hand side of equation (5.41a) is evaluated by sub-
stituting equations (5.25a) and (5.27b) and then integrating over the volume

element (5.8a), to obtain

5
~E / U (r)¥dry = — T (r) (5.41d)
after the applying of normalization condition
o A
/ VO (r) VD (ry)dry = 1 (5.41e)
0

Hence, by applying equations (5.41c) and (5.41d), equation (5.41a) reduces

to

[ U0 (B~ B 90 = (5 (- ) ) = ) W

)
(5.42)

which is dependent only on the dynamics of electron 2.

Further, the application of the results in equation (5.40c) and (5.42) to equa-
tion (5.37) yields
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1d? ' - d, 41
(id_r% ¥ T §> /‘I’gg)(rl)‘l’ﬁlez)scdﬁ

) dT’z (i)

T2

- <—1— (1= (1+mr) e®?) - g) W) (ry) (5.43a)

which may be rewritten as

1 d? 1 d 1 1
A S M R [
(2 dT% + T dT‘z + To 2) dic (r2)

T R T

Since the variables of electron 1 have been integrating out in equation (5.43b),
then

Q) (r)) = / UO(r) 0 dn (5.43¢)
is the contribution of electron 2 to the first order wave function \IJ%LSC. It
is noted that equation (5.43b) is dependent only on the radial variables of

electron 2 and can be solved independently for @ﬁg%sc(rg). Hence, the solution

for @52,“(1*2) of the form [48]

00, (r2) = f(r2) ¥ (r2) (5.44)

TEPsc

where f(r2) is an arbitrary function dependent only on the electron distance

rq, Will be considered.

Further, the substitution of equations (5.22b) and (5.44) into equation (5.43b)

leads to a second order differential equation

1d°f(rs) (1 df(ry) 1 B
2 dr2 +(72_1>W~;;(1—(1+r2)62)—§ (5.45)

which may be solved using the following command in Mathematica
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Dsolvef f'lra] + (= = Df ) == (1 = (14 r2) Bap|-2r]) 3,
(5.46)

to obtain

3.07944 1
f(re) = — — —exp(—2ry) — §log(rQ) - §EulerG’cwmna
8 4 8 8
3 ) 3 :
+—— (1 — exp(—2r3)) + =72 + = expIntegral E;(—2ry) (5.47)
167 8 8

The boundary conditions f[0] = 0 and f’[0] = 0 satisfied by equation (5.46)
ensures that the wave function fbsgzjm,(rg) and its derivative d@,@%“(r?) /drs are
finite and continuous at r = 0 [2]. Our results for f(ry) (5.47) takes similar
form as the first-order Hartree factor fp(r) for helium sequence [49, 50] and
the function ZF(r) obtained by Hall et al [51] in a similar calculation to

determine the ground-state electron density function for helium.

Similarly, by multiplying equation (5.36) from the left by \Ilg(c))(rQ) and inte-
grate over the volume element (5.8b) for electron 2 (i.e., integrating out the

variables of electron 2), then following steps in equations (5.40a)-(5.46), it is

found that
0, (r1) = Fr) W (ry), (5.48)
where
07944 1
flr )= L exp(—2ry) — §Iog(m) - §EulerGamma
8 4 8 8
5 3
+—— (1 —exp(—2r1)) + =11 + = expIntegral E;(—2r;) (5.49)
167‘1 8 8

is an arbitrary function dependent only on the electron distance r;.

The two functions ‘I’S%M(rz) and @ﬁSLsc(rl) obtained in equations (5.44) and

(5.48), respectively, represent the contribution of the two electrons to the

62




first-order wave function \1152,“, then by linear combination of atomic orbital

method [9, 10], WiL),.. is expressed in the form

vy = o0 (rl)\I/(O)(rg) ®0 (rg)\I/(O)(rl)

TEPsc T€Psc T€Psc

= (f(r1) + f(rs)) Y (5.50)

Using the results in equations (5.35) and (5.50) in equation (5.29), the first-

order perturbed wave function in the form become

o) — o )

magsc TepSC

= (“% (r1+12) + f(r1) + f(Tz) v (5.51)

In has already been shown that equation (5.51) is the analytically determined

first-order perturbed wave function [25].

5.3 Second-order perturbation energy

The second-order perturbation energy (4.9) may be rewritten in scaled form
as

B = 0 B (5.52)
By substituting equations (3.45¢) and (5.26) into equation (5.52) and then

rearranged, it is found that

ER =Bl +ED. (5.530)

where
B o S AT (Hlvias — B JIUEH (5.53b)

and

E2) _< (O)I( rep—E

TEPsc 7’6ng>

D) (5.53¢)

are components of the second-order perturbation energy due to the magnetic

shielding term and the Coulomb interaction term, respectively.
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5.3.1 Second-order perturbation energy due to magnetic shielding
term

Substitution of equation (5.51) into equation (5.53b) yields

EQ,. = (V| (H mag = EL), ) 1¥0, + D) ) (5.54a)
which, on expansion, become
EQ, =P+ (5.54b)
where
. = (qlgg)lHlmag - E,%g“ q’ﬁ,lu)zgm) (555(1)
and

o)
repsc>

Y = (U Hl g — B

magsc

(5.55b)

are second-order perturbation energy components that will be solved indi-

vidually.

: 2
5.3.1.1 The second-order perturbation energy component eg )

By substitution of equations (3.46a), (5.27a) and (5.35) into equation (5.55a),

it is found that

- _—// e ( ( ¥ “1‘) + l) (r1 +72) Udridr,  (5.56a)
Ty T 2

Further, substitution of equations (5.8a), (5.8b) and (5.25a) into equation
(5.56a) and integrating over the polar angles (6, ¢;) and (02, ¢2), yields

(2 o o0 o0 o
€ ) = 2/ rfe"%drl/ rie~ 2 dr, +/ rle'z”dﬁ/ rie 22 dry
0 0 0 0

(oo} oo oC ocC
+/ rfe‘z”dn/ r2e"2”d7*2—2/ r?e“”ldrl/ rg‘e‘zr“’drz
0 0 0 0

—2/ rfe“z”drl/ r3e " dry (5.560)
0 o .
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which reduces to

¥ = —0.0625 a.u. (5.57)
after the application of standard integral (5.10).

5.3.1.2 The second-order perturbation energy component e( )

By substituting equations (3.46a), (5.27a) and (5.50) into equation (5.55b)
yields

o -%//\pgg? (% + :—2) (f(r1) + f(r2)) ¥Qdr dr,

//\I’(O) (1) + f(r2)) ¥drdr (5.584)

Further, the substitution of equations (5.8a), (5.8b) and (5.25a) into equation
(5.58a) and integrating over the polar angles (61, ¢1) and (02, ¢2) leads to

2 =~ [“rtan [Trdars (24 1))+ 1)) e

48 / r2dr, / ridrs (f(r1) 4 flral) e Rk (GEgh)

which reduces to

P = 0.078125 a.u. (5.59)

after the application of equations (5.47) and (5.49) and solving of the resulting

integral equations using NIntegrate command in mathematica.

'5.3.2 Second-order perturbation energy due to Coulomb interac-
tion term

Substitution of equations (5.51) into equation (5.53c) leads to

B3, = (V2| ('~ B,,)

Tepse Tepse

v+ ) (5.60a)

magse

which, on expansion, becomes
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EQ =P 4P (5.60b)

T€Psc

where

= (U H oy — Bl IIV5,..) (5.61a)
and

= (VO |H,,, — Ef),)IV1,,.) (5.610)

are second-order perturbation energy components that will be solved indi-

vidually.
5.3.2.1 The second-order perturbation energy component ef)

By substituting of equations (3.46b), (5.27b) and (5.35) in equation (5.61a),

6%2) // (0) (.___. — —) (7‘1 + T2)\I’§2)dTldT2 (56204)
T12

Further, the substitution of equations (5.8a), (5.8b), (5.12) and (5.25a) into

yields

(5.62a) and then follow steps in equations (5.13)-(5.15) leads to

(ee] T1 2d gdeo'e]
e§2) = ——4/ T:fdrl {/ TQT i +/ 7"2d7~2] e~ 2ritr2)
0 0 1 (e

o0 ™t r3dry o0
-—4/ rfdrl {/ 2 +/ ng’f'g:I g 2(ritr2)
0 0 1 ™
5 oG oo
—Z'r 2 _—2r
—I—-2—/ rie 1dr1/ rse™%dry
0 0

5 o0 o0
+-/ rfe"zrldrl/ roe 2" dr, (5.62b)
2 Jo 0
which becomes
) =0.078125 a.u. (5.63)

after application of the standard integrals (5.10), (5.16a) and (5.16b).
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5.3.2.2 The second-order perturbation energy component eff)

By substituting equations (3.46b), (5.27b) and (5.50) into (5.61b), yields
/ / w f(r1) + f(r2)) ¥ 0dr dr,

—2 [ [ v s eins o

Further, the substitution of equations (5.8a), (5.8b), (5.12) and (5.25a) in
equation (5.64a) and then steps in equations (5.13)-(5.15) are followed to

evaluate the resulting equation, to obtain

- 16/<><> d7‘1 (l /Tl dl“z + /oo Tsz2> (f(r1) + f(T‘Q)) e 2(r1+72)

—10/ Tldrl/ ridry (f(r1) + f(ra)) e~ 2t (5.64b)

Thus, by substituting equations (5.47) and (5.49) into equation (5.64b) and
the resulting integral equations solved using NIntegrate command in mathe-

matica, it is found that
e? = —0.111003 a.u. (5.65)

The second-order perturbation energy component (5.65) is equivalent to the
second-order perturbation energy obtained under the Hartree-Fock approxi-

mation [49, 52, 53], i.e

= 20.111003 a.u. (5.66)

Substitution of equations (5.54b) and (5.60b) in equation (5.53a) and then
apply the results in equations (5.57), (5.59), (5.63) and (5.65), the second-

order perturbation energy within our model is obtained to be
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ED =P+ + e+

sc

— —0.017253 a.u. (5.67)

By using results for zero-order energy (5.25b), first-order perturbation energy
(5.26) and second-order perturbation energy (5.67) in equation (5.21), the
ground state energy to second-order perturbation within our model is found
to be

E = FEqy

1
=+ g¢ — 0017253 (5.68a)

which reduces to

Z
Epi=-2%+ 5—8— —0.111003 (5.68b)

after substituting for ¢ (3.31b). This results agree exactly with the expression
for ground state energy to second-order perturbation obtained in a perturba-
tion scheme based explicitly on the the Hartree-Fock approximation [52, 53].
The terms in equation (5.68b) are identified as the zero-order energy (—Z22),
first-order perturbation energy (5Z/8) and second-order perturbation energy
E® = —(0.111003 a.u. in the hydrogenic approximation [1, 5, 49, 52]. There-
fore, the ground state energy to second-order perturbation of two-electron
atom is independent of the nuclear charge screening constant in the unper-
turbed Hamiltonian with a central coulomb potential. A similar result was

obtained in [54] using variational-perturbation method.

The calculated values of the ground state energy to first order perturbation
(5.68b) compared with the ones obtained in a perturbation scheme based
explicitly on the the Hartree-Fock approximation [52, 53] and the many pa-

rameter variational method [26], respectively, are presented in Tables 5.2.
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Table 5.2. The ground state energies to second-order perturbation E.y for

Z = 1— 10, are compared Eyp and exact energy E(e‘”.“) A

E** — Eea.
Atom 7 iy Eyr Eleze) Boors
H- 1 -0.4860 -0.4879 -0.5278 -0.0418
He 2 -2.8610 -2.8617 -2.9037 -0.0427
Lit 3 -7.2360 -7.2364 -7.2799 -0.0439
Be?t 4 -13.6110 -13.6113 -13.6556 -0.0446
B3 5 -21.9860 -21.9862 -22.0310 -0.0450
ot 6 -32.3610 -32.3612 -32.4062 -0.0452
NO+ 7 -44.7360 -44.7362 -44.7814 -0.0454
08+ 8 -59.1110 -59.1111 -59.1444 -0.0334
F 9 -75.4860 -75.4861 ~-75.5317 -0.0457
Nedt 10 -93.8610 -93.8611 -93.9068 -0.0458

It is noted that the calculated ground state energies E¢q have close agrement
to those obtained in the Hartree-Fock model Exr. However, the calculation
for the ground state energy E., differ slightly with the exact energy Flean)
due to the absence of the contributions of the correlation energy Ay (SUmM

of radial and angular correlation energy) which has an average value' Avorr =

10.0431 a...

5.4 The expectation values of other physical quantities
and their first-order approximations

The first-order approximation to the expectation values of radial quantities
associated with the magnetic shielding constant, diamagnetic susceptibility
and radial correlation are evaluated. The expectation values provide a means

of testing the validity of the method adopted in calculating the first-order
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perturbed wave function and second-order perturbation energy in sections

5.2 and 5.3, respectively.

5.4.1 The magnetic shielding constant

The magnetic shielding constant is defined by the operator

b
L=—+4— (5.69)
™ T2

By substituting equation (5.69) into equation (4.21), the zero-order expecta-

tion values is obtained as

Lo — //\IJ(O) <i + l) T dr dr, (5.70a)
T3, 1372

Substitution of equations (5.4a), (5.8a) and (5.8b) in equation (5.70a) and
integrating over the polar angles (61, ¢1) and (6,, ¢2) leads to

o0 o0
LO = 16(6/ rldrlf r%drze'w”*”)
0 0

+16¢° / ridr / radrge ™2 rtT) (5.700)
5 2 0 0
which reduces to
L9 2
=2(Z - 1/4) (5.71)

after applying the standard integral (5.10). For helium Z = 2, equation
(5.71) yields a value of 3.5000 a.u., which differs by —0.123 a.u. from the
exact expectation value 3.377 a.u. obtained by Pekeris using Hylleraas-type

trial wave function [26].

Hence, the problem is to evaluate the first-order approximation (4.24) to the
expectation value of operator (5.69). When equations (3.450), (5.4b), (5.69)

and (5.71) are substituted into equation (4.25) and the resulting expression
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evaluated using steps similar to those in equations (5.31a)-(5.35), the first-
order perturbed wave function associated with the operator L (5.69), may

be expressed in the form
XV = (r; 4+ 1) 0O (5.72)

Hence, by substituting equations (3.45¢), (5.4a), (5.18), (5.71) and (5.72) into
equation (4.26) and the resulting expression evaluated using steps similar to

those in equations (5.56a)-(5.57), the first-order corrections is obtained as

1
(1) - — —
L 3 (5.73)

Using results in equations (5.71) and (5.73), the first-order approximation to

the expectation value of magnetic shielding operator (5.69) becomes
(L)y=LO 4+ IO

1
= e =
¢ 8

5
_a(2-5) i
after substituting for ¢ (3.31b). Our final results in equation (5.74) is identical
to that of Dalgarno and Stewart obtained by analytical solution of equation
(4.26) using arbitrary first-order trial wave function [13]. The expectation
value of the magnetic shielding operator (5.74) to first order approximation
for nuclear charge Z = 1 — 3 are compared with the exact expectation values
[26] in Table 5.3. In Table 5.3, it is noted that the expectation values to first
order approximation of the magnetic shielding operator are in close agreement
with the exact expectation values. This agreement is certainly due to the fact
that the quantity 1/r; is quite sensitive to the behavior of the wave function

close to the nucleus, the correct behavior of W and x) represented by
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equations (5.4a) and (5.72), respectively, in these region is reflected in the

satisfactory values found in Table 5.3.

Table 5.3 The expectation value of the magnetic shielding operator of the

two-electron atoms for nuclear charge Z =1-3

Atom 7Z <i Y l> Exact

71 T2

H~ 1.3750  1.3766
He 2 3.3750  3.3766
Lit 3 53750  5.3758

—

5.4.2 The diamagnetic susceptibility

The diamagnetic susceptibility is proportional to the expectation value of
(11, 13]
L=r12+r} (5.75)

By substituting equation (5.75) into equation (4.21), the zero-order expecta-

tion values become
LW = / / U (72 4 12) OOdridry (5.76a)

Further, the substitution of equations (5.4a), (5.8a) and (5.8b) into equation
(5.76a) and integrating the resulting equation over the polar angles (61,¢1)
and (6,, ¢2), it is found that

o oo
LO = 16(6/ r]‘dﬁ/ r2drye=2(rtre)
0 0

+16¢° / ridr / A drye~26(r+r2) (5.76b)

Thus, application of the standard integral (5.10) in equation (5.76b) leads to

2



T (5.77)

For helium Z = 2, equation (5.77) yields a value of 1.9592 a.u. which differs
by 0.4308 a.u. from the exact expectation value 2.3900 a.u. obtained using

Hylleraas-type trial wave function [26].

The first-order approximation (4.24) to the expectation value of operator
(5.75) is evaluated, by first, substituting equations (3.450), (5.4b), (5.75) and
(5.77) into equation (4.25) and evaluating the resulting expression using steps
similar to those equations (5.31a)-(5.35), to obtain the first-order perturbed
wave function, expressed in the form

3r24+¢rd  3r24Crd
B 1 1 2 ARIO
X ( 508 + 303 (5.78)

Then, the substitution of equations (3.45¢), (5.4a), (5.18), (5.77) and (5.78)
in equation (4.26) and evaluating the resulting expression using steps similar

to those in equations (5.56a)-(5.57), the first-order corrections is obtained as

57
o s
g (5.79)

Using results in equations (5.77) and (5.79), the first-order approximation to
the expectation value associated to the diamagnetic susceptibility operator
(5.75) becomes
(L) = LO LD
o 87

A
_ 6(3+642)

= C1razp (5.80)
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after substituting for ¢ (3.31b). The final results in equation (5.80) is iden-
tical to those obtained in [13] by analytical solution of equation (4.25) us-
ing arbitrary first-order trial wave functions. The expectation value of the
diamagnetic susceptibility operator to first-order approximation (5.80) for
nuclear charge Z = 1 — 3 are compared with the exact expectation values

obtained by Pekeris [26] in Table 5.4.

Table 5.4 The expectation value of the diamagnetic susceptibility operator

of the two-electron atoms for nuclear charge Z =1 — 3.

Atom Z (ri+r?) Exact
H~ 1 14.8889 23.8274
He 2.2915 2.3850
Li* 3 0.8790  0.89256

[N]

In the view of the simplicity of the wave functions ¥(® (5.4a) and x™) (5.78)
used, the first-order approximation to the expectation value of the diamag-
netic susceptibility operafor in Table 5.4 are in close agreement with the
‘exact’ expectation value, except possibly for H~. This is because the quan-
tity 72 is quite sensitive to the behavior of the wave function at large distances
away from the nucleus; thus, ¥(© (5.4a) and x(! (5.78) does not have the

correct asymptotic behavior in this region for H~.

5.4.3 The electron correlation

The electron correlation effects is defined by the operator

L=— (5.81)

12’
i.e., the repulsive coulomb interaction term (3.46b). The zero-order expecta-

tion value is given in equation (5.17c) as
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5 1
==-\Z-- 82
3 ( 4> (5.82)
For helium Z = 2, equation (5.82) yields a value of 1.09375 a.u. which dif-

fers by 0.14795 a.u. from the exact expectation value 0.9458 a.u. obtained by

Pekeris using Hylleraas-type trial wave function [26].

Therefore, the problem is to evaluate the first-order approximation (4.24)
to the expectation value of operator (5.81). It is noted that the first-order
perturbation equation (4.25) and the first-order correction equation (4.25b)
corresponding of the operator (5.81) are similar to equations (5.30b) and
(5.53¢) which were evaluated in sections 5.2.2 and 5.3.2, respectively. Hence,
the first-order perturbed wave function corresponding to the operator (5.81)

is given by equation (5.50) while the first-order correction is [25]
ja L S
=2’ +€)

= —0.065756 a.u. (5.83)

§2) and 64(12) given in equations (5.63) and (5.65), re-

after substituting for €
spectively. Using results in equations (5.82) and (5.83), the first-order ap-
proximation to the expectation value associated to the electron correlation

operator (5.81) becomes

(Ly=LO® 4 1V

= % —0.065756 (5.84a)

which reduces to

(L) = isé — 0.222006 (5.84b)
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after substituting for ¢ (3.31b). The terms in equation (5.84b) are identified
as the first-order perturbation energy (5Z/8) and two times the second-order
perturbation energy (2E = —0.222006 a.u.) in the hydrogenic approxima-
tion [1, 5, 49, 52]. The expectation value of the electron correction operator to
first-order approximation (5.84b) for nuclear charge Z = 1 — 3 are compared

with the exact expectation values [26] in Table 5.5.

Table 5.5 The expectation value of the electron correlation operator of the

two-electron atoms for nuclear charge Z =1 — 3.

Atom Z (1/r3) Exact

H~ 1 0.40299 0.31102
He 1.02799 0.94582
L™ 1.65299 1.56772

w N

It is noted in Table 5.5 that, given the simplicity of the wave functions ¥(©
(5.4a) and x(V (5.81) used, the calculated expectation value (1/r1,) are quite
satisfactory. The disparity between the calculated value and the exact ex-
pectation value arises because in the calculation for (1/r12) (5.84b), only
the term | = 0 is considered in the expansion of Coulomb interaction term
(5.12c). However, for each term in the expansion (5.12¢) the expectation
value (1/712) (5.84b) must also have the angular structure given by P(cos®)
for the terms [ = 1,2,... [9, 11].
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Chapter 6

6 Conclusion and recommendations for fu-
ture work

6.1 Conclusion

In this thesis, an alternative model of the quantum theory of the two-electron
atoms that formulated the direct role of the repulsive Coulomb interaction in
nuclear charge screening has been developed. The Hamiltonian (3.47) govern-
ing the general dynamics of the system is composed of a component describing
the stable state of the system under the anti-parallel orbit orientation (3.45b)
and the other describing the binding energies treated as perturbation (3.45¢).
The Hamiltonian (3.45b) for the two-electron atoms under the anti-parallel
orbit orientation is the sum of independent one-electron atom modes in a
central field in which the two electrons maintain minimal repulsive Coulomb
interaction energy. The two electrons then behave independently but main-
tain a finite distance between them due to the minimal repulsive interaction
energy captured through the minimum screened nuclear charge ( = Z — 1/4
(3.31b) in contrast with the independent electron model where each electron
moves in the fully unscreened field of the nucleus. The ground state configu-
‘ration occurs in this mode, i.e., h = 1, with both electrons occupying opposite
points on the K-shell which is a circular orbital with radius r. In the general
mode h < 1, the nuclear charge screening depends on the relative distances
1, T2 and the orientation angle ¥. This mode of the repulsive interaction
is treated as perturbations. The perturbing Hamiltonian H' (3.45c¢) is the
sum of the binding energy associated with the repulsive coulomb interaction

H],, (3.46a) and the magnetic shielding energy H;., (3.46b). The ground

rep
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state energy under the anti-parallel orbit orientation and to first-order per-
turbation presented in Table 3.1 and Table 5.1 respectively, are far much
better than those obtained in the standard independent particle approxima-
tion. The remarkable improvement in the theoretical values of ground state
is attributed to the minimal repulsive interaction energy maintained between

the electrons under the anti-parallel orbit orientations.

In this thesis, a simple model for the direct calculation of the first-order
perturbed wave function and second-order perturbation energy for the two-
electron atoms has also been developed. The scaling transformation of the
co-ordinate 7 — r/¢ on the Hamiltonian (3.47) is applied to obtained the
scaled Hamiltonian (5.20a) and then the Rayleigh-Schradinger 1/¢ perturba-
tion expansion is followed. The resulting first-order perturbed wave function
(5.51) is the sum of the components due to the magnetic shielding energy
\I/%g” (5.35) and Coulomb interaction energy \I/,(lc)p (5.50); this analytically
determined first-order perturbed wave function (5.51) is appearing in the
literature for the first time. The first-order perturbed wave function (5.51)
is applied to determine analytically the second-order perturbation energy
(5.67). The ground state energy to second-order perturbation FE.q (5.68b)
for two-electron atoms given in Table 5.2 were found to have close agreement
with those from the Hartree-fock model Eyr using arbitrary first-order wave

functions. However, the ground state energy E., differ slightly with the ex-

- act energy E(°* due to the absence of the correlation energy Ag. It has

also been noted that the total energy to second-order perturbation in the

model is independent of the nuclear charge screening parameter.

The model applied in the calculation of first-order perturbed wave function

and second-order perturbation energy was extended to calculate the first-
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order approximation of the expectation values of radial quantities associated
with magnetic shielding constant, diamagnetic susceptibility and electron
correlation. It was noted in Table 5.3, Table 5.4 and Table 5.5 that given the
simplicity of the wave functions used, the calculated expectation values were

quite satisfactory, except possibly for Hydrogen ion H~ in Table 5.4.

6.2 Recommendations for future work

In Table 5.2, it was noted that the disparity between FE.,; and the exact
energy was due to the absence of the correlation energy A.,... In research
literature, for example [26, 33, 34, 35, 36], the correlation energy is incorpo-
rated by choice of a two-electron atom wave function which depends explicitly
on the electronic radial distances r; and 79 and the interelectronic separation
r12. One can also study the correlation effect by working with a two-electron
atoms wave function expressed in terms of the interaction between different
configurations, i.e., configuration interaction method [10, 31, 32]. Admit-
tedly, these wave functions predict accurate results for energy eigenvalues.
But most of them do not lead to analytic expression for Hamiltonian and

other related quantities.

In the thesis, the wave functions ¥® (5.4a) does not depend on the inter-
electronic separation 719, hence, it does not include the correlation effects.
Therefore, I recommend that further work should be addressed toward for-
mulating simple analytic model of the quantum theory of the two-electron
atoms that incorporates the correlation effects in the unperturbed Hamilto-
nian. For example, in some work under investigation, the energy transfer

equations has been applied to define, in S.I units, the total energy function
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governing the dynamics of the two-electron atoms by
t
H:H@+/mym+m¢mm (6.1)
to
where F; and F; denote the attractive Coulomb forces exerted by the nu-
cleus on electron-1 and electron-2, respectively, and H® the unperturbed

Hamiltonian expressed in component form as
HO = HP + 1O + H (6.2)

The components H§°) and Héo) are individual one-electron unperturbed Hamil-

tonians expressed as

2 2
0) p; 27¢ . :
T e e = 1.2 :
H 2m  Ameyr;’ r=1 (6.3)

and the component H 1(3) the two-electron unperturbed Hamiltonian expressed

as
S 3Z /2
(0 _ P12 e (6.4)

12 2m  Amegryg

where :
P1 — P2
St I 6:5
Pi2 9 ( )

is the kinetic energy due to the relative motion of the two electrons.

The task under investigation is to solve analytically the Schridinger equation
H(O)\I/(O)(Tl, T, 7"12) = E(U)\P(O)(Th Fa, T12) (66)

for the unperturbed Hamiltonian H® (6.2). It is suggested that the corre-

lated wave function W (7, ry,715) be expressed in the form
‘11(0)0‘1,7‘2,7*12) = \I/(O)(?‘l)‘l’<0)(7'2)‘1’(0)(7“12) (6.7)
where U(©)(ry5) incorporates the correlation effects into the wave function.
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