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1. Introduction 

Untreated industrial effluents are known sources of heavy metals loading into surface waters and 

other environmental compartments [1]. These heavy metals are toxic, at concentrations above certain 

limits, and disrupt specific biological processes in human beings other living organisms [2]. Copper finds 

extensive use in various industrial processes such as plating, mining and smelting, electroplating 

industries, petroleum refining, and Cu-based agrichemicals mining [2]. Effluents from such industries 

contain considerably high levels of Cu(II) ions, and subsequent use of the polluted wastewater for 

agricultural purposes introduces the heavy metal into the food chain [3]. In humans, acute copper 

poisoning has been shown to cause hemolysis, liver, and kidney damage among other disorders. 

Therefore, proper treatment of effluent before discharge for the removal of heavy metals, such as copper, 

is essential for environmental health [4]. 

Several techniques for sequestering heavy metals from water are in use. These include 

adsorption, biosorption, reverse osmosis, ion exchange, and filtration, among others [5, 6]. Adsorption 

remains the widely used technique for sequestration of heavy metals from water owing to its efficiency 

and inherent low-cost in terms of capital investment. Therefore, a suitable adsorbent must be assessed in 

terms of surface area, pollutant removal efficiency, life-cycle, and cost of production [7]. Over the years, 

studies have proposed various naturally occurring inorganic materials and agricultural wastes biomass as 
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low-cost precursor substrates for developing adsorbents for the uptake of metal ions from water. These 

include Tunisian date stones [8], rice husk [9], cassava peel [10], grape seeds [11], orange peels [12], 

Jatropha curcas seeds [13], longan seed [14], mung bean husk [15], almond shell [16], corncob [17], 

peanut hull [18], barley husks [19], solid palm waste [20], bamboo culms [21], grape waste [22] and palm 

kernel shell [23]. Fish scales are generally considered of no economic value and present an environmental 

menace if not correctly disposed of. A report by Rustad [24] indicated that approximately 91 million tons 

of fish and shellfish are captured yearly worldwide, among which about 60 % serves as food for humans, 

and the remaining percent disposed as waste. Besides, sustainable availability of fish scales as a resource 

for the production of commercial adsorbents has been supported by statistics in which there was a non-

significant change in the amount of fish captured in the face of rising human population [25].  

Several works reported the utility of fish scales as adsorbents in the elimination of copper ions 

from aqueous solution [26], chromium (VI) from industrial effluents [27] and metal ions from wastewater 

[28]. Other studies on the use of fish scales for sequestration of heavy metals such as Cu, Zn, Fe, Ni, and 

Mn are also in the literature [29-31]. Recently, Achieng et al. [32] reported fish scale derived biochar for 

the uptake of indigo carmine from water. However, presently, there is no published work on the use of 

fish scale biochar for the uptake of copper ions from aqueous media.  

This work aimed to convert the fish scales, an environmental menace in Gikomba, the largest 

open market in Nairobi-Kenya, into biochar, a functionalized adsorbent, and to investigate its performance 

for removal of copper ions from synthetic wastewater. The prepared biochar was characterized using the 

elemental analyzer (x-ray fluorescence-XRF), scanning electron microscopy (SEM), X-ray diffraction 

(XRD) and Fourier transform infrared (FTIR) spectroscopy. The equilibrium data were modeled using six 

two-parameter adsorption isotherm models, namely; Langmuir, Freundlich, Temkin, Fowler-

Guggenheim, Elovich, and Flory-Huggins and five three-parameter isotherms, namely; Hill, Sips, Toth, 

Redlich-Peterson and Koble-Corrigan and the parameters determined using the nonlinear regression 

method. 

2. Material and Methods 

2.1 Adsorbent preparation 

The Oreochromis niloticus (Tilapia) fish scales were obtained at Gikomba market in Nairobi, Kenya. The 

scales were washed in running tap water to remove adhering dirt, rinsed severally using de-ionized water, 

air-dried under shade for 3 days, and then heated at 30 oC. The fish scale biochar (FSB) was then prepared 

by slow-pyrolysis at 600 oC as described by Achieng et al. [32] with no modifications. The as-prepared 

adsorbent was stored in airtight glass for characterization and application in the adsorption experiments. 

2.2 Characterization of FSB 

The functional groups analysis was done using FTIR (ATR-FTIR) equipment. The elemental composition 

of the fish scale biochar (FSB) was determined by XRF (XRF76V-WRO1) analysis. The mineralogical 

composition was determined using an X-ray Brucker diffractometer (D8 Advance) with copper radiation 

(Kα = 1.5406).  

2.3 Adsorption experiments 

During the experiment, 0.1 g FSB samples were shaken in 50 mL solutions, containing different 

concentrations of Cu2+ ions (40, 60, 80, 100, 120, 140, 160, 180 and 200 mg/L) at room temperature 

without pH adjustment. The solution pH for copper solutions was 5.8±0.2. After 24 h equilibration time, 

the contents were shaken for 10 min, and the supernatant solution filtered through 0.45 µm diameter 



Achieng and Shikuku, J. Mater. Environ. Sci., 2020, 11(11), pp. 1816-1827 1818 

 

filters. The filtrate was analyzed for residual metal ion content using the Atomic Absorption 

Spectrophotometer (AAS) instrument with a graphite furnace (Model Number: AA320N, China).  

The amount (qe) of metal ion adsorbed onto FSB was determined using the equation: 

( )
m

VCC
q ei

e

−
=                                            (1) 

The amount of metal ion removed, as a percentage (%), was computed using the relation: 

( )
100(%) 

−
=

i

ei

C

CC
adsorbedmetal                                    (2) 

Where Ci is the initial metal ion concentration, Ce the equilibrium metal ion concentration in the solution 

(mg L−1), V is solution volume (L), and m is the mass of the FSB used (g). 

 

3. Results and discussion 

3.1 Elemental composition 

The elemental composition of the fish scale biochar (FSB) obtained by EDX and XRF analysis, as also 

reported in previous work, is presented in Table 1 [32].  

 

Table 1: Elemental constituents of the FSB 

Element C N H O Ca P Mg Na 

% composition 18.41 0.37 0.06 4 3.74 29.08 13.89 0.46 0.32 

3.2 Morphological inspection 

The surface morphology of FSB was inspected using the scanning electron microscopy (SEM) and the 

SEM micrograph is displayed in Figure 1. The micrograph depicts the FSB surface as heterogeneous with 

unevenly distributed cavities and openings.  

 

Figure 1: SEM micrograph of FSB 
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3.3 Crystallinity analysis 

Powder x-ray diffraction (PXRD) analysis (Figure 2) was performed to determine the crystallinity and 

mineral phases in FSB. The fish scale biochar was amorphous with presence of hydroxyl apatite detected.  

 

Figure 2: The X-ray diffractogram for fish scale biochar (FSB) adsorbent 

 

3.4 Functional group analysis 

Figure 3 shows the FTIR spectrum of FSB. The bands around 3600-3300 cm-1 were attributed to –OH 

stretching vibrations. The bands centered in the region 1700-1600 cm-1 were due to C=O stretching 

vibrations [33]. The 1500-1400 cm-1 bands depicted the presence of inorganic functional groups such as 

alumina-silicates and metal oxides [34, 35]. 

 

 

Figure 3: FTIR spectra of fish scale biochar (FSB) 

3.5 Two-parameter isotherms 

The equilibrium sorption data were modeled using six two-parameter isotherm equations and the best 

fitting model determined by comparison of the coefficients of determination, R2. The computed constants 

are presented in Table 2. 
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Table 2: Two-parameter isotherm model constants for removal of Cu onto FSB 
 

Isotherm Langmuir Freundlich Temkin Elovich Flory-Huggins 
Fowler-

Guggenheim 

Parameter Q0= 39.39 KF=7.42×10-9 B= 4.209 Qm=2.00×105 n= 0.00 W= -3414.3 

 KL= 0.028 1/n= 6.020 AT=324.59 KE= 5.15×10-7 KFH= 0.0055 KFG= 0.0029 

R2 0.9999 0.6491 0.9993 0.9485 0.992 0.9524 

3.5.1 Langmuir isotherm 

Langmuir [36] isotherm assumes a monolayer distribution of adsorbate molecules onto a surface 

characterized by energetically equivalent binding sites. The nonlinear form of the Langmuir model is 

given as: 

eL

eL
e

CK

CKQ
q

+
=

1

0                                                                  (4) 

Where qe is the number of molecules adsorbed at equilibrium (mg g-1), Ce is the adsorbate concentration 

in the solution at equilibrium (mg L-1), Q0 is the theoretical maximum adsorption capacity (mg g-1), and 

KL is the Langmuir constant (L g-1).  

In this study, the Langmuir model afforded a coefficient of determination, R2, closest to unity with 

maximum theoretical adsorption density of 39.39 mg g-1. Based on R2 values, the Langmuir model best 

modeled the equilibrium data for Cu abstraction by FSB, suggesting monolayer adsorption.  

3.5.2 Freundlich isotherm 

Freundlich [37] derived an equation that postulated a multilayer adsorption mechanism onto energetically 

different adsorption adsorbent sites. The nonlinear Freundlich equation is given as: 

n
eFe CKq
1

=                                                                        (5) 

The magnitude of the factor n is an index of how favorable the adsorption process is [38]. Values of n 

ranging from 2-10 depict good, 1-2 moderately difficult, and < 1, a reduced adsorptive potential. In this 

study, the magnitude of n (0.166) (Table 2) suggests reduced adsorption potential. Small magnitudes of 

1/n are associated with relatively strong bonds [39]. The calculated 1/n value (6.020), denote weaker 

adsorbate-adsorbent interactions between Cu and the FSB binding sites. According to Saleh [40], 1/n 

values above unity, as in adsorption of Cu onto FSB, imply cooperative adsorption. The Freundlich model 

poorly accounted for the adsorption mechanism of Cu onto FSB relative to the other isotherm models as 

attested to by the R2 values. On the contrary, Konan et al. [56] showed that Freundlich model described, 

with good precision, the adsorption of methylene blue dye onto activated carbons made from agricultural 

waste: borassus palm tree and bamboo stems. Assaoui et al. [57] also reported that experimental data for 

the adsorption of fluoride onto sodium bentonite clay fitted Freundlich model.  

3.5.3 Temkin isotherm 

The Temkin isotherm [41] integrates the effects of adsorbate-adsorbate interactions and postulates that 

the heat of adsorption (Δ𝐻ads) of the adsorbate in the layer reduces linearly with increase in surface 

coverage. The model is given as: 

( )eTTe CABq =                                                                    (6) 

T

T
b

RT
B =                                                                  (7) 
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Adsorption energies (BTln(AT)) in the range of 8–16 kJ mol−1 and bT values above 80 kJ mol−1 denote 

chemisorption mechanisms [42]. From Table 3, the computed value of BTln(AT) was 0.024 kJ mol−1 and 

a corresponding bT value of 0.588 kJ mol-1. These low energy values suggest a physisorption interaction 

between copper ions and the FSB adsorbing sites. Additionally, positive bT values are associated with 

thermodynamically exothermic processes [43]. The high R2 values ascertain the applicability of the 

Temkin model for predicting copper uptake onto fish scale biochar. 

3.5.4 Flory-Huggins isotherm 

Flory-Huggins isotherm model [44] is developed using the extent of the surface coverage and can be used 

to inspect the spontaneity of the adsorption process. The Flory-Huggins isotherm model is given as: 

( ) FHn

FH

o

K
C




−= 1                                                                      (8) 

o

e

C

C
−=1                                                                       (9) 

Where KFH is the Flory-Huggins equilibrium constant [L/mg]. The nFH exponent reflects the number of 

adsorbate ions fixed on given sites. Further, the Flory-Huggins constant, KFH, is used to calculate Gibbs 

free energy, an index of reaction spontaneity, using the relation [45]:  

FHKRTG ln−=                                                                (10) 

From Table 2, the calculated nFH value (n=0) implies that no molecule was bound on any adsorption site 

on the FSB adsorbent. This phenomenon was impractical and, therefore, unaccepted. The observation 

indicates that the underlying assumptions of the Flowry-Huggins isotherm could not sufficiently predict 

the adsorption of Cu onto FSB despite affording a coefficient of determination of 1. The negative ΔG 

value (-12.89 kJ mol-1 at 298 K), obtained using the Flory-Huggins equilibrium constant, indicates that 

the adsorption of Cu onto FSB is a thermodynamically spontaneous and favorable process. Furthermore, 

the magnitude of the ΔG value, below 20 kJ mol-1, implies a physisorption process. This is in agreement 

with the conclusions from the Temkin isotherm. 

 

3.5.5 The Fowler-Guggenheim isotherm 

The Fowler-Guggenheim isotherm equation [46] incorporates a parameter that accounts for the lateral 

interaction between the adsorbate species. This model is expressed as: 

( )


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 2
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where KFG is the Fowler–Guggenheim equilibrium constant (L mg−1), θ the fractional coverage, R the 

universal gas constant (kJ mol−1 K−1), T the temperature (K), and W is the interaction energy between 

adsorbed molecules (kJ mol−1). 

According to the model, when W>0, the interaction between the adsorbed molecules is attractive. On the 

contrary, when W<0, the interaction between adsorbed molecules is repulsive, and the heat of adsorption 

decreases with loading. However, when there is no interaction between adsorbed molecules, then W=0. 

From Table 3, the calculated value of W was negative, indicating repulsion between the adsorbed Cu ions. 

From the R2 value, the Fowler–Guggenheim isotherm favorably described the adsorption of Cu onto FSB. 

 

3.5.6 Elovich isotherm 

The Elovich isotherm model [47] postulates that the adsorption sites increase exponentially with 

adsorption. This isotherm is expressed as: 



Achieng and Shikuku, J. Mater. Environ. Sci., 2020, 11(11), pp. 1816-1827 1822 

 








 −
=

mE

e
EmE

e
e

q

q
Kq

q
C

exp

                                                (12) 

where KE is the Elovich equilibrium constant (L mg−1), and qmE is the Elovich maximum adsorption 

capacity (mg g−1). 

Based on R2 values, the Elovich isotherm poorly described the empirical data but better than the 

Freundlich isotherm. The predicted Elovich maximum adsorption capacity of FSB for copper removal 

was 2.00×105 mg g-1. However, based on R2 values, the Langmuir model best accounted for equilibrium 

data and hence was used to predict the FSB maximum adsorption capacity. The two-parameter adsorption 

isotherms described the empirical data in the sequence Langmuir > Temkin > Flory-Huggins > Fowler-

Guggenheim > Elovich > Freundlich model. Ugbe and Abdus-Salam [58] reported a better Elovich fitting 

(R2=0.9717) for methylene blue (MB) and eosin yellow (EY) removal onto natural and synthetic goethite. 

3.6 Three-parameter isotherms 

The equilibrium sorption data were fitted to five three-parameter isotherm models and the best fitting 

model and the parameters obtained by the nonlinear regression approach. The calculated parameters are 

shown in Table 3. 
 

Table 3: Three-parameter isotherm constants for Cu uptake onto FSB 
 

Isotherm Hill Sips  Koble-Corrigan Toth Redlich-Peterson 

Parameters nH=2.59 as=3.53E-8 A=2.63E-6 z=0.014 g=0 

 qSH=296.08 qms=546.9 B=0.00 qmT=0.015 aR=0.021 

 KD=89830.7 Bs=3.947 nK=4.455 aT=0.00 KR=1.053 

R2 0.838 0.745 0.708 0.953 0.948 

 

3.6.1 Hill isotherm 

The Hill equation [48] postulates the binding of different species onto a homogeneous surface. The model 

is given as: 

H

H

n

eD

n

eSH
e

CK

Cq
q

+
=                                                           (13) 

The Hill isotherm posits that adsorption is a cooperative phenomenon. Accordingly, nH>1 represents 

positive cooperativity in binding, nH=1 denotes non-cooperative binding, while nH<1 indicates negative 

cooperativity in binding. In the present work, the Hill isotherm posted an appreciably high R2 value 

(0.838), and the calculated nH value 2.59>1 suggests a positive cooperativity in binding. 

 

3.6.2 Sips isotherm 

The Sips isotherm [49] is a combination of both Freundlich and Langmuir models. This model envisions 

adsorption onto heterogeneous sites where the adsorbate can be fixed onto more than one adsorption site 

but with no lateral interactions between adsorbed molecules. The Sips isotherm is given as: 

s

s

B

es

B

esms
e

Ca

Caq
q

+
=

1
                                                                     (14) 

The parameter Bs is the heterogeneity factor. Generally, the higher the magnitude of the constant Bs, the 

more heterogeneous the system is. When Bs tends to 1, the system’s adsorption sites tend towards 

homogeneity. In this work, the experimental data poorly fitted to the Sips isotherm as reflected by the low 
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coefficient of determination (R2=0.745). The magnitude of the constant Bs (3.947) that is above unity 

denotes heterogeneity of the adsorption surface.  

 

3.6.3 Toth isotherm 

The Toth isotherm model [50] was derived to better the fitness of the Langmuir isotherm to empirical data 

at low and high adsorbate concentrations. The Toth correlation is presented as: 

( ) zz

eT

emT
e

Ca

Cq
q

1

+
=                                                             (15) 

Parameter z is an index of the system’s heterogeneity. The system is perceived to be heterogeneous as z 

diverges from unity [51]. The Toth isotherm constants are presented in Table 3. The magnitude of z (0.014) 

was far below unity signifying a heterogeneous adsorption system as predicted by the Sips isotherm. The 

high coefficient of determination (R2) value (0.953) indicate the Toth model best fits the experimental 

data relative to the other models.  

 

3.6.4 Koble-Corrigan isotherm 

The Koble-Corrigan isotherm [52] integrates the Langmuir and Freundlich constants and describes 

heterogeneous adsorption. The model is computed as: 

K

K

n

e

n

e
e

BC
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q

+
=

1
                     (16) 

where 𝐴, 𝐵, and nK are Koble-Corrigen isotherm constants. In this study, this isotherm was associated 

with a low R2 value (0.708) with an nK constant value of 4.455, greater than unity. Contrarily, Hossain et 

al. [51] reported the uptake of Cu ions onto palm oil fruit shells with nK values below 1. When the factor 

nK is less than 1, the system is said to be heterogeneous [52]. The value reported in this work correspond 

to homogeneous adsorption surface. Elsewhere, Saadi et al. [53] argued that the Kolbe-Corrigan model 

should be accepted as long as nK > 1, as in this study. Nevertheless, the low R2 value reveals the 

inapplicability of the Kolbe-Corrigan equation.  

 

3.6.5 Redlich-Peterson isotherm 

The Redlich-Peterson isotherm [54] similarly integrates the Langmuir and the Freundlich isotherm 

constants, and allows for both homogeneous and heterogeneous adsorption processes. The isotherm is 

defined as follows: 

g

eR

eR
e

Ca

CK
q

+
=

1
                   (17) 

where KR (L/g) and aR (mg L-1)−g are the Redlich–Peterson constants and g (dimensionless) is a factor 

whose magnitude lies between 0 and 1 for heterogeneous sorption [55]. The equation is reduced to the 

Langmuir model for g=1 and to Henry's law for g=0. In this study, the Redlich-Peterson isotherm posted 

a relatively high R2 value (0.948), implying its suitability to describe the experimental data. The calculated 

g value of zero (0) indicates the system reduces to Henry’s law and assumes heterogeneity of the sorption 

system [55]. However, despite the high R2 value, the extremely low predicted maximum adsorption 

capacity (1.053 mg g-1) incoherent with the equilibrium data denotes the unsuitability of the Redlich–

Peterson model to describe copper uptake onto FSB. Contrarily, the model was reported as applicable for 

copper sorption onto palm oil fruit shells [51].  
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Conclusion 

Tilapia (Oreochromis niloticus) fish scales, an abundant, unutilized waste, were used as a precursor for 

the development of biochar (FSB) by slow pyrolysis at 600 oC. The synthesized FSB was used as a sorbent 

to abstract copper ions, a typical toxic heavy metal, from aqueous solution. The isothermal data was tested 

against two-parameter (Langmuir, Freundlich, Temkin, Elovich, Flory-Huggins, and Fowler-Guggenheim 

models) and three-parameter (Sips, Hill, Koble-Corrigan, Toth, and Redlich-Peterson) adsorption 

isotherms. The equilibrium data were best explained by the Langmuir isotherm denoting monolayer 

adsorption of Cu(II) ions onto FSB with a maximum adsorption capacity of 39.39 mg/g. 
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