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Chapter O

Introduction

Nonlinear theories, started in the 1960’s, provided for the first time in the literature
global generalized solutions for arbitrary continuous nonlinear partial differential equa-
tions (PDEs). These theories have now been extended to Lie symmetry groups for classical
and global generalized solutions of nonlinear PDEs. My work in this thesis is on stability
analysts of Lie groups of nonlinear PDEs.

Nonlinear algebraic theory of generalized solutions for large classes of nonlinear PDEs was
originated by Elemér E. Rosinger! who published the first two papers on the subject in
1966 and 1968. He has since developed the theory further, culminating in the publication
of four research monographs (1978, 1980, 1984, 1990). In these monographs the algebraic
theory, complete with applications in the study of nonlinear PDEs, is well presented.
Some of the major results obtained by Rosinger in this line of research include:

- the solution of the celebrated 1954 impossibilty result of L. Schwartz? regarding the
multiplication of distributions (1966);

- the characterization of all possible nonlinear algebraic theories of generalized
functions (1980);

- the global solution of arbitrary nonlinear analytic PDEs (1987);

- the algebraic characterization of the solvability of large classes of nonlinear PDEs
(1990).

J.F. Colombeau®* of Lions, France, is the other main protagonist of this field. He inde-
pendently developed an algebraic nonlinear theory of generalized functions, first published
in 1984. Although Colombeau’s theory is considered to be the most complete, very pow-
erful and so far the most widely studied of the various possible algebraic methods, it is
of narrower applicability due to the fact that it is merely a particular case of the whole
class of such possible theories already developed fully and characterized completely by
Rosinger in 1980 (see Colombeau’s review in Bull. AMS vol. 20, no. 1, January 1989, pp.
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96 — 101). A detailed account of Colombeau’s version of the theory is given in his two
research monographs of 1984 and 1985.

Of late there have been several other researchers, mostly from Europe and Brazil, in this
field. But most of them tend to develop either Rosinger’s or Colombeau’s theory.

Lie group analysis is a mathematical theory that synthesizes symmetry of differen-
tial equations. This theory was originated by a great Norwegian mathematician of the
nineteenth century called Sophus Lie® (1842 — 1899). In his work published in 1884, Lie
pioneered the use of continuous groups of transformations — called Lie groups — in the
study of symmetry properties of differential equations with a view to their solutions. Lie
discovered that the known ad hoc methods of integration of differential equations could
easily be derived by his theory of continuous groups. He further, among other things,
gave a classification of differential equations in terms of their symmetry groups, thereby
identifying the set of equations which could be integrated or reduced to lower-order equa-
tions by group theoretic arguments. Lie’s basic idea was to find all the Lie groups for a
given PDE such that any solution of this PDE is transformed into another solution by
the coordinate transforms of the respective Lie groups; i.e., all the groups with respect
to which the set of solutions of the PDE is invariant. The procedure for determining the
Lie groups admitted by any given family of differential equations is discussed in detail in
Chapter 1.

A symmetry group transforms any solution of the equation in question to another solution
of the same equation. Thus from a symmetry group of any given system of equations it is
possible to construct nontrivial solutions from the known ones. If a group transformation
maps a solution into itself, we arrive at what is called a group invariant solution. The
process of looking for this type of solution reduces the number of independent variables of
the equation in question by one. This process can be repeated until the equation can be
solved by integration. If the solution is invariant under a one-parameter group, then the
differential equation is reduced to an ordinary differential equation. A multi-parameter
group results in the reduction of the differential equation to an algebraic relation. This
is well known in the literature (see sources in Chapter 1).

Lie symmetry groups for classical solutions of nonlinear PDEs can be extended to sym-
metry groups for global generalized solutions. Nonlinear Lie group theory for global
generalized solutions of nonlinear PDEs was started by Rosinger in 1992. In collaboration
with Michael Oberguggenberger® of Innsbruck, Austria, they have published a research
monograph (1994) on the solution of continuous nonlinear PDEs through order com-
pletion. The Group Invariance of such global solutions has been the object of two recent
doctoral theses in this department (Y.E. Walus” and M. Rudolph®, both supervised by
E.E. Rosinger, 1993). M. Kunzinger® of the University of Vienna, Austria, has recently
studied Lie transformation groups in Colombeau Algebras for his doctorate un-
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der the supervision of M. Oberguggenberger (1996). So far, some of the major results
obtained by Rosinger and his collaborates are:

- the first nonlinear Lie group theory of global generalized solutions of nonlinear PDEs;
- three solutions to Hilbert’s fifftth problem considered in its full generality;

- the first solution of the 1957 H. Lewy problem on the solvability of smooth
PDEs.

Independently, in Russia, N.Kh. Ibragimov'® and his collaborators have recently developed
a theory which amounts to the study of stability of Lie groups associated with nonlinear
PDEs. Their paper, titled Approzimate Lie Groups (1989) is the first in this line of
research. Ibragimov was a student L.V. Ovsyannikov who had mentioned the possibility
of such a theory in the early 1960’s, but nobody took it up. Lie symmetry group analysis
is very useful in determining all the nonlinear solutions of a given differential equation.
Unfortunately, any small perturbation of an equation disturbs the group admitted by
it, and this in effect reduces the practical use of symmetry group analysis. It was this
realization that motivated the Russian group into developing group analysis methods of
differential equations with a small perturbation (¢). The theory, however, is valid even for
large parameters (¢) and this makes the term “approximate” appear somewhat unsuitable.
We have therefore given it a more appropriate name, stability of Lie groups, which is the
subject of study in this thesis. In particular, we aim to find stability of Lie groups of the
perturbed nonlinear wave equation

Ut + euy = [f(z, w)ugls.

The choice of the perturbation euy(t,z) is natural. In an equation of the type studied,
the function u(t,z) usually denotes the displacement of the object, here one-dimensional,
which occurs at time ¢ and spatial coordinate z. In this case, u;(¢,z) is the local velocity
of the object and a perturbation of the form eu,(t, z) is the usual model of friction. Hence
this perturbation is of particular practical importance, since the inclusion of friction is a
realistic necessity in various applied problems; the case ¢ = 0 corresponds to frictionless
motion.

Chapter 1 contains the general concepts of Lie groups. This is presented in a self-contained
manner as it forms an integral background reading for this thesis. The determination of
Lie groups admitted by a given PDE is not triavial, so we have included in this chapter
many examples and illustrations.

In Chapter 2, the theory of stability of Lie groups is discussed in detail. An algorithm for
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constructing an approximate group for a given PDE is presented.

The exact Lie groups for the unperturbed and perturbed nonlinear wave equations
ue = [f(z, w)us]s

and
u + euy = [f(z, U)Ug )y

are discussed in Chapter 3. Although properties of Lie groups of the unperturbed non-
linear wave equation had been studied by Torrisi and Valenti (see [3] in Chapter 3), we
show that the assumption they made when solving for the infinitesimals were unnecessary
since the conditions present themselves naturally. The exact Lie groups for the perturbed
nonlinear wave equation is presented here for the first time.

Lastly, in Chapter 4 we present a general criterion for approximate invariance. The con-
cept is then used to find the Stability Groups for the perturbed nonlinear wave equations.
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Chapter 1

Lie Groups — General Concepts

Sources [1] George W. Bluman and Sekeyuki Kumei, Symmetries and Differential
Fquations, Springer-Verlag, New York, 1989.
[2] Peter J. Olver, Applications of Lie Groups to Differential Fquations,
Springer-Verlag, New York, 1986.
[3] Joseph J. Rotman, The Theory of Groups, Allyn and Bacon, 1973.

This chapter will serve as a short introduction to the theory of Lie groups which is useful
in order to set up the notation employed in the sequel. Section 1.1 deals with the concept
of Lie groups of transformations. Section 1.2 introduces the idea of infinitesimal trans-
formations. Extended transformations (prolongations) are discussed in Section 1.3. In
Section 1.4 some applications of Lie Groups of Transformations to the solution of partial
differential equations are discussed.

1.1 Lie Groups of Transformations

First we give the standard definition of a group then discuss the Lie groups of transfor-
mations.

Definition 1.1-1

A group G is a set of elements with a law of composition ¢ between elements satisfying
the following axioms:

(1) closure property: Va,be G, ¢(a,b) € G.
(i) associative property: Va,b,c € G, é(a,¢(b,c)) = ¢(¢(a,b),c).

7
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(iii) identity element: 3! identity element e € G such that Va € G,
é(a,e) = ¢(e,a) = a.

(iv) inverse element: Va € G, 3! inverse element a™! € G such that ¢(a,a7!) =

da,a) = e.

Definition 1.1-2

A subgroup of G is a group formed by a subset of elements of G with the same law of
composition ¢. |

Definition 1.1-3
Let z = (21, 22,...,2,) liein a region D C R. Consider the set of transformations
z* = X(z,€) (1.1)

defined for each z € D, depending on parameter €, where e € S C R. Also let ¢(¢, §) define

a law of composition of parameters ¢,6 € S. Then (1.1) forms a group of transformations
on D if:

i) For each e € S, z* € D.

ili) z* = z when e = e ie. X(z,¢) = z.

(
(i1) S with ¢ forms a group G.
(
(

iv) If z* = X(z,¢) and 2™ = X(z*,6), then z** = X(z, ¢(c, 6)).

This definition is illustrated in the diagram below.

€ )
| HI. !
7 2 = Xl(eE ** =X(z",0)
| e T =X(2,4(¢,9))
¢(e,9)

Here the transformation from z to z* via ¢, then from z* to z** via d is equivalent to a
single transformation from z to =™ via ¢(e, 9).
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The concept of one-parameter Lie group of transformations is introduced formally in the
following definition:

Definition 1.1-4

Let (1.1) in Definition 1.1-3 form a group of transformations on D. Then (1.1) defines a
one-parameter (€) Lie group of transformations if:

(v) € is a continuous parameter i.e. ¢ € S where S is an interval in R.
(vi) X is infinitely differentiable with respect to z in D and € in S.

(vil) ¢(€,d) is C*®-continuous.

O
This concept is illustrated in the next four examples.
Example 1.1-1
Show that the transformation
TT=z+t¢ (1.2)

defines a Lie group of transformations.

We note here that

D=R and S=R,

so that the operation

X: DxS§ — D
(z, € — z*=X(z,¢)
now becomes
X: RxR — R
(z,€) +— z* =X(z,e)=z+¢
(z,0) +— z* =X(z,0)==z
(z*,0) — z** =X(z50)=z+¢€e+¢
= X(z,4(¢,6)) =z + (e + 6)

It can be seen clearly that all the conditions (i) — (vii) in definition 1.1-4 are satisfied,
with the identity element e = 0 and ¢(¢,0) = €+ .
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Example 1.1-2

The transformations

= g+
. oy (1.3)
¥y = -

define a Lie group of transformations.

With D = R? and S = R we have the operation

X: R*xR — R?

(z,9),6) — (a%y") = (z + 6 —>

T+ €

)

This can be illustrated further as in the diagram below.

o B o = SH zY
V' T T ¥s T zdets z + ¢(e, 9)

™ = 46 = z4+e+d = z+é(e)
zte

¢(e,0) = e+

With ¢(e,8) = ¢+ and e = 0 it is easy to show that the conditions (i) — (vii) are
satisfied. In particular we see that

Ve,ye D=R?> and Vec S =R,

™ = z+¢(,0) = X(z,¢(¢,6)) and

R 4
VTS T Y (y, ¢(e,9)).

Example 1.1-3

Consider a group of scalings in the plane:

T = er;
*

(1.4)
y* = €y, 0<e<oo, (z,y)€RL }

Here ¢(c,8) = €d, the identity element e = 1 and we have another example of a one-
parameter Lie group of transformations.
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Next is a group of transformations which does not define a Lie group of transformations.

Example 1.1-4

A family of transformations

*

¥ = T ey,
x*

1.5
y* = y+ex, e€€R, (x,y)€R2,} ( )

does not correspond to a Lie group of transformations, since the condition (iv) is not
satisfied:

™ = X(z",0) # X(z, ¢(c, 9)).
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1.2 Infinitesimal Transformations

Let (1.1) be a one-parameter (€) Lie group of transformations with identity ¢ = 0 and law
of composition ¢. The Taylor expansion of (1.1) about € = 0 gives

. _ 0X(z,¢€) e (0?°X(z,¢)
r = X($7€>—X($,0)+E<T|e=0>+‘2—<T |e=0>+-~~

= z+e¢ (gi%(—fﬁ |e=o> +0(¢?). (1.6)

If we further let

then (1.6) becomes

z* =z + ef(z) + 0(e?) (1.7)

and the following definition follows.

Definition 1.2-1

The transformation z + €£(z) in (1.7) is called the infinitesimal transformation of the
one-parameter Lie group of transformations (1.1). The components of £(z) are called the
infinitesimals of (1.1). a

We wish to remark here that since (1.1) is a one-parameter Lie group of transformations
and by Lie’s First Fundamental Theorem 1.2-1, the Taylor expansion in (1.7) is completely
determined by only having the infinitesimal transformation

" = z + e(z).
a

The example below illustrates how to get the infinitesimals £(z) of a given group of trans-
formations.

Example 1.2-1

For the group of scalings
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we see that

X((z,y),6) = (&5 y") = (L + )z, (1 + €)%y)

and the corresponding infinitesimal is

{(z,y) = BX—((;j;y)—,é) le=0 = Q(‘%‘ﬂ |e=0
= (2,2(1 4+ €)y) le=o
= (z,2y). (1.9)

It is important to note that although the infinitesimal £(z,y) appears to be relatively
simpler, i.e. it is not a function of ¢, it is the same infinitesimal, see (1.9), which contains
the essential information determining the group of transformations as in (1.8).

The process of getting (1.9) from (1.8) is quite easy. What is not obvious is how to get
(1.8) from (1.9). This will be discussed in its full generality later in the chapter.

The next theorem is known as the First Fundamental Theorem of Lie. We shall state it
without proof, see [1] for proof.

Theorem 1.2-1

There exists a parameterization 7(e) such that the Lie group of transformation (1.1) is
equivalent to the solution of the initial value problem (IVP) for the first order differential
equations

= {(z7) (1.10)
with
"= F “wbeir’ T =0,
In particular
r(e) = /0 I()de, (1.11)

where

and
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[{0) =.
[e7! denotes the inverse element to e ' ]
Example 1.2-2
Consider the initial value problem
19 ey =20 (1.12)
with z* =z when €¢=0. (1.13)

The above theorem says that we can find a paramterization 7(€) such that the solution
of (1.12) is (1.1). To see this we need to solve (1.12) with (1.13), i.e.

d *
Idié) = (e
where z* = (23,23,...,;) and z*(0) = z.
dz]
dcl g
= 7 = €em
zr = €y
Thus
z* = X(z,€) =¢. (1.14)

Clearly, there exists a parameterization 7(€) = e° such that (1.14) is the solution of (1.12).

Example 1.2-3

It is easy to see that the group of translations in the plane

*

¥ = x+¢€
: 1.15
y =Y } ( )

is the solution of the Initial Value Problem (IVP)
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d * d *
=1, X o_g
de de (1.16)

with z*=2z, y*=y when e=0.

Remark 1.2-1

Arising from Theorem 1.2-1, from now on, without loss of generality, we assume that
a one-parameter (¢) Lie group of transformations is parameterized such that its law of
composition ¢(a,b) = a + b so that €' = —e and € = 0 is the neutral element. Thus
in terms of its infinitesimals £(z), the one-parameter Lie group of transformations (1.1)
becomes

de (1.17)
with z"=z at e=0.
a

Definition 1.2-2

The infinitesimal generator of the one-parameter group of transformations (1.1) is the
operator

V=V(@) = &)V
_ 5()(815?__83_)

n

where 7 is the gradient operator

For a differentiable function

we have
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The concept of infinitesimal generator may be used to find the explicit solution of IVP
(1.12). This follows from the theorem below.

Theorem 1.2-2

The one-parameter Lie group of transformations (1.1) is equivalent to

* = ez =X(z,¢)

2
= z4+eVz + %sz + 0(*)z
2!
= [14+eV+ %VZ + 0(e))]z
€ vk
= . Xtk (1.19)
where the operator V' = V/(z) is defined by (1.13) and

VE=VvVFl k=1,2,...

with Voz = z. 0
For proof, see Bluman and Kumei [1].
The transformation (1.19) above is called a Lie Series.

The summary below illustrates the connection between a Lie group, its infinitesimal trans-
formations and its infinitesimal generator.

Start with a Lie Group

X:DxR — D, DCR"
(z,6) — z*= X(z,¢)

and

(i) X(z,0) =z Vze D,
(i) X(X(z,¢€),0 = X(z,e+9), Vz € D, ¢,6 € R.

whose infinitesimal transformation can be found as

E:D — R
} N3

R X 0X(z,€)

g e
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Then for a differentiable function F(z) = F(z1,z2,...,2Zn),

F:D — R™

N3 }
T > F(-T) = (F1($)7F2(l‘)7' s .,Fn(l')),

we have the infinitesimal generator of the group
V: DxC®D,R™) — R™

1 i I . o
G P VAR = DaE

1221

(1.20)

~—

O

The example below illustrates how to find explicitly a one-parameter Lie group of trans-
formation from its infinitesimal transformation.

Example 1.2-4

Find explicitly a one-parameter Lie group of transformations whose infinitesimal generator
is

0 0
=Y— — T

0z Oy’

By Theorem 1.2-2, the one-parameter Lie groups will be of the form

* = 6k k
o= ZEV %y

k=0 """

- (1.21)
y. o= Zavky-

k=0

Let the infinitesimal for (1.21) be

6(7") = (é.l(x,y)’§2($’y)) = (5(55,3/),77(1,3/))-
From (1.15) it is clear that

{(z,y) =y and n(z,y)=—=z.

We now need to find V*z and V*y, k =1,2,.... It can easily be established that

Vitg =z, V¥ g = —y, V" 22 = —z, V" 3z =y, n=12,... (1.22)
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Vity=y, V¥ ly=2, V" 2y =y V" 3y=—2z,n=12,... (1.23)

From (1.22) and (1.21);, we have

ooék
. _ €k
¥ = kz—;)k!\/x

e ¢ e €

= rcose+ ysine.

Similarly from (1.23) and (1.21), we have

%

y* = —rsine€-+ ycose.
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1.3 Extended Transformations (Prolongations)

Lie groups, and hence their infinitesimal generators, can be naturally extended or ”pro-
longed” to act not only on the space of independent and dependent variables but also
derivatives of the dependent variables up to any finite order.

In this section we consider separately, the cases of prolongations of Lie groups of trans-
formations with one independent variable z and one dependent variably y; and that of
Lie groups of transformations with n independent variables z = (zy,z,,...,,) and one
dependent variable u, where u = u(z). Key results will be stated for cases of m dependent
variables, where m > 2.

1.3.1 One dependent and one independent variable

In studying the invariance of a k—th order ordinary differential equation, with z and y as
independent and dependent variables respectively, we will aim to find one-parameter Lie
groups of transformations admitted by the ODE. Such groups of transformations will be
of the form

(1.24)

Let

d*y
=— k=12,....
Yk dz*’ §iay
The task here is extending the transformations (1.24) acting on the (z,y)-space to the
(z,9,Y1,---,yx)-space. To do this we first demand that (1.24) preserve the contact con-
ditions relating the differentials dz, dy, dys, . . ., dyg, 1.e.

dy = wydz,
dyl == de.’I:,
dyr = Ykp1dz. (1.25)

Under the action of the group (1.24) the transformed derivatives are defined by
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dy* = yjdz”

dyy = Ygpdz”. (1.26)

Using (1.25) and (1.26) it is easy to show that in particular,

Y (z,¢€) Y (z,¢)
+u
= Yol ) =4 Oz Jy
Y1 1\, Y, Y15 aX(:E,E) OX(x,e) :
+ Y
Oz dy

(1.27)

The result in (1.27) is formulated in the following theorem.

Theorem 1.3-1

The Lie group of transformations (1.24) acting on (z,y)-space extends to the following
one-parameter Lie group of transformations acting on (z,y, y;)-space:

2 = X(z,y;¢),
v = Y(z,y;¢), (1.28)
y; = Yi(z,y,y156),

where Y] (z,y,y1;¢€) is given by (1.27). O

The next two theorems are useful in finding the second, and in general, k-th extensions
of (1.24) with k£ > 2.

Theorem 1.3-2

The Lie group of transformations (1.24) extends to its second extension which is the
following one-parameter Lie group of transformations acting on (z,y, y1, y2)-space:

z* = X{muy;e),
Y Y(z,y;¢),
e v =t BBy, ¢

0Y1+ ('3Y1+ oY
3z 1oy T oy, (1.29)

Y; = Ya(z,y,y1,y25€) = 09X (z, ¢) 0X(z,¢€)’
— 4y :
Oz Ay
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where Y; = Yi(z,y,y1; €) as defined in (1.27). 0

Theorem 1.3-3

The Lie group of transformations (1.24) extends to its k-th extension, k£ > 2, which is the
following one-parameter Lie group of transformations acting on (z,y, y1,y2, .. ., yx)-space:

g* = X{g,u5e);

y = Y(z,y;¢),
y; S K(xay7y1; 6)7
Y- 0Y— 0Y—
ki 6’;1 +--‘+ykayk -
B - k-1
Ve = Ye(z, 9,915+ - Ui €) = X (z,€) R 09X (z,€) : (1.30)
9z ' oy
_ O
Now we consider the following example of prolongations.
Example 1.3-1
A scaling group
g = X(ov,y €= e,
(1.31)
y* = Y(z,y;¢) = ey, |

has as its first extension

.____+y1.____.
© gy 0 gy - 4
y1——Y1($7y,y1,6)—8X—ay—€y1
PR

and the second extension as, see (1.29),

v ¢ oY1

oz "oy T V5y _
Yo = YZ(xhy:yl)y?; 6) e aX aX = Ya2-
9z oy

By (1.30) the k-th extension is

yi =Yz, y,y1, v, e) =Py =12,k (1.32)
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By definition 1.1-4, the k-th prolongation (1.32) is also a Lie group of transformations.

To verify this we observe that

Yile,u50) =,

Yi(Yi(z,y55€); 8) = Yalw!; 8) = €04y, = Yi(z, ¢ + 6), ...

and all the other conditions of Definition 1.1-4 are satisfied. Thus the study of extended
Lie groups of transformations reduces to the study of infinitesimal transformations. Con-
sequently we need to determine an explicit algorithm to find extended infinitesimal trans-

formations and the corresponding infinitesimal generators.

We consider the one-parameter Lie group of transformations

z* = X(z,y;¢) =z + eb(z,y) + 0(?), }
y* = Y(z,y5¢) =y +en(z,y) + 0(¢?

p

)

whose infinitesimal is

§(z) = (£(z,y), (2, 9)),
with corresponding infinitesimal generator
0 0
V= f(x, y)_a—; + Tl(may)gg-
The k-th extension of (1.33) is given by

z* = X(z,y;¢) =z + €f(z,y) + 0(c?), ‘
y* = Y(z,y;¢) =y +en(z,y) + 0(e?),

vi = Yi(z,y,u56) = v+ en®(z,y,y1) + 0(),

y; = 1/k<xay’yla-'-7yk;6):yk+€77(k)('r7y7yl7"'7yk)+O(€2)'

The k-th extended infinitesimal of (1.34) will be

(‘S(xay)777<$7y)777(1)(x7y7y1)7 ek 777(k)(957y,y1> . -ayk))a

with corresponding k-th extended infinitesimal generator

(1.33)

(1.34)

(1.35)

(1.36)
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o)

0 0
v = E(I,y)a—x + U(x,y)a—y + n(l)(x,y,w)é; +c 5
0

+n(k)($7y7y17"-)yk)‘a_, k:].,?,
Yk

We use the next theorem to evaluate 7](1), 77(2), .. ,77(1‘).

Theorem 1.3-4

Dnlt-1) D{(z,y)
(k) _ = _ Y =19
n (xayayla"'7yk) ;i Yk T ) y Ly e (137)

where 7(®) = 5(z,y) and the total derivative operator

D_8 0 0 L0 -
Dz Oz ylay y28y1 yn+13yn )
£l
We now find the extended infinitesimal in the next example.
Example 1.3-2
The rotation group
z* = X(z,y;€) =zcose+ ysine,
(1.39)
v = Y(z,y;€e) = —zsine+ ycose,
whose infinitesimal
6(27) == (E(IE, y)v 77(1"’ y)) = (y) _$)7
has its first extension as
i =Yi(z,y,y15€) = y1 + enV(z,y, 1) (1.40)

Using (1.37) and (1.38) we have

13770 D¢(z,y)
n (xvyvyl) A Y1 D

= —1-y
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Thus (1.40) now becomes

yi =y +e(—1—y)).

Similarly
) D Dé(z,y)
2.7 "pg T Dzx
o o o [0E(ey) | 0E(s,y)
Oz 0 oy T oy = 0z tu Jdy
= y2 — 3ey1ye.

24

a

The case of extended transformations and infinitesimal transformations involving one
dependent and n independent variables is considered next.

1.3.2 One dependent and n independent variables

In the case of n independent variables, the one-parameter group of transformations (1.33)

takes the form

i=12....n

= Xi(z,uje) =z + ebi(z, u) 4 0(?), }

= Ulz,u;€) = u+ en(z,u) +0(e?),

The infinitesimal generator in this case is

0
V = &z, u) 4 + n(x,u)—az

axi

and the k-th extension of (1.41) is given by

Xi(z,u;€) = z; + €&i(z,u) + 0(€?),
U(x,u; 6) e s CTI(%U) + 0(62)7
Ui(z,u,u;€) = u; + en(z,u,u1) + 0(€2),

Uiliz...ik(l') Uy Uy, Uy - - 7Uk)

Uiyig..ix T enz(fi)g...ik(x’ Uy Uyy .-y uk) + 0(62))

(1.41)
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where

t = 1,2,00..7

By, = L0 for X=1,2,.:5k
ou Ou ou

uy = 3 P )
811 81'2 8(17n

0*u
= 1<:1<1<L
2 <6a:i6:cj l =8 __TL),

ur = the set of coordinates corresponding to all k-th order
partial derivatives of u w.r.t. z.

The k-th extension of the infinitesimal is
(f(m,u),n(l)(x, Uy Up)y .- ey n(k)(m, Uy Uy ...y Uk)),

and the corresponding k-th extended infinitesimal generator is

0 0 0
(k) — ¢ 9 (1)
V &(x7u)8g;i+n(x’u)au+n1 (I,U,UI)BUi +
® _ 0
+T]21’L2...2k 8“ b k 1,2, PR

i1ig.ik
The theorem below gives explicit formulae for the extended infinitesimals.

Theorem 1.3-5

ﬁl(l) = Din—(D,,fj)Uj, 7 = 1,2,...,71,
o o | (1.43)
T]iliQ...ik = Diknilig...ik_l = (Dikf]')UiliT“ik—l]’
where
tx =12 ... mn for A3=21L2 ...,k with k=2,8,...;
and |
D 0 0
T 9 9

- = o AR T e Fidsein o T evey 1= 1,2,...,m.
Dz; Bxi+u8u+ujé’uj+ i B ”5Ui1i2...z‘n+
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We remark here that the concept of transformations and extended infinitesimal trans-
formations can easily be further extended to the situation of m dependent variables
u = (ul,u?,...,u™) and n independent variables ¢ = (z1,z9,...,2,) where u = u(z)
and m > 2.

Details can be found in Bluman and Kumei [1] and P. J. Olver [2].
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1.4 Applications of Lie Groups to the Solutions of
Partial Differential Equations

Lie pioneered the use of continuous groups of transformations in the study of symmetry
properties of ODEs and PDEs with a view to their solutions. The basic idea in Lie’s
theory is to find groups whose elements transform solutions of a system of differential
equations to other solutions of the system. Such are groups with respect to which the set
of solutions of the system is invariant. We present, in this section, a brief summary of
how to find a one-parameter Lie group of transformations admitted by Partial Differential
Equations. For details see [1] and [2].

First we give the following definitions of invariant functions and invariant surfaces then
state, without proofs, related theorems. From now on we make the assumption:

Flg) = Flay.-3%)

is infinitely differentiable.
Definition 1.4-3

A curve F(z,y) = 0 is an invariant curve for (1.33) iff

F(z*,y")=0 when F(z,y)=0.
a
The next two theorems give the definitions of invariant curves and surfaces in relation to
a given infinitesimal generator.

Theorérn 1.4-1

A surface written in a solved form F(z) = z, — f(z1,22,...,Z,-1) = 0 is an invariant
surface for (1.33) with (1.35) iff

VF(z)=0 when F(z)=0. (1.44)
O
Theorem 1.4-2

A curve written in a solved form F(z,y) =y — f(z) = 0, is an invariant curve for (1.33)

iff

VF(z,y) =n(z,y) - (z,y)f'(z) =0 } (1.45)

when F(z,y)=y— f(z) =0,
ie. iff
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77(1'? f(.’L‘)) - §($, f(ﬂ?)f’((t)) =0.
O
Definition 1.4-1

A function F(z) is an invariant function of the Lie group of transformations (1.1) iff for
any group transformation (1.1)

Definition 1.4-2
A surface F(z) = 0 is an invariant surface for (1.1) iff F(z*) = 0 when F(z) = 0. m]

Definition 1.4-3

A curve F(z,y) = 0 is an invariant curve for a one-parameter Lie group of transformations

(1.33) iff

F(z*,y*)=0 when F(z,y)=0.
a

As a result of Theorems 1.4-1 and 1.4-2 we can find the invariant surface of a given Lie
group of transformations by solving (1.44). This is illustrated in the example below.

Example 1.4-1

Consider the scaling group

T = e,
(1.46)
y© = €%,
whose infinitesimal generator is

0 0

Aray y— Az =0, z >0, A\ = constant, is an invariant curve for (1.46) since

Viy—Az)=y—Az=0 when y—Az=0.

But a parabola
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y — Az =0, X = constant,

is not an invariant curve for (1.46) since

V(iy—Xdz?) =y —2)22#0 when y—Az?=0.

We now introduce the notion of the invariance of a PDE. Let a k-th order PDE be
represented by

F(z,u,up,ug,...,ux) =0, (1.47)

where z = (21, 23,...,z,) denotes n independent variables, u; denotes the set of coordi-
nates corresponding to all j-th order partial derivatives of u w.r.t. z. Thus

B Ou Ou ou
= 0z,  0z3" 0z, )’

0%u o
uy = (8:1:1-8:%-[ 1§z§J§n),

<'8ju
Up =

1;=1,2,...,n
e 1.4
8$ilaa¢,‘2 SCC al'ij ) ’ ( 8)

i=1,2,...k

Bith ¢; =1,2,....nfor i =1,2,.... &
It is worth pointing out that in terms of the coordinates
T, U, Up, U,y - - -, Uk

equation (1.47) becomes an algebraic equation which defines a hypersurface in

(z,u,ur, ug,...,ux) — space.

The definition of the invariance of a PDE (1.47) follows. We assume that the PDE (1.47)

can be written in solved form in terms of some A-th order partial derivative of u as:

F(z,u,uy,ug, ..., Uk) = Uiyiy. iy — F(Ty Uy UL, U2y ...y ug) =0 (1.49)

where f(z,u,u1,usy,...,ux) does not depend on u;, i, i, -
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Definition 1.4-4

The one-parameter Lie group of transformations

- X(x,u;e),}

v = Uz, we),

30

(1.50)

leaves PDE (1.47) invariant iff its k-th extension, defined by (1.41) and (1.42), leaves the

surface (1.47) invariant.

It is generally known, see Bluman and Kumei [1], that for any solution
y = 0(z)
of PDE (1.47), the equation

(z,u,ur, Usy. .., ux) = (z,0(z),0:(z),02(x), ..., 0k(z))

defines a solution surface which lies on the surface (1.47).

The theorem below gives the infinitesimal criterion for invariance of a PDE.

Theorem 1.4-3
Let the infinitesimal generator of (1.50) be

0 0
V = tilo, w5+ (w5

and let the k-th extended infinitesimal generator of (1.51) be

9 0 4
VO = &(o,u)z+a(e,u)g +ni )z v )+
() 9
+ n1112~--lk(x’ U, U1, Uz, -+ -5 Uk)auiliz...ik ,

where 771(1) and 771(1]321

(& (z,u), &a(z,u),. .., &z, u))].
Then (1.50) is admitted by PDE (1.47) if and only if

V(k)F(;z,u,ul,uz, ...ou;) =0 when F(z,u,uy,...,ux)=0.

(1.51)

. are given by (1.43) in terms of (é(z,u),n(z,u)). [€(z,u) denotes

(1.52)
O
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The next example (1.4-2) illustrates how to find the Lie groups of transformations admit-
ted by Partial Differential Equations.

Example 1.4-2
Let us now find the Lie groups of transformations admitted by the PDE

Ut = [f(u)uz]zy (153)
where u = u(t,z), f: R—R, f€ €% P48, f>0.
This example has been discussed in detail in [2]. Equation (1.53) can be written as
uy = f(u)ul + f(u)uze. (1.54)

Using the notations u; = uy, Uy = ug, Uy = U1, Utz = Ugt = Uz, Uggy = Uge and f(u) = f
(1.54) now becomes

urr = f'(u2)® + fuss. (1.55)
The required Lie groups of transformations will be of the form
t*=T(,z,u;¢), z*=X(,z,u;¢), u* =U(t z, u;¢), (1.56)
with the corresponding infinitesimals

0T (t,z,u,¢€)
Oe

0X(t,z,u,e€)
Oe

oU(t,z,u,¢€)

é‘(t’;z,-,u) = ) U(t>$au) = Oe

Bk, 5,4) =

=0’ £z e=0"

Prolongations of (1.56) with n = 2 will be of the form

u){ = Ul(tvxau7u17u2a6)7

u; = Ug(t,x,u,ul,uz,c),

uy; = Unl(t,z,u,w, ug, un, tiz, U, €),
U’{Q = fn( ...... ), .
U;2 = U22( ...... )

The infinitesimal generator of (1.56) is

0 0 d
V= f(t,x,u)zﬁ - H(t,x,u)é; + n(t,x,u)a—u

with the once and twice extended generators respectively as
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0 0
V(l) — V+T]§1)(t,z,u,u1,uQ)a—m +7]£1)( ...... )—auz
and
0 5}
V(Z) = V(l) +ngi)(t7m7u7ul7u27ull7u12’u22) +7]§§)( """ )
Buu 3“12
(... ) 0
22 6U22’

where nil),nél),nﬁ) and ngg) are known functions of the derivatives of £,0,n and the
Uy, Uz, Ur1, U1z and ugs.

From (1.55)
F=uy - fl(u2)2 it fU22-

By Theorem 1.4-3

VOF = V@(uy; — f(uy)? — fug) =0 when F =0. (1.57)

From (1.43) with z; = ¢,z = z,£ = € and &, = 0 we have

Uél) = N+ [nu - 0::]“2 . "Srul - Hu(u2)2 kN éuuluz’

779 = Np+ [277tu - ft?]ul — Oruy + [77u - 2§t]U11
«29tu12 + [’r]u2 - 2§tu](u1)2 - 29tuu1u2 — €u2 (ul)S
“9u2(u1)2u2 - 3§uulu11 — Ouuguyy — 29uu1u12,

ng) = M2+ [277ru S 9x2]u2 —&2uy + [77u - 299:]“22
—26,u12 + [Nz — 29zu](uz)2 — 26zutrug — 0,2 (u2)3
—€u2’u,1(U2)2 = 39uu2u22 - €uu1UQ2 = 2§UUQ’U12. (158)

Substituting (1.58) into (1.57) yields
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N2 — f7712 = 07 (Z)
2 +2nt — € + fér2 = 0, (11)
=26 f +2f0; — fnu — f'n— f'iu — 02 —2f0p = 0,  (is3)
2 e F 2w = 200 = 0, (iv)
T2 — 2§tu = 0, (’U)
e —2& = 0, (v1)
fl0,+2f02 — fn. = 0, (viz)
2f0, — f'n— fn. = 0, (vitr)
f&e—6: = 0, (Z:L‘)
g, = 1 (2
& = 0. (z1)
Remark 1.4-1
Since (1.58) has to be identically zero for all values of uy,uz, u11, U1z, Usze, U, u,
UqUa,. . ., all coefficients of these terms must vanish and thus we end up with equations
(1) - (xi) above. 0

We shall only compute the groups which are true for arbitrary f.

From (x) and (xi), it is obvious that

E=¢(t,z) and 0 =0(t,z).

From (iv) and (ix),

E=¢€(t) and 6 =0(z).

From (v),
Nz =0
= 1, is a function of ¢, from (vi).
= 7 is linear in u and £.
If we let
£ =cit+cy, cp,co constants, (1.59)
then for arbitrary f,
n=0. (1.60)

From (vii),
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f’eu + Qfgrz — f77u2 =0
=3 2182 =10
=% Pa=10
— 0 is also linear in z.

We can choose

6 = cqz + c5, c4,c5 constants. (1.61)
Using (1.59) — (1.61) we can now determine the functions 7', X and U in (1.56). Thus
g(t) = clt + cZ)
0(z) = czr+cs, (1.62)

n(u) = 0,

where c;, ¢2, €3, ¢4 and c5 are arbitrary constants. The infinitesimal generators

0 9
with (1.62) substituted becomes

0 0 0
Vl = 61t§+0—a_+08
ke = 0 0L 4ol 8

25t "9z " ou

(1.63)

Vs = 02 +c :1c2 + 0= 8
P ot o ou
Vi = 0—8—+Cs z -i-O2

ot Oz ou

We use the five generators Vq, Va3, V3, Vy and Vs admitted by the PDE (1.53) to find the
Lie groups of transformations admitted by (1.53).

The systems resulting from (1.63) are:

Vi itd(TE)- = gitle); £(0) =1,
dz(e) B
T = 0, SC(O) =z,
du_(c) = w(l) =u

de
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which gives the group

=%, =8 4 =i (1.64)
Similarly
Voit® = ttey, o=, u*=u,
Bitt = &, ¥ =06 W=, (1.65)
Va:t* = 5 =8 %5, - u* = u.
a

Remark 1.4-2

Since the constants ¢y, ¢, ¢4 and c5 are arbitrary the 4-parameter Lie groups of transfor-
mations (1.65) acting on (¢, z,u)-space admitted by equation (1.53) are nontrivial. O




Chapter 2

Stability of Lie Groups

Source [1] N.Kh. Ibragimov, V.A. Baikov and R.K. Gazizo, Approximate Symmetries,
Matem. Sbornik, TOM 136(178) (1988). Vip. 3 (in Russian).
English translation, Math, USSR Sbornik, Vol. 64 (1989) No. 2 (427-441).

The theory of stability of Lie Groups, the study of which this chapter is devoted to, was
started by N.Kh. Ibragimov [1] around 1988. He was a student of L.V. Ovsyannikov who
had mentioned it as early as the 1960’s. Ibragimov’s theory was developed for approximate
group analysis of differential equations with a small parameter (¢). The theory, however,
1s valid even for large parameters (¢€), and this makes the term “approximate” in the title
[1] inappropriate. This fact was noticed by E.E. Rosinger and brought to the attention
of N.Kh. Ibragimov, who concurred with the appropriateness of the new, better name
“Stability of Lie Groups” or “Stability of Symmetries”.

2.1 Introduction

Families of differential equations (depending on arbitrary parameters or functions) can be
classified according to their symmetry groups i.e. given a Lie group of transformations

o = X(2,€), 1)
where (2.1) is as in equation (1.1) of Chapter 1, we can use the infinitesimal methods to
determine which types of differential equations admit the group.

Unfortunately, any small pertubation of an equation disturbs the groups admitted by
that equation and this reduces the practical value of the equation and of group theoretic
methods in general. There is a need, therefore, to work out group analysis methods that

36
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are stable under small, or eventually, a class of more arbitrary perturbations of the dif-
ferential equations involved. This fact is illustrated in example 2.1-1 below.

Example 2.1-1

Consider the linear non-homogeneous O.D.E.

y' +p(z)y = g(2) (2.2)

which admits the one-parameter (a) Lie group of transformations

= = oz,
(2.3)
y* = y+au(z), a€R,

where u(z) is a particular solution of the associated homogeneous equation

u' + p(z)u = 0.
If we let
p(z,e) =z", z€(0,00), €€R, (2.4)
with
p(z,0)= -, (2.5)
iy
then
u(z,€) = eﬁxc/e, e+ 0,
and
i
ulz,0) = e

Putting (2.4), (2.5) into (2.2) we have the following unperturbed and perturbed equations
respectively:
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It is easy to see that the groups admitted by the unperturbed equation (2.6) are:

*

T = 3,

a (2.8)
Yy = y+;, a€R, z¢€(0,00).

and those admitted by the perturbed equation (2.7) are:

z; = =T,
. (2.9)
y* = y+ae % /6, € # 0.

Remark 2.1-1

It is worth pointing out here that the variation between groups (2.9) and (2.8) admitted
by equations (2.7) (perturbed) and (2.6) (unperturbed), respectively, is quite large despite
the fact that the perturbation may be small. To see this we observe that

. /=y as e—0

although

equation (2.7) — equation (2.6) as € — 0.

Notation 2.1-1

The following notation is used throughout this chapter and subsequent chapters, unless
otherwise stated:

PR AN

is the independent variable.
€ 1s a parameter.
0,(z,€) ‘denotes an infinitesimally small function of order €', "p >0, i.e.

0,(z,€) = 0(eP).

Assumptions 2.1-1

We make the following assumptions from now on:

(a) All functions are jointly analytic in their arguments.

(b) 3 constant ¢ > 0 such that |6,(z,€)| < c|e/P™, with ¢ independent of z and € when z
is bounded.
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(c) The approximate equality f &~ g means the equality f(z,¢) = g(z,€) + 0(¢?) for some
fixed value of p > 0.

Theorem 2.1-1

Suppose the functions f(z,¢) and f(z,¢€) are analytic in the neighbourhood of the point
(20,0) and satisfy the condition

f(z,€) = f(z,€) + 0(). (2.10)
Let z = z(t,¢) and Z = Z(t, €) be the respective solutions of the problems
dz
it = f(z,¢), Z|t=0 = a(e),
and
dz - . 3 3
T f(2,€), 2, = a&(e),
where &(0) = a(0) = 2z and
a(e) = a(e) + 0(¢),
then
Z(t,e) = 2(t,€) + 0(€P), (2.11)
i.e. Z(t,€) and z(t,€) coincide to within 0(eP). m]

We now consider the approximate Cauchy problem

&

dz
@ ~ = (2.12)

zl,.y = afe),

where (2.12) is understood to be a family of differential equations

dz % . F ~
= = [z with f(z:6) = f(z,¢), (2.13)
o = &) with a(e)~ a(d),

ie. f(z,€) = f(z,€) + 0(e?) and &(e) = a(e) + 0(e?).
By Theorem 2.1-1, the solution of the approximate Cauchy problem (2.12) coincides with
the solution of (2.13) to within 0(e?).
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2.2 One-Parameter Approximate Groups

40

The definition of one-parameter approximate groups takes the form of that of one-
parameter groups but with the exact equalities replaces by approximate equalities with

the meaning of f ~ ¢ as in Notation 2.1-1.

Definition 2.2-1

The transformations

g & flz,e0),

where
f:CVNxIxR — CN, 0eICR
(z,6,a) — 2" = f(z,¢,a),

form an approzimate one-parameter group w.r.t. a if

f(Z) 670) ~ 27

f(f(z,€a),€,b) = f(z,€,a+b),
and
flz,ea)me ¥z = g=0.

Next we give an approximate Lie Theorem.

Theorem 2.2-1

(2.14)

(2.15)

(2.16)

(2.17)

Suppose that the transformations (2.14) form an approximate group with the infinitesimal

a=0
Then the function f(z,€,a) satisfies

af(z7 6) a)

290 & €(f(2,6,0), )
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The next theorem is a converse of Theorem 2.2-1.

Theorem 2.2-2
For any (smooth) function (2, €), the solution (2.14) of the approximate Cauchy problem

dz* y
da ~ é(z 76)7
(2.18)
z"* =z
a=0

determines an approximate one-parameter group with group parameter a. O

Remark 2.2-1
Equation (2.18); will be called the approximate Lie equation.
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2.3 Constructing an Approximate Group

This section contains a brief summary of how to construct an approximate group from
a given infinitesimal generator. It is worth pointing out that by Theorem 2.2-2, it suf-
fices to solve the approximate Lie equation (2.18) since its solution (2.14) determines an
approximate one-parameter group. We show how to solve the approximate Lie equation
(2.18).

First, let us consider the case of p = 1.

The task is to find the approximate group of transformations
2" & fo(z,a) + efi(z,a) (2.19)
determined by the infinitesimal generator

V = (6o2) + cta(2)) o (2.20)

The problem restated is: Can we find (2.19) when (2.20) is known?

From (2.19) we get the corresponding approximate Lie equation

dz* d
da ~ %(fo(Z,a)-i-ﬁfl(z,a))
= &o(fo+efi)+e&i(fo+efi) +0(e).
Thus
% t f% = &o(fo+ efr) + eba(fo+efi) +0(e). (2.21)

For e = 0 we have

dfo

% = éO(fO)y
and equation (2.21) now becomes
dfy :
g —&o(fo) + bo(fo + efr) + €61 (fo + €f1) + 0(e). (2.22)

Taking the Taylor series of &(fo + €f1) and &, (fo + €f1), we write equation (2.22) in the

form
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d 1 / 21
5% — —fo(fo) + éo(fo) + 6'fofl + 6éll(fO) + € §1f1 + 0(6)7

where £ is the derivative of .

Dividing (2.23) by € gives

d
% =6h+&(fo) + e fi + @
€

Taking the limit as ¢ — 0, we have

dfy

-—dE:

& (fo) fr + & (fo)-

The initial condition (2.18), gives

f0|a=0:z7 f1|a=0:0'

From equations (2.22), (2.24) and (2.25) we have the exact Cauchy problem

dfo

da = 60(][0))
dh
da &(fo) i + &(fo),

with the initial conditions

f0|a=0:Za fl[a=0:0-

43

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

Thus by Theorem 2.2-2, to construct the approximate group (2.19), to within 0(¢) from
the given infinitesimal generator (2.20), it suffices to solve the exact Cauchy problem

(2.26).

The concept will be understood better after the following examples.

Example 2.3-1

Given that N = 1, construct an approximate group of transformations

T" R fo(a:,a) * éfl(‘r?a')

determined by the infinitesimal generator
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V=(1+ex)z. (2.28)

Comparing (2.28) and (2.20) with z = z, we have

0fo(z,a
b(r,a) = By
(9 1{Z,a
&i(z,a) = % ey e
From (2.26) and (2.27) we have
d
£ = bo(fo) =1
= fo(z,a) = a+c and by (2.25), c=z.
= fo(z,a) = a+z.

Also

i
d_]; €0(f0)f1 + fl(fo), fO!a.—:O = T f1|a=0 =0

0+&i(fo)=fo=a+z

: 1
== hlwa] = a:c+5a2.

il

Example 2.3-2

We now construct the approximate group of transformations

*

= fy(z,y,0) +efi(z,y,a),
(2.29)
v & fi(z,y,0) +efi(z,y,0),
determined by the operator
0 0
V=>01+ wZ)(?_x + emya—y (2.30)

in the (x,y)-plane.
Here N = 2, & = (1,0) and & = (22, zy). Thus
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&Gifo) = 1L &) =0,
&(fo) = (f6)* and &(f3) = fo fs.

Thus the exact Cauchy problem (2.26) now becomes

@ _ *
da
dfg
S i (2.31)
dfy 9&(fo) '
Y= By aimy=0+a() - (R
df? o0& (f3
%= Bhlpi a0+ 80 =0
with the initial conditions
f(}la:O == .T, f02la=0 = y7 fllla,:O = 0’ f12|a:0 = 0' (2'32)
Solving (2.31) we get
o = a+tu,
5 =
B
11 = axz—l—a?:c—i—?,
1
£ o= aey+iay,
Thus the approximate group of transformations (2.29) now becomes
48
Tt & m+a+e(x2a+xa2+?),
(2.33)

2

a
y + e(zya +y=).

*

y

Q

The method of constructing an approximate group to within 0(¢) (i.e. when p = 1)
discussed above may easily be extended to the case when p is arbitrary (i.e. to within
0(€?)). We only give a brief summary. See [1] for the detail.

The aim is to construct the approximate group of transformations

2" = fo(z,a) + €fi(z,a) + ... + €€ fo(2,a) (2.34)




CHAPTER 2. STABILITY OF LIE GROUPS 46

determined by the infinitesimal generator

V= 6o(2) + (2 o )]

By Theorem 2.2-2, (2.34) is determined by the corresponding approximate Lie equation

p

(fotefit...+€f)md €&(fotefi+...+€f,),

1=0

d
da

which is equivalent to solving the exact Cauchy problem

dfo

% = &(fo), (2.35)

i _ . SRR -

i = fz(f0)+z Z ;fi—j(fo)llz f(u); 1= 1)"-7pa (236)
J=1 |o|=1 7" v|=j

under the initial conditions

f0|a=0:'27 fi1a=0:07 1= 1’2a"'7p7 (237)
where
o = (01,02,...,0n) Is a multi-index,
lo| = o1+o024...+0n,
ol = oilog!...on!,
and the indices 01,09, ...,0n run from 0 to p.
v=v(o) = (v1,vs,...,vN) is a multi-index associated with the multi-index ¢ in such a

way that if the index o, in o is equal to zero, then the corresponding index v, is absent
in v, and each of the remaining indices vy takes values from oy to p; for example, for

o =(0,02,03,0,0,...,0) with 09,03 #0

we have that

= (1/2,1/3) so that Yp) = y(2,,2)yf’u3)-
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For i = 1 equation (2.36) becomes

daf 9o fo
jl“ = Z 60( )f1 + &1(fo)- (2.38)
. k=1
Remark 2.3-1
We remark here that since + = 1, we have ;7 = 1 and the first summation in (2.36)
disappears, leaving
d,
I > _fo (fo) D fuy +&(fo). (2.39)
8 e & V=1

The condition |o| = 1 implies that the possible values of ¢ are

(1,0,0,...,0), (0,1,...,0), (0,0,1,...,0),...,(0,0,...,0,1),

from whence

v=(v1,...,un) with |[v|=vr+v+...+1,=1

Thus

and

ol=oloy!...on! = 1.

It is now easy to see that (2.36) becomes (2.38) for : = 1. Similarly, for « = 2 equation
(2.36) becomes

d 0 NN 8%, o0& ( f
ﬁ—}; by is s el s B g, )

da k=1 #=1

Example 2.3-3

We construct the approximate group to within 0(e?) determined by the operator (2.30)
in Example 2.3-2.

The approximate group is of the form
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T~ fol(:v,y;a)Jr6f}(x,y;a)+62f%(w,y;a),}
(2.41)

Yy~ fi(z,y,a) +efi(z,y,a) + €f3(z,y,a).

We only need to find f} and fZ since fg, f}, f¢ and f? are known from Example 2.3-2.
Observe here that

N:27 Z:(zl7z2>:(‘r’y)’ fk:(fk{’fl?)7 k—07]‘72,

& =(1,0), & =(z*zy) and & =0 for £>2.

By (2.40),

4 U 2

da 2

52 1 2 o2} 2¢1
+2 g(fO)flfl agO(f )flfl §(f )flfl ag(f )flf1
afl(f())fl agl(f())fl +§2(f0)
- 0+0+%[0]+2f0f1+0+0
Similarly
Y R+ R (243)

The exact Cauchy problem (2.26) now becomes (2.31) and (2.42) - (2.43), with the initial
conditions (2.32) and

lela,:O = f22|a=O = 0'

Solving (2.42) and (2.43) we get

i +2 +2:ca +2xa+2a
= z°% T a —
? 3 3 3 15
4

and f7 = z’ya +2xya +25:1
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Thus (2.41) now becomes

2

3
&~ z+a+e(z’a+zat+ a—) + 2 (z%a® + -f;:alc(a4 +a®) + Eas),
; ¢ ; i (2.44)
a
y* = y—{-e(xya—l—y?)-{—e (z%ya® +6:rya —{-ﬂa ).
For further clarification of (2.36) we write out the equations for ¢ = 3 and 7 = 4:
d Noa 3 N 8
& k=1 Y% k=1 k 1
L $h o= 0%o(fo) L ¢~ = 0%61(fo)
+5k2=:1 Z} 0zk0z¢ fifi+ 5,; ; i P fifi+
1 N N N 53 fO(fO)
+§k§1 ; mzzl 02552407 mfl f1f1 +§3(f0)> (2.45)

d4 Na a N N 2
di _ Z fofo f4+Z flfo +%ZZB f1f1
G k=1

k=1 k=1 £=1

N 9&(fo ot 0% (fo) &
T 2 ,CZI Z: it Z
Ln & & 0%(fo) 1NN2
+§Tk§1 eZ:; m;la k92202 mf1f1f1 ’Q"g g f1f1
o 44 8351(f0)
+§|-Z Z Z 925020 mflflfl

=
o

S E PG e (2.46)
“ B2k8218zm Bz 4(fo)- .

We wish to point out here that equations (2.45), (2.46) can be simplified further, depend-
ing on the form of the vector £. In particular, in Example 2.3-3,

(o) = €7 (fo) =0 VE>2,

so only terms with 7 — j = 1 will be present on the right-hand side of (2.36). Thus




CHAPTER 2. STABILITY OF LIE GROUPS 50

df1 1—1 a) '
T Z 51 0) Z f(l/)a / :3,47---7]1 (247)
lol= g ¢ |v|=1—1
Equation (2.47) above can be simplified even further as illustrated in the following exam-
ple.

Example 2.3-4

We compute the approximate group of transformations of order €? generated by the op-
erator (2.28) in Example 2.3-1. Here

=1, &L=8 and H=0 Y= 2.
By (2.40), (2.45) and (2.46) we have

% _ f}&(f)f1 [
dy _ 06k éyglz([") = fo
R R
+§é§;§l af:gz(j;())mf;f‘”f ;
=

In this case we see that (2.36) actually simplifies to

df ,
f fz 1, 2213"-7p’ (248)

under the initial conditions (2.37). From (2.48) we have

wai ai+l
g = e e, 2, P
=Tt aror R

and the corresponding approximate group of transformation required is
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The Lie Groups of
up + eur = | fx, w)ug|s
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4] N.Kh. Ibragimov and E.E. Rosinger, Approximate Groups; a jet based
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on Modern Group Analysis, Johannesburg, January 1996.

3.1 Introduction

In this chapter we study the properties of the exact Lie groups and algebras associated
with the nonlinear wave equation

uy + euy = [f(z,wW)ug)z, fEC)RxR), f>0, fu#0. (3.1)

First we consider the unperturbed equation u; = [f(z,u)us|. and then the perturbed
equation uy + euy = [f(z, u)ug)e.

ol
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Notations 3.1
The following notations will be used throughout this chapter unless otherwise stated.

(i) A one-parameter Lie Group of transformations acting on (t,z,u) - space will be
denoted by
= Ttz 6:a),

Il

z* = X(t,z,u; a), (3.2)
w* = UL, &, 8),

where a is the group parameter.

(ii) The infinitesimal generator

0 0 0
V= é(t’xau)—a_t g e e(t’xau)—é—; i U(t,%u)b_u

will have as its once and twice extended generators

0 0 )
v = V4 77§1)(t,:v, U, Uy, Ug) = + nél)(t, T,U, U, Ug) 5,
Uy 8?,//2
(2) (1) (2) 0
4 = VW (¢, ¢, u, ur, uz, uin, vz, Usz) (3.3)
. 811,11
0 0
+ 7. Vg n% (.. ) Gur )

where

Up = Uty Uy = Ug, Uil = Ugz, Ul = Utz = Ugt, U2 = Ugg. (3.4)
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3.2 Properties of the Lie Groups of the Nonlinear
Wave Equation uy = [f(z, u)u,|,

The properties of Lie groups and algebras associated with the non-linear wave equation
of the form

F=uy—[f(z,u)uJuz; =0, feC*RxR), f>0, f, #0, (3.5)

have been studied in detail in [3]. It is worth pointing out that some of the assumptions
made in [3] when solving for the infinitesimals are unnecessary since the conditions present
themselves naturally. We now give a brief discussion of the derivation of the infinitesimal
transformation group for equation (3.5). Here we shall present the appropriate general
version of the computation of the respective Lie groups and algebras.

Using notations (3.4), equation (3.5) becomes

F=wupn — foup - fu(u2)2 — fusn. (3.6)

For the group of (3.5), the infinitesimal generator and consequently the once and twice
extended infinitesimal generators will be as in (3.3). The invariance condition

VAF =0 when F=0,

where F' is given by (3.6), implies

0 = —ncfe— Noaf + N
+ ui[ée fo + Eaof + 200 — &it)
+ o[ fou — Ofze — 20:fu + 0:fz — 200 f + Ozaf — O0n — 26,1
+ wiug28, fu — 260 fo + 26uf — 200 f] + (u1)* [N — 2610
(22~ fuw — Ofew = 2ufu+ 2 fu — ] + 200 f + 1 fu = 261,
— (u1)3€un + (u2)*[0ufu 4 O f] = (u1)*u2bun + ur(u2)?[€un f — Eufi]
+ w1226 f — 26] + usa[nfu + 0fz — 20 f + 26, f]
— 2u1u1fy — 2uiugeéu f + 2uguaaba f + 2uzugeb. f,

where u;; has been eliminated by putting uy; = fouz + fu(u2)? + fuzs.
The coefficients of wjuag, ugugg, uruia, (u1)?u12 and (u;)® in (3.7) give the relation
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éu = éuu = eu = Huu = 07 (38)

and then we get

from equation (3.7) and the coefficients of u;u; and u;3. Moreover, (3.7) and (3.8) together
with the coeffficients of (u;)?* give the following:

)
0(t, =, u) = Bz) = b(z), (3.10)
)

where a, b, ¢, d are arbitrary functions.

Considering (3.10) and the remaining independent conditions supplied by (3.7), we now
have the following:

—Nzfo = Neaf + e = 0, (3.11)

2Nt — & = 0, (3.12)

Nfu+0fs —20-f +26f = 0, (3.13)

—Nfou — 0fs2 — 2o fu + 0z fo — 2nguf + b2 f — 02 — 26 fz = 0, (3.14)
—nfuz = 0fou = Mufu+ 205 fu — M2 f + 200uf — 26fu = 0. (3.15)

Putting (3.10)'info)(3.11), (3.12) and (3.13) gives, respectively,

—(cou + dp) fo — (cpru 4+ dgp2)f + cpu+de = 0,
2¢, —a"(t) = 0, (3.16)

(cu+d)fy +bfs —2b(2)f+2d(¢)f = 0.

From (3.16) we have
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1
(2 = §a'(t) + e(z),
which in view of (3.10) implies

alt, =z, u) = (%a'(t) + e(z))u + d(t, z). (3.17)

Thus in general the infinitesimals of (3.5) will be of the form

= b(z), (3.18)
1= (50(0) + e(@))u+ d(t, 7).

For complete analysis of the Lie groups admitted by (3.5) it is necessary to consider the
case when f is arbitrary or other particular forms of f.

Case 1: f is arbitrary.
Since f is arbitrary, we can assume for instance that

f(z,u) = e’ X\ u are constants
(3.19)

= f, = pe’®ter and f, = e,

Putting (3.19) into (3:13) gives

nuf +b(z)Af +2(a(t) - () f =0

=+ b(@)A +2(e'(t) - () = 0,

which is polynomial in g and A.
Separating the coefficients of u, A and 1, respectively, gives

n=0, bz)=0 and 2(d'(t)—0b'(z)) =0

= d()=0 = a(t)=ao= constant.
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Thus for arbitrary f we have the infinitesimals

§=a, 0=0, n=0 (3.20)
O

The result in (3.20) suggests that a lot of symmetries may be lost in the case of general
f and hence the need to consider paricular forms of the function f, which we now discuss

below.
Putting (3.17) into (3.14) and (3.15) gives, respectively,

—((%a' +e)utd)fou —bfezr —2('u+dy)fu + 0 fo —2'f+b"f —2d' f, =0, (3.21)

—((%a' + e)u + d) fuz — bfou — (%a’ +e)fu+ 26 f, —2d' f, = 0. (3.22)

Differentiating (3.21) and (3.22) with respect to u and z respectively gives

1 1
—(=d’ u — ((=a' + &)u 4+ d) fouz — bfg2y — 2€' fo
(30 + O)few = (30" + €Ju+ d)fos = b, —2€'f 2

- 2(e'u + dr)ftﬂ +b fou = 2¢ f 8 = 20/ fru = 0,

—-(e,u + dl‘)fu2 - ((%al + e)u + d)fzu2 = blfa:u - b,fz2u

1 (3.24)
- (§a/ + €) fou + 20" fu + 20 frr — 24’ frr = 0.

Subtracting (3.24) from (3.23) gives

3e'(z) fu + (€'(z)u + do(t, 2)) fu2 + 0" (z) fu = 0. (3.25)
We now consider (3.25) when f,2 = 0, and later the case when f,2 # 0.
Case 2: f,. = 0.
When f,» = 0, then

Faw) = ufile) + fa(2). (3.26)

Putting (3.26) into (3.25) yields
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3¢ fu+b"fu=0
= b'(z) = —3¢'(z), since f, #0
= Iz = —~3/e(x)d:v + koz + k.

Substituting (3.26) into (3.27) gives

—(e'u+ do)(ufi(z) + f3(2)) — (€"u + due) (ufi(z) + fo(z)) = 0

S (o + e fy(e)ut dofi(@)u + dafi(2)
+ € fi(z)u® + €" fo(x)u + dez f1(2)u + dez f2(z) = 0.

The coefficients of 1 give
4o fi() + deafolz) = 0.
From (3.28) we have

des(t2) _ fi(a)
L(to) = h)

d: # 0, fa(z) #0,

which on integration with respect to z yields

Ind(t,z) = —In fa(z) + In ky(2)

Substituting (3.29) into (3.13) we get

(o' + ehu+ | 223 dalflo) + o uhi(=) + fi)

— (@) (ufi() + fale)) + 20 (1) uhi(z) + fala)) = 0.

Y

(3.27)

(3.28)

(3.29)

(3.30)
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From the coefficients of u we get

%a’(t) +2d'(t) = —e(z) + 2V'(z) — b(x)ﬁg;
Thus
1 / ]
at(ga (t)+2d'(t)) =0
=t a(t)=0
= a(t) = kst + k4
Finally in case 2, we have
f(z,u) = ufi(z) + fa(2), I

f = CL(t) = k3t + k4,

-~

g = biz)= 3/ e(z)dz + koz + ki,

ks ko (t)
oy = (? + e(z))u + / (@) dz. )
Case 3: f,2 #0.
When f,2 # 0, (3.25) becomes
a (e'u + dz)ifﬁ = —b"(z) — 3¢".

Differentiation with respect to ¢ yields
dxtéi = 0
fu

= dn(t,z) =0 since % #0

u

= dsit, x) = gl{=z)

e d(t,z) = g(z) + A(t).

38

(3.31)

(3.32)

(3.33)

(3.34)
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Also, differentiation with respect to u yields

e fua fu + (€'u + do)(fus fu = (£u2)*) = 0. (3.35)

The following cases arise from (3.35).

Case 3.1: €'(z) # 0.
Then (3.35) can be expressed as

Jus fu2
e+ (eu+d)(———)=0
( -7

fu2 fu3 1 1

AL —2 — dz = ; .

I " g'(z)

€ e
which on integration in u gives

In f, —In f2 = In(u + %)—) + Inc¢i(x)
fu g(z
7—2— :Cl(l')(u+ i,))

Further integration with respect to u yields

Thus

- . =
1+
ci(z)
which is of the general form
o) = afa)lut SEIY +3E). 0 (3.36)



CHAPTER 3. THE LIE GROUPS OF Urr + Uz = [F(X,U)Ux]x 60

Case 3.2: €'(z) = 0.
From (3.35) we have

dx(t)(% = ff—) =0, (3.37)

which further implies the following conditions:

Ease 3.2.1: d.(t,z) =0

de(t, 2} =2 0= g'(2)=0 = g(r)=gy = constant.
3.38
gla) =10 = €(z) = €g = constant. (3.38)
Using (3.18) and (3.38) in (3.10), we have
L,
1= (3t) + eoju+ go + h(t) = 0
1 n /
- m= (Ot K (L) =0
]' n n
= Me = 54 (Hu+r"(t) =0
= @d"(t)=0 = @)= %tz + a1t + ag (3.39)
and R"(t) =0 = h(t) = hot + h1. (3.40)
From (3.25) we now have
Putting (3.38) — (3.41) into (3.18) gives
ag 9 )
(=at)= St tat +ay,

a 1
'r,:(-2—0t+§a1+60)u+go+h0t+h1, )

where ag, a1, as, bo, b1, €0, go, ho and h; are constants. Putting (3.42) into (3.13) yields
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1
(24 + zar + eo)u + go + hot + h1) fu + (boz + b1) fo — 2b0f + 2(aot + ar)f =0 (3.43)

2 2

o

1 u
= ((a—ot + —a; + eo)u + go + hot + h1)fj—; + (boz + b1)— = 2(by — aot — a;).

92" "2 3

Differentiating (3.44) with respect to u gives

a 1 . a 1
(—gt + '2'(11 + eo)J;2f + ((-2975 + —2‘(11 + eo)u + go + hot + h1)

2
fxuf - fz'fu
f2

Dividing throughout by f,/f, we have

1 g 1 u2 u
t+gateot ((—29t + 501+ eo)u + go + hot + hl)(];—u - fT)

+ (b + B - 2y =0

from where the following conditions arise:

ao

2

Case 3.2.1(i): f arbitrary, with

1
(@t+~a1+eo)u—l—g0+hot+h1=0 and boz + b; = 0.

2 2

Separating the coefficients of u and 1 gives

a 1
_22t + '2'(11 te=0 = ay=0 5&1 = —eo,
go+hot+hi =0 = hy=0, go=—hi,

bg$+b1:0 = b():'O, 61:0

We get the infinitesimals (see (3.10))

§:a25 920, 77:0

ffu2 -
f2

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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by substituting (3.47) into (3.43), since a; = 0.

Case 3.2.1(ii):
fzu fx

a 1
(=t+ a1 +e)u+tgot+hot+h =0 and =2 22—y,

2" 2 fu f

It is easy to see that
i fu _
Infy—Inf=hiu) = 7= AMu).

Integrating with respect to u yields

In = /)\(u)du + v(z)

= flz,u) =y(x)e] 0%,

Introducing (3.50) into (3.13) and using (3.39) gives

(boz + bl)iyy((;r)) = 2by — 2a'(t) = ko = constant.
Thus
/ kO
2b0—2a()=k0 = a(t):(bo—-é")t—f-kl
and
7' (z) ko/b
(boz + b1) v(z) ko = 7(z) = ka(boz + by)™"™.

In view of (3.53) and equations (3.11) - (3.15), f in (3.50) now takes the form

fz,u) = c(u)(boz + by) /b,

The following infinitesimals are immediate from (3.49) — (3.54):

ko
=——t+k
§ D) + 1,
9 = bgl‘-‘-bl,

n=0.

62

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)
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Case 3.2.1(iii):

a 1
(—éqt + -2—t + eo)u + go + hot + hy # 0 (3.56)

Differentiating (3.45) with respect to ¢ gives

Qo ao fuu fu
e (g e B BB, 4B
5 T(gu+t 0)(fu f) 0
foo fu 1
T TR T e
Qo
2h
u+ =
= Inf—-Inf,=In =0
c(x)
Ol
0
Further integration with respect to u yields
2h
In f = ¢(z)ln [d(z)(u + a—o)]
0
2h
= flau) = [da)(u+ S (3.57)
a
Case 3.2.2:
fo o _ 0 (3.58)

fu2 fu B

= Infe=Inf, +Ing(z)

fe _ e
T = q(z),

which can be integrated further to give
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(3.59)

a

We have so far considered exhaustively all the possible forms of the function f(z,u) in
view of the exact Lie groups of the non-linear wave equation (3.1). Figure 3.1 gives a

summary of this in the form of a tree diagram.
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General
{=a(t), 0 =05(z)
n=(5d(t) + e(z))u+d(t,z)

/]\

N | —

Case 1 Case 3 Case 2
f arbitrary Juz =0 fuz =10
(3.19), (3.20) (3.33) — (3.35) (3.27),(3.32)
Case 3.1 Case; 3.2
e#0 e€=0
(3.36) (3.37)
Case 3.2.1 Case 3.2.2
da;:O fusfu:(fuz)z
(3.38), (3.42) (3.58),(3.59)
Case 3.2.1(1) Case 3.2.1(ii) Case 3.2.1(iii)
f arbitrary (3.49) (3.56)
(3.46), (3.48) (3.50), (3.55) (3.57)

Fig. 3.1 A tree diagram illustrating different cases of the
form of the function f(z,u) in the non-linear
wave equation uy = [f(z, u)ug)s.
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The exact Lie groups of transformations for the unperturbed non-linear wave equation

(3.5) can easily be found from the infinitesimals (3.20), (3.32), (3.42) and (3.55).

The O.D.E.s corresponding to the infinitesimals (3.20) are

dt*— = tant, t*(0) =0 \
da—«ag, ap = constant, t*(0) =0,
dz*
o =10, g (0= 1,
du*
da:(), u(O):O,)

(3.60)

which is easily solved to give the Lie groups of transformations admitted by (3.5) for

arbitrary f as

t* =t+ ca,
- SR

¥ =z,
u*t = u,

where c is a constant and a is a group parameter.

From the infinitesimals (3.32) we have the system of O.D.E.s

dt* i
d = kst™ + kq, t*(0) = t,
da —3/ z)dz + koz™ + ki, g*(0) =i,
L ks, w(0) =

o = (5 tel@)u +a(z) + ks, w(0)=u, |

which can be solved to give the following Lie groups of transformations:

kst + k4 kse _ E

k
k3 k37 3#07

t* =

k‘ol‘ i 3/ ZL‘ o kl]e(Se(z)dz-{-ko)a
k‘o

3/ z)dz + k), ko 2 0,

1 ks

Ut = ”BS[(BU + g1(z) + ks)e®* — gi(z) — ks], B = 5 T e(z).

J

(3.61)

(3.62)

(3.63)
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Systems of linear O.D.E.s corresponding to the infinitesimals (3.42) and (3.55), respec-
tively, are

dt* a i
=St +at’ +a
d *
d“; = boz* + by, (3.64)
du* ap ., 1 y y
da :(?Ot +—2~a1+eo)u +g0+h0t +h1 )
and
dt* ko )
=——t"4+k
da 2 + 5
d *
d‘”‘; = boz™ + by, (3.65)
du* _0
da y

where ag, a1, as, bo, b1, €0, go, ho and hy are constants and a is group parameter.

Solving (3.64) for ¢t*,z* and u*, we have

dt*(a) Q0,42 *
da _Q(t) +a1t +(12
dt*
= (e) = da.

a
%(t*)z + alt* + a9

By completing the squares, and writing ¢ for ¢*, we have

/ dt Qo dt

ap - 5 1

Frtatta 27 (4 22 (—(a] - 2a0a)!/7P
Qo

ao (3.66)
ag T ag T—-A /
= — = — = d =
5 T2—A2dt 4AlnT+A’ a=a+c
where !
T=t4 2t and A ==(al = Jagag)*. (3.67)
ag ag

From (3.66) we get
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T A
AL+ | g | ettarenn)

T 144
1 [_T_;_Ai] o(44/a0)a
T+A
and thus
T-A
1 (44/a0)a
t* a+ [TMJ ’ )
- [f—_A] S4Afa)e
T+A
. b (3.68)
¥ = —((boz + by)e™* — by),
bo
1
u* = —E((Bu-}— e £ 0,

where T" and A are as in (3.67),

1
B:%Q‘t+§al+€0 and C:go‘l*'hot-l—hl

Similarly, from (3.65) we get the Lie groups of transformations admitted by the system
of 0.D.E.s as: :

2%,

* le —koa/ky

t——ko +(t— ko)e ,
1

7" = ((bo + br)e™* — by), (3.69)
0

UY =,
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3.3 Lie Groups of the Perturbed Non-linear Wave
Equation wuy + eu; = [f(z, u)ugl,

We present a detailed discussion of the properties of Lie groups of the perturbed non-linear
wave equation of the form

Uy + euy = [f(z,u)uz]:, fECRXR), f>0, f.#0. (3.70)

Using the notations (3.5) we have

F =uy +euy — frus — fu(u2)2 — fuaa. (3.71)

The invariant condition
VAF =0 when F=0,

where F' is given by (3.71), gives

0= en — Nefo+ Mt — Noof
+ wy[enu — €&+ Eafo + 20 — €t = €N+ 266 + Exof]
+ Ua[—0fos — nfou — €0s + 82 fo — 2nc fu — O4s — 26 fo — 2Nou f + Oz f]
+ urtig[—€0y + Eufo + 26 fu — 200 — 3Eufu + €0y + 2654 f]
+ (u1)?[—€bu + Nuw — 260 + 3€t]
+ (ug)* [0 — fun + Oufo ~ Nufu + 20: Fo — 26efu — Oufo = NS + 200 f]
= (1)%6ue + (42)*[0ufu — Oun ] = (v2) by
+ w1 (u2)?[bun — Euful + ur2(26ef — 264]
+ Upe[—0fz — nfu — 26 f + 20, f] — 2uqui2b, — 2ugugels f

+ 2uguipbu f + 2uguqaf, f.
(3.72)

The coefficients of ujugg, ustse, uruya, (u1)?us, ususz and (up)? in (3.72) give the relation

fu = éuu == gu = guu = O, (373)

and then we get
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£ =0:=0 (3.74)
from (3.72) and the coefficients of uju; and uy2. Also (3.72) and (3.73) together with the
coefficients of (u;)? give the following:

£t z,u) = £(t) = a(t),
0(z) = b(a), (3.75)
Bt 2 6) = o, &)+ dt,z),

>
—~
“&&-
8

(=
~—

Il

where a,b,c,d are arbitrary functions. Finally, considering (3.72) — (3.75) and the re-
maining independent coefficients supplied by (3.72), we have the following:

Ene — Mo Sz + Nt — Moo f =0, (3.76)

2Nt — &t + €€t = 0, (3.77)

Nfu+0fc —20:f + 26 f =0, (3.78)

—Nfou — 02 — €0t + 0o fo — 205 fu — 26t fo — 2mpuf + 022 — 62 = 0, (3.79)
0 fuz — 0 fou — Nufu + 205 fu — 261 fu — 2 f = 0. (3.80)

Putting (3.75) into (3.76), (3.77) and (3.78) gives, respectively,

e(cru +di) — (czu+ dp) fo + ceu+ diz — (cp2 + dy2) f = 0,
2¢c; —a"'(t) + ed'(t) = 0, (3.81)
(cu+d)fu +b(z)fe —2b'(2)f + 24'(t)f = 0.

From (3.81) we have

é(t;2) = %(a’(t) —ea(t)) + e(z), (3.82)

which in view of (3.75) implies
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nlt, @, 1) = [%a'(t) - %ea(t) + e(z)]u + d(t, z). (3.83)

In view of (3.83), (3.75) now takes the form

l

¢ = a(t),
 =b{o)s (3.84)

= [%a'(t) - %ea(t) + e(z)]u + d(t, ).

To be able to give a complete analysis of the exact Lie groups admitted by (3.70), it is
only fitting that we consider the case when f is arbitrary. When needed or useful, we
shall consider other particular forms of f a well.

Case 1: f arbitrary.
Let us, for instance, take the form of f as in (3.19). Since (3.13) and (3.78) are the same,
we see that the infinitesimals

E=ap, 0=0, n=0, (3.85)

follow as in the case of (3.5). o

A discussion of particular forms of the function f follows.

Putting (3.82) into (3.79) and (3.80) gives, respectively,

~{5((@(0) — ca(®) + e(@)u+ d} fou — b(z)fir — ¥ (2)e

‘ (3.86)
— 2(e'(z)u + dz) fu — 2d'(t) fo — 2€'(2) f + b"'(z) f = 0,
[(~50) + 5ea(t) = e(@) ~ dlfir = b(&) o
1 1 (3.87)
+ [ 3a(0) + ealt) = e(@)lfu + 26(2)fu — 26/ = 0.
Differentiating (3.86) and (3.87) with respect to u and z respectively gives
[~ 5e(8) + ea(t) — efa)] o+ [(—5a(2) + ealt) — e(@))u — e
(3.88)

— 2¢'(z) fu — 2(€'(z)u + dy) fuz — 20/ (t) fou — 2€'(2) fu
— b(2) fara — B (@) fou + B (@) fu =0,
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[(—%a'(t) + —;—ea(t) —e(z))u — d] fuzz + (—€'(z)u — d;) fu2
- b/(z)fxu B b(.r)fzzu + {_%a/(t) + %m(t) - e(x)]fua: (389)

— €'(z) fu + 20" (z) fu + 26/ (z) fou — 24'(t) fou = O.
Subtracting (3.88) from (3.89) yields

3e'(z) fu + (€'(z)u+d;) fuz +b"(z)fu = 0. (3.90)

Equation (3.90) can be considered when f,» # 0 and when f,2 = 0 since f, # 0 from
(3.70).

Case 2: f2 =0.
When f,2 = 0, we have the form of f as

f(z,u) =ufi(z) + fo(2), (3.91)
and
b(z) = -3 / e(z)dz + koz + k1 (3.92)

is immediate from (3.91) and (3.90); see (3.27). Substituting (3.91) into (3.76) gives

[2(t) = O+ ed — (€@ + d)(ufi(2) + (<) o
3.93
+ [%a'"(t) o %ea"(t)]u + di — (e"(2)u + d2)(ufi(z) + f2(z)) = 0.

Separating the coefficients of 1,u and u? in (3.93) gives, respectively, the following equa-
tions:

edy + dyy — do fo(z) — dya fo(z) = 0, (3.94)

(3.95)

—¢(2)fi(a) - '(2)file) = 0. (3.96)
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Substituting (3.91) into (3.78) gives

(G0'() — 3ealt) + e(@)u + difi(z) + b(@)(ufi(z) + F4(=))

= 20(e)(ufi(2) + fa(2)) + 2d'(t) (ufi(2) + folz)) = 0.

Separating the coefficients of 1 and u respectively gives

dfi(z) + b(z) f(z) — 20'(z) foz) + 2d/(t) f2(z) = 0, (3.97)

(59(6) ~ 5ealt) + e()) (@) + b(e)fi(2) — (@) fule) + 20/ () fulz) = 0. (3.99)

Note that we can assume fi(z) # 0, since otherwise (3.91) would give f, # 0, contradict-
ing the initial hypothesis.

From (3.98) we have

5 / 1 . / f{(l‘) — 7
54 (t) — 2ea(t) =2b (:c) —e(z) — b(x)fl(x) = K = constant, (3.99)
from whence we get the first order linear O.D.E.
5a/(t) — ea(t) = 2K (3.100)
whose solution in a(¢) is 7
2 -
a(t) = age®/® — 4 , ao, K constants. (3.101)
€

To be able to get n(t,z,u) in (3.84), we shall use both (3.95) and (3.96) to find e(z) and
d(t,z). From (3.96) we have

e(z)=€¢"(z)=0 = e(z) =er= constant. (3.102)
From (3.95) and in view of (3.102), we have

d, f1(2) + ds f1(z) = —-;—eza’(t) ~ Lo, (3.103)

Differentiating (3.103) with respect to z yields
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d f1/(2) + daz f1(2) + da2 f1'(2) + doa f{ (z) = 0,
which is a polynomial in f{(z) and f]'(z). Thus
-l mda=dy=0 = dfi z)=di). (3.104)
Putting (3.104) into (3.94) gives the O.D.E.
dy + ed; =0,
which can easily be solved to get

d(t) = doe™ + di, (3.105)

where dy and d; are constants.
We further note that in view of (3.102), (3.92) now becomes

b(:z:) — (ko — 360).’1,' + kl + €1.

Thus for case 2 the infinitesimals (3.84) are

£=a(t) =" - 2%, ‘
€
6 =b(z) = (ko — 3eo)z + k1 + ey, (3.106)
2
n=(K+e — fgﬂe“/"’)u + doe™ + d. ‘
O
Case 3:
fiis i, (3.107)
When f takes the form (3.107), we may express (3.90) as
(¢a)u+ )22 = —b(z) - 3¢/2),

which is the same expression which yields (3.100) - (3.105). Thus

d(t,z) = g(z) + h(t) and g(z)=go, e(z)= eo, (3.108)
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where go, €o are constants.

Considering (3.76), and in view of (3.84) and (3.108), we have

(%ea"(t) — Sttt () + (%a”’(t) - %ea"(t))u +h(8) =0,

From the coefficients of 1 and u, respectively, we get the homogeneous O.D.E.s

R"(t) + €h'(t) = 0,
a"'(t) — e*d'(t) = 0,

which are easily solved to give

h(t) = hoe™ + by

ao o
and a(t) = = + are + aze™,

where hg, h1, ao, a1, az are constants.

Putting (3.108), (3.110) and (3.111) into (3.78) we get

a
[(e0 — i)u + hoe™ + go + byl fu + 2¢(are — ase” N f
+ b(z) fz — 26'(z)f = 0.

From the coefficients of u and 1 we have, respectively,

ao
60———‘:0,

2€

Ju Je

(hoe_“ +go+h1)— +b(z)— = 20 (z) — 2ea e + 2eaze” .

, f f
Differentiating (3.114) with respect to u yields

fu2f—(fu)2 +b(x)fzuf_frfu =0.

(hoe™ + go + h1) 7 7

The following cases arise from (3.115):

Case 3.1:

hoe™® +go+h1 =0 and b(z)=0.

75

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)

(3.114)

(3.115)
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Case 3.2:
hoe_d —+— Jo -I- hl = 0 and fa:uf = fa:fu = 0
Case 3.3:
fief—(fu)*=0 and b(z)=0.
Case 3.4:
fu2f = (fu)2 =0 and fzuf - fxfu = 0.
Case 3.1:

hoe ™ 4+ go + h1 =0 and b(z) =0, together with (3.78), (3.84), (3.108) and (3.109),
yield the infinitesimals

t=all)=ap; P=bz)=0, 5= (3.116)

Case 3.2:
When hoe ™+ go+h1 =0 and foof — fofu =0, we have

f(z,u) = q(u)el P (3.117)

= fo=p()qw)e/"@* and f, = q(u)e/ P,
Thus (3.112) now becomes
2¢are” — 2eaze™ = 20'(z) — b(z)p(z) = k = constant.
Solving 2b'(z) — b(z)p(z) = k gives
b(z) = gef pla)dar? / e~ P2y (3.118)
Putting (3.117) and (3.118) into (3.78) and dividing by g(u), we obtain

q(u)
q(u)

(eo — €aze™)u — k¥ 2ea,e® — 2eare” = 0.

From the coefficients of 1 and u we get, respectively,
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2eaie® —2eae =k = a=k=0,
and ey —eae™® =0 = ey =e€aze .
Putting (3.119) and (3.120) into (3.111) gives

ap +€eg  ag
a(t) = 62 = '6—2‘

From (3.108), (3.110), (3.121) and (3.84) we get the following infinitesimals:

¢=alt) =3,
@ =b{z)=10,

n=0.

Case 3.3:
When b(z) =0 and ff — (fu)* =0, we have

fe _ fa

fo o T
which on repeated integration yields
F(@,u) = g(z)e@.
Putting this into (3.78) gives

r]E +2d(t)=0 = 19
f
el

= (—eaze™u+ go + hoe™ + h1)p(z) = —2¢cae® + 2eaze.

p(z)q(z)er@

e 1206 =0

Differentiating (3.124) with respect to z yields

(—eaze™u + go + hoe™ + h1)p'(z) = 0,

which results further into the following cases:

Case 3.3.1:
—6a2€_€tu + Jo + hoe—d -+ hl =0

7

(3.119)
(3.120)

(3.121)

(3.122)

(3.123)

(3.124)

(3.125)
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= —caze®=0 and go+hoe *+h; =0.

Thus (3.124) now becomes

—2eare” + 2eaze™ =0
= ) = aze (3.126)
In view of (3.84), (3.111), (3.125) and (3.126) we get the following infinitesimals:

£l

Case 3.3.2:
p(z) =0 = p(z)=po = constant. Thus

f(z,u) = g(z)eP". (3.128)

Putting (3.128) into (3.79) gives
(—eaze™u + hoe™ 4+ hy + go)po = —2€a e + 2eaqze”,
which on differentiation with respect to u yields
€™ =0 = n=hee™+h +g.
Thus

(hoe™ + hy + go)po = —2¢are® = 24d/(¢)

1 h
= alt)= —Epo(?oe_d — hit — got) + ho.

Finally we have the infinitesimals as

1 h
€= —5po(— €™ — hat — got) + b,

G (3.129)

n = hoe”" + hy + go,
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,h1,hs, go and po are constants.

f“2 - (fu)2 =0 and fzuf - fzfu =,

equations, when integrated, yield respectively

flz,u) = q(z)er,

flzu) = qu)el P@% = fi(2) fo(w).

31) and (3.132) we see that

p(z) = pp = constant.

f will be of the form

f(z,u) = q(z)e™

Fla,u) = glu)e?,

se 3.4.1:

f(z,u) = q(z)e™™ asin (3.133).
f'ing (3.133) into (3.80) and simplifying, we get

a /
~lleo = 57 = caze™)ut hoe™ + h + golpf — b(z)po” (())

—(e0 = 5% — eaze™) + 26/(z) — 2/(t) = 0.
€ !

eparating the coefficients of u and 1 gives, respéctively,

a —€
(eo — 2—2 — €aqe t)pg =0

ap _ .
= €0~ 5~ €aze “=0 since py#0,
€

79

(3.130)

(3.131)

(3.132)

(3.133)

(3.134)

(3.135)




q'(z)

(hoe = + hy + go)ps — 2d'(t) = =2V (z) + pob(z) 7(2)

Za'(t) = —(hoe_d + hl + go)pg + k’]_

pO ( ho -—et

= a(t) 5\ ht—got)+ klt-{-k‘g

from (3.136) we have

/ qu’(x) _ ___k_l
b'(z) 24(2) b(z) = 5
‘ ng the above first order linear O.D.E gives
k dx
- po/2[f.. _ 1 -
b(.’l,') [q((l))] [k3 2 [q(x)]po/gl'

;'we have the following infinitesimals:

\

h
£ = 1720( : e — hit — got) + = klt + ks,

ere Po, k1, ka2, k3, ho, hy and go are constants.

se 3.4.2:
ve now let

| f(z,u) = q(u)e™?,
from (3.80) we get

1 ‘
7L _ pob(c) - 28/(@) + 2ease™ — Beare™.
q'(u)

ferentiating the right hand side of (3.140) with respect to z yields

= k; = constant.

80

(3.136)

(3.137)

(3.138)

(3.139)

(3.140)
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2b"(z) = pob'()

b'(z) P
b(z) 2°

=

vhich upon two successive integrations with respect to z gives

where po, p1, p2 are constants.

=

The resultant infinitesimals in this case are

Qo et —et
£=22-+ale + aqge™,

2
0 = __P_lepoz/z + P2, (
Po

§ = —eaze u + hoe ™ + hy + go. |

Case 3.5: '
hoe™ +hi+go=0 and faf —(fu) =0.

The three conditions from (3.115) with (3.142) are:

'. ase 3.5.1: '
-' b(z)=0 and feuf — fofu =0,

R implies (see (3.132))
f(z,u) = qu)el ?@%.
Putting these into (3.78) gives

T,f?" +24/(t) = 0.

Differentiating (3.143) with respect to z yields

fuf + anUf];frfu = 0.

nl‘ f2
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(3.141)

(3.142)

(3.143)
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1 fouf — fofu =0, we now have

Nefuf =0
= n9,=0 since fuf #0
= n=n(t).

(3.143) now implies
a(t) = ap = constant.

ally we have the following infinitesimals:

E=ap, 0=0, 7=nl). (3.144)
ad
e 3.5.2
b(x) =0 and fz‘uf - fzfu # 0. (3145)
tting this into (3.78) gives
fu P
— 4+2a'(t) =0
i (t)

=  nefuf + T](fruf - fxfu) =0;
‘(3.143). Since feuf — fofu # 0 and f,f # 0, we have from the above equation

n=n(t).

ence we have the same infinitesimals as in case 3.5.1 above, i.e. (3.144):

§=ao, 0=0, 7=nt).

lase 3.5.3: ‘
' b(z) #0 and fef — fofu =0. (3.146)

n this case we have
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f(z,u) = q(u)el 7%,

~» »(3.78) now becomes

[(e0 — E0‘)'“ + hoe™ 4+ hy + 9o)

2¢ q(u)

;t:ing the coefficients of u and 1 gives, respectively,

2¢” q(u) 2¢

q(u)

rentiating (3.148) with respect to ¢ yields

i

. /
—ehoe'“% +2ad"(t) =0

/ 2 n t
= q(u) _ ( )ed = )\o = constant.

q(u)  cho

q(u) = A etod

= f(w, ’U,) = /\le)\ouefp(z)dx

A
all(t) — 6h; 06-—-et,

ch on being integrated twice yields

N ho/\o
B €

e” + Mt + X2, A, g constants.

a(t)

+ b(z)p(z) — 2b'(z) + 24/(t) = 0.

(60 - %)q (u) =0 = e- = =0, since q’(u) # 0,

(hoe™® + hy + go)q'(u) + b(z)p(z) — 2b'(z) + 24'(t) = 0.
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(3.147)

(3.148)

(3.149)

(3.150)

(3.151)
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er to determine b(z), we introduce (3.149) into (3.148) to get

(hoe™ + h1 + go)Ao + 2d'(t) = 2b/(z) — b(z)p(z) = B = constant.

ce we have the first order linear O.D.E.

H(z) ~ 5p(e)b(z) = 5.
g.can easily be solved in b(z) to give
b(z) = ef”(z)dx/z[g / e~ JP@id=/2gq, o al, a,( constants. (3.152)
(3.147) we have
n = hoe™* + h1 + go. (3.153)
he infinitesimals
hoA )
§=—="e+ At +hy,
2¢
0= e fP(z)dx/2[§ / e~ [ oisl gy 4 o) ' (3.154)
n = hoe™" + hy + go, J
fare immediate from (3.151), (3.152) and (3.153). 0
Case 3.6:
j b(:I:) =0 and feuf — fofu=0. (3155)

- In view of (3.115) the above condition (3.155) will lead to the following cases:

Fj.
| Case 3.6.1:

hoe™ +hi+go#0 and fof —(f.)*=0. (3.156)

In this case f is of the form

(3.157)

Hence (3.114) now becomes
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q'(u)
q(w)

on differentiation with respect to ¢ and after some calculations yields

(hoe™ + h1 + go) + b(z)p(z) — 20 (z) = —2¢care + 2eaze™,

—ay) = go = constant

:> q(u) o qleQOu
= f(z,u) = qetel PO,

om (3.159) we get

h
ay = ale2et _ doo
2¢
ao et QOho —et
= alll= =+ 28" — ——e¢
(*) €2 T 201 2¢

troducing (3.160) into (3.158) gives
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(3.158)

(3.159)

(3.160)

(3.161)

(hoe™ 4 h1 + go)qo + 2eare™ — 2eaze™ = 2b'(z) — b(z)p(z) = by = constant,

;'Whence we have the O.D.E.

H(z) ~ sp(z)b(z) = 2

can easily be solved in b(z) to give

srder to determine n, we use (3.108) - (3.111) and (3.161). Thus

" ,
= qoz—oe_du 4+ hoe™ + by + go-

e we have the following infinitesimals:



h
é‘: @+2aleet o q; 06—et

)
€2 €

0 — efp(x)dxﬂ[@ / e~ JP@de/2 g, 4 C]
2 ?

n= (%u + 1)h06_6t + h] + Jo- J

: Case 3.6.2:

Introducing (3.163) into (3.114) gives

20'(z) — b(:zc)E = 2¢ae® — 2eaze” .

f
Differentiating (3.164) with respect to u yields

b(x)(fl‘uf - fz‘fu) = 07

which in view of (3.163) has been considered in cases 3.1 and 3.2.

Case 3.7:
(hoe™ + h1 + go)(fur f — (fu)?) # 0,

which in view of (3.115) implies

b(z)(fxuf - fxfu) # 0.
Further we see from (3.166) and (3.167) that

hoe™ +hi+ g0 #0, faof—fi#0, bz)#0

and

fxuf - fxfu 7é 0.
Putting (3.168) into (3.115) yields

fu2f - f3

b(CE) = (hoe_d + hl + go)———fmf — fxfu .

The infinitesimals
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hoe™ +hi+go=0 and faf —(f.)? #0.
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(3.162)

(3.163)

(3.164)

(3.165)

(3.166)

(3.167)

(3.168)

(3.169)
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Qo et —et
£ = — tae” +aze™,
€

0 = (hoe™ + h1 + go) ff ~ fu (3.170)

fxuf - fxfu,
n = —eare”“u+ hoe”™* +hy + go,
are immediate from (3.84), (3.108), (3.110), (3.111), (3.113) and (3.169). m]
NOTE

The diagram in Figure 3.2 on the next page illustrates the different cases of the form of
f(z,u) in (3.70).
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Case 1 General Case Case 2
~ f arbitrary £ = a(t),f# = b(z) fa=0
E=qa n=e(z)u+d(t, ) (3.91),(3.92)
§=n=0 +3[a'(t) — ea(t)]u (3.106)
Case 3.1 Case 3 Case 3.7
= C =0 fu2 £0 ABCD #0
(3.116) (3.108) — (3.111) (3.170)

: ®ase 3.2

Case 3.6 Case 3.6.1
e D = ( Ce=D =0\ A%£0,B=0D
1:122) (3.162)
Case 3.3.1 Case 3.3 Case 3.6.2
15:125) C=D=1{ A=0,B#£0
(3.127) (3.123) (3.165)
[ Case 3.3.2 Case 3.4 Case 3.5
(3.128) B=D=0 A=B=0

L (3.129) (3.133) — (3.134)

b — ] el

Case 3.4.1 Case 3.4.2 Case 3.5.1 Case 3.5.2 Case 3.5.3
B q(z)e™ f = q(u)e™* B= (=10 C=0,D=%£0 ¢#00D=0
(3.139) (3.141) (3.144) (3.144) (3.154)

Figure 3.2

A=hoe™+hi+go, B=faf—fi, C=0b(z), D= fouf~ fofu
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Chapter 4

The Stability Groups of
u + eur = | f(x, u)ugls

Sources: [1] N.Kh. Ibragimov et al, Approximate Symmetries, Math. USSR Sbornik,
Vol. 64 (1989), No. 2, pp. 427-440.

4.1 A General Criterion for Approximate Invariance

We give the definition of the invariance of an approximate equation with respect to an
approximate group of transformations.

Definition 4.1-1

The approximate equation
F(z,¢) =0 (4.1)
is said to be invariant with respect to the approzimate group of transformations
2" = f(z,€a) (4.2)
if
F(f(z,€,a),€) =0 (4.3)

for all z = (2%, 22,...,2") satisfying (4.1).
The following theorem gives the necessary and sufficient conditions for (4.1) to be invari-
ant under (4.2).

89
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Theorem 4.1-1
Suppose that the function

F(z,¢) = (F'(z,¢), F*(z,¢€),..., F*(2,¢), n <N,

which is jointly analytic in the variables z and ¢, satisfies the condition

rank F'(z,0)|p

z0)=0 — »

where
F'(z,€) = ||0F“(2,¢)/07'|| for v=1,...,n and i
Then, for the approximate equation (4.1), written as
F(z,€) = 0(P),
to be invariant under the approximate group of transformations

2 = f(2,€,a) + (")

with infinitesimal generator
V=_{(z67, (=5
it is necessary and sufficient that

VF(z,€)|45 = 0(c).

For proof of Theorem 4.1-1, see [1].

The following example illustrates the above theorem further.

Example 4.1-1

In Example 2.2-2 we constructed the approximate group of transformations

3
z*~ 1+ a+e(za+za®+ %)—),

a2

y*~y+ e(rya+ y;)

90

(4.4)

(4.9)
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determined by the infinitesimal generator

Let N =2, z=(z,y) and p = 1.
We want to show that the approximate equation
F(z,y,e) = y** —ex? — 1 = 0(¢) (4.11)

is invariant with respect to the transformations (4.9).

First we verify the invariance of (4.11) according to Definition 4.1-1. To do this we shall
use equation
F(z,y,e) =y* — e(z? —yPlny) — 1 =0 (4.12)

which is equivalent to (4.11).
Equating (4.11) and (4.12), we have

Yt —ex? —1+01(e) = y?—e(z®—y’lny)—1
= y*** 4+ 01(e) = y*+ey’lny. (4.13)

Taylor’s expansion of y?*¢ about € = 0 gives

¥t =y? + ey’ lny + 0(?).

Inserting this into (4.13) gives

v’ + ey’ Iny +0(¢*) 4 01(¢) = y* + ey’ Iny,
which implies that (4.11) is equivalent to (4.13) within 0;(e).
We now proceed to establish the invariance of (4.11) using the equivalent equation (4.13).

The transformation (4.9) implies

F(z*,y%¢) = y~ —¢(z” -y Iny*) —1
~ y?—e(z? —y?lny) — 1 + ¢(2za + a?)(y? — 1)
= F(z,y,¢) + ¢(2za + a*)[F(z,y,€) + €(z® =y’ Iny)]

= [1+¢(2az + a?)]F(z,y,¢€) + 0(e),
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which implies (4.3). Thus

F(z™,y",¢) = 0.

Obviously (4.11) satisfies condition (4.5) of Theorem 4.1-1, since n = 1.
By (4.8), we have that

VF = (24 ¢)exy*c — 2ez(1 + ex?)
= 2exy*tc — 2ze

2ex(y*re — 1) + 0(¢)

= 2ezF +0(e) = 0(¢)

in view of (4.11). Thus

VF(z,y;¢€) = 0(c)

and the invariance of (4.11) with respect to (4.10) is established.

According to Theorem 4.1-1, the construction of the approximate group leaving equation
(4.1) invariant reduces to the solution of the defining equation (4.8) for the coordinates
£¥(z, €) of the infinitesimal operator (4.7).

We now discuss how to solve the defining equation (4.8) to within 0(e?). The following
representations will be useful:

Let

z2 R yoteyi+...4+ €yp, )
P
F(z, ~ ‘R
(2:9) ;,6 (2) > (4.14)

P

and &5 (z,¢) ~ Y €€F(2).

1=0 /

Substituting (4.14) into (4.8) and singling out the principal terms we have

oF
_ k
Ve =
P P9
= Zﬁzfi(yo+6y1+~-+€pyp)}‘ ZéJ@Fj(yo+---+f”yp) . (4.15)
1=0 j=0

It is known from [1] that, with the index notation as on page 46,
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p .
Ze’Fi(yo +eyr+...+ epyp)
1=0
N L
~ F()(yo) + 261 F; ——'-
i=1

+ Z 2]_: “yo) 3 y(u)} : (4.16)

lvl=3

y (4.16), we have

p

gfiﬁf(%)
5 (%o +Ze [ yo)+Z IIZJ: (yO)I%—:' y(u)J (4.17)
2 AF:(yo
25
o(Yo o ] i oF“)
; ~ aFaz(f) ; aFaz(f ) -i-; |2|—:1$ ( ;?k ) yo)lzlzly(u)] . (4.18)

OF P
|:EO yO +ZC Ak] _a();(!:_()) +Z€J j,k] , (4.19)
i=1 =1
?]_'e
S5 L
Af = € (yo) + 1 |Z]: ] (é,-_,'(yo)) |Z]: Y(w) (4.20)
.7= o|l=1 . y:j
OF; id 1 [oF) |
Dy = aiifo) + Z IZI: ol ( 5k ) (yo) HZ Y(u)- (4.21)
=1 Jw|=1 """ ul=3
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OFy( 0
aOIZCJO _*_Z ]foyo J,k+z 1Alc ];O(k)

i+7 k :
' + ), €7 ), Ai gk
i 147=2 i+g=l
i

&Forizj = 1, we have

VE = &(v)

o

8F0( 0)

4 Ak‘aFO(yO

VF = &(vo) + €5 (yo) Bk 52k +Z €'€5 (yo) Bi

+Z IAkaFOyO +Z ZAk "

1=2 +5=l
0F,
+e (fg(yo)Bl,k + AIf—T;gf—o))

+ S AfB ) (4.22)

i+7=I

aFo(yo)

= fo ( 0)
6F0

- Z ¢ (ﬁng,k 1 Af
=2

Equating the coefficients of 1,¢ and Y€ in (4.22) to zero (since VF = 0) we get the
following form of the defining equation:

0Fy(y OF
f{;(yo)% =0, &(v0)Buk+ Af 5(30) =0,
k0 Fo(yo) k
&5 (yo) Bik + A Py +_ZIA]-B]~,,C=O, 1=23,...,p. (4.23)
4=

rEqua,tions (4.23) hold on the set of all yo,y1, ..., yp satisfying the system

FO(yO) = O’

1 yO Zy(u == a i:1727"'ap7 (424)

[v|=3

Q||—l

which is equivalent to the approximate equation (4.1).

It is now clear that the problem of solving the approximate defining equation (4.8) has
been reduced to the solution of the system of exact equations (4.23) and (4.24).
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For p =1, (4.23) and (4.24) implies

OF
3 (yd% =0, (4.25)
9Fo(yo) OFi(y) L& 0 9Fo(yo)
&r(yo) =5 ¢ + & (vo)—.; +§k§yi§—z—l &w)— 5| =0, (4.26)
under the conditions
FO(yO)_Oa
N O (4.27)
Fi(w) + Lot 200 =,

Example 4.1-2

Let the approximate equation

Flz,y,6) = y** — e’ =1 = 0(¢)

be as (4.11) in Example 4.1-1.
Using (4.12) we have

Fo(z,y) =y’ -1, Fi(z,y) =y’lny —z’.

We now need to find yo and y; from (3.95). It is easy to see that yo = 1 since y > 0.

N 2 2
9Fo(yo) Oy —1)  ,0@y"-1)
F ! = Pl 2 1 2 _
1(y0)+;y1 621 y Iny z +y1 ax +y1 ay 0
— lzlnl—x3+$1-0+2y1-y020
e — -Z'_g
Yy = 9
Thus
2
z
Yo = ($071) and - Y1 = (331, —ég)) (428)

where z; is a free variable.

Substituting (4.28) into (4.25) and (4.26) gives
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&(zo,y0) = 0, )
063(101y0>

ox =
2 2 2
€3 (zo, yo) — Zo&5 (o, Yo) + (i%x—o)ﬁg(xoayo) 3 %%"@ = 0.

96

(4.29)
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4.2 Stability Groups of uy; + eu; = [f(z, u)u,,

In this section we aim to construct approximate symmetries of first order, i.e. p = 1, for
the perturbed nonlinear wave equation

Ut + €Uy = [f(xvu)uz]za f € 02(R X R)’ f > 07 fz 7é 07 fu 7é 0. (4-30)

An algorithm for constructing approximate groups of the form

2* & fo(z,a) + efi(z,a) (4.31)

determined by the infinitesimal generator

0
V= l6o(e) + ()5 (4.32)
z
has been discussed in detail in section 3.2 (see [1] for more details).
By theorem 4.1-1, the construction of (4.31) leaving the equation
F(z,€) =~ 0

invariant reduces to the solution of .

VF(z,€)|Fno0 = 0. (4.33)

For equation (4.30) with p = 1, (4.33) yields (4.25) and (4.16) under the conditions (4.27), .
where from (4.30)

(4.34)

F1 = Uy,
&= (taxaU,Ulauz,uu,Um,Un).

Fo = uyy — fous — fu(u2)2 — fuaz, }

Differentiating Fy and F} with respect to ¢, z,u, uy, us, 11, U1z and uqg yields




CHAPTER 4. THE STABILITY GROUPS OF Urr + eUr = [F(X, U)UX]X 98
OF, _ OFy_ 0F _ \
3t 8’U,1 B 8’(1.12 Y
OF
-5;:9 _fx2u2 e fur(u2)2 - fxu22)
OF,
——8—&9 — _f:z:uu2 - fuz(u2)2 - fuu227
0Fy
a—uz =— _fa:_2fuu2)
4.35
on _ | (4.35)
3”11 B '
oF,
au22 - —f7
oF,
By
OF, _ OF _OF _OR _OR _0F _ OR _ .
8t B 0.’13 B 5u N 6U2 N 8U11 N 8u12 N Bun o /
Using (4.35) it is easy to see that
OF,
> &5 (o) 807520) = —(faruz + fou(uz)® + foua)&l (yo)
k=1
- (fzuu2 + fu"’ (u2)2 . fuu22)§:13(y0)
— (fe + 2fuu2)€5 (%o) + €5 (o) — fE(%0), (4.36)
OF,
Y & (vo) alz(fo) = (o) =7, (4.37)
k=1

where

779) =+ [ — Euy — Brua,
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> & (%) 81;02(,?0) = O(—frouz — fru(u2)® — fruaz)

k=1

+ (—fruta — fu2(u2)2 — fuuas)

+ nél)(—f = quu2) + 7]11 - 7722)f,

where n{", ¥ and n$2) are as in (1.58), and

aFo(yo)

1=1 k=1

+ n(_fxuu2 - fu2 (u2)2 - fzuu22)

+ Ugl)( Ja— 2fuu2) + 7711 - 7]22)f]

Putting (4.36), (4.37) and (4.39) into (4.26) gives the equation

0 = (4.36) + (4.37) + (4.39).

8 8 ’
> 2 yai(éo ¥o) g% ) = Y0 furts ~ foula)’ — foum)

99

(4.38)

(4.39)

(4.40)
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As we did for the exact groups, we shall first consider the case for the arbitrary function
f(z,u), then other particular cases of the function f.

The case when f is arbitrary:
We have the infinitesimals (see (3.20))

£:a07 9:07 77:07

which correspond to (4.25) and (4.27);. Thus

fé(z) =¢ = Qo,

&(z) =0 =0,

Sz} =n =0,

&Gla) =g =0,

g() = =, -
8lz) =my =0,

&le) =my =0,

&(z) =niy =0. )

We now turn to solving (4.26) and (4.27),. In view of (4.41), equation (4.40) now becomes

0 = [fz2u2 I fru(u2)2 + foZZlff(yO)
+ [feut2 + fu2(u2)2 + fuun]f?(yo)

+ [fo + 2fuw2) € (vo) + €5 (vo) — f€5 (vo)- (4.42)

By identifying with zero the coefficients of 1,us, (u2)? and us, in (4.42), we obtain

N

(i) fo€8(yo) + & (wo) — fE (o) = 0,

(i) fe2€l(yo) + foui(y0) + 2fuéi(v0) =0,
(i) foul(v0) + fur€w0) =0,

(iv)  fo€3(yo) + fubi(yo) = 0.

From equations (iii) and (iv) in (4.43) we have

(4.43)
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£ (yo) = & (y0) = 0 (4.44)

unless

Fudon = Jufua. (4.45)

Since f is arbitrary, it is obvious that (4.45) does not apply at all.
Putting (4.44) in (4.43i1) we obtain

& (y0) =0 (4.46)

since f, # 0. Consequently, from (4.431) we have

/ £ (yo) = fE (¥o)- (4.47)

Thus £7(yo) may be assumed to be arbitrary. We also note that in view of (4.34) and

(4.26), £1(yo), &1 (vo) and €] (yo) will also remain arbitrary since their coefficients in (4.26)
vanish.

Finally we now find f; = (f}, fZ,..., f2). For this we solve the system (see (2.24) and
(2.25))

E fi (z,0) + & fo) (4.48)

under the initial conditions

flk(z> a)|a=0 = 07

where fo = (f3,f2,...,f5) is known from (3.20).

First we note.that in view of (4.34), the functions {(z) and & (z) in (4.32) are only
supposed to depend on the first three variables in z, namely ¢,z and u. Consequently in
(4.31) only the first three components of fo and fi, that is f3, 2, /5 and f}, f2, f, have
to be determined. Furthermore, these components can also be assumed to depend on ¢,z
and v only. In this way, in the system (4.48), we are only interested in the first three
equations and the respective initial conditions. Now, (3.20) will give

fallnu0)= 2= &, (4.49)
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where c is an arbitrary constant and a is the group parameter.
In view of (4.41), (4.44), (4.46), (4.47) and (4.49), the system (4.48) now becomes

dfi(z,a)

s &1(fo(z,a)) (4.50)
and the first three equations are
dfi(t )
W = h(t+ ca,z,u,a),
2
gila e o (4.51)
da
df3(t,z,u,a)
b Ll e RN )
da 2

where h is an arbitrary function while ¢ € R is the group parameter. In view of (4.48)
the system (4.51) has to be solved for the initial conditions

fi(t,z,u,0) = fi(t,z,u,0) = fi(,z,u,0) = 0. (4.52)

Thus (4.51) and (4.52) give

a

Filt, &, u;a) '=/ h(t + ca,z,u, a)de,
0

f12(t7x7U'>a') = 0, (453)

Putting (4.53) into (4.31) we get the first three components in the approximate Lie groups
of equation (4.30) for arbitrary f as

a

t %t+ca+e/ h(t + ca, z,u, a)da,
0
(4.54)

Next we consider a particular case when f is of the form

f(z,u) = fi(z) fa(w). (4.55)




CHAPTER 4. THE STABILITY GROUPS OF Urr + eUr = [F(X,U)Ux]x

It will suffice to consider the case when

f(l" u) = c(u)(box — b1)2+k0/b0

(see (3.54)) with the infinitesimals

and the corresponding groups of transformations

2k, 2ky . _
11 — t* o _ koa/kl
fO kO + (t kO )6
. (boz +by)eb® —b
fi=a"="= Z %

£5(2) = niV = —bous,

Eo( ) = 7711) = kgull,

k
&(2) =ty = (3 — bo)urz,

fo( )= 7722 = —2bouz; ]

and the prolonged Lie group of transformations

f§ =ui; = (1 + koa)uys,
ko

fo = uj, = [1 5 (3 - bO) ]ul%

fg = Upy = (1 - Qboa)uzz-

)

7
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(4.56)

(4.57)

(4.58)

(4.59)

(4.60)
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Introducing (4.57) — (4.60) into (4.26), we obtain

0 = —[freuz+ fxu<u2)2 + fxu22]§f(y0)

- [fruUZ + fu2(u2)2 T qu22]§f(y0)

ko

— [fo + 2fuus)€3 (y0) + &5 (v0) — f& (o) + 5 U1

— Y3 fa2(boz + b1) — yrbo fo(boz — by)

+ y2ko — 35 (boz + b1) + 2ySbo f

— Y1 fo2 (boz + b1)uz — Y} fr2u(boz + b1)us

+ [Yibo fou — 203 fou(boz + b1)]ua + 2y5bo fu(boz + bo + 2b; )us

+ [yilzbOfxu - yfboiffﬁ - y%b1f1:2u](u2)2 + [nyflﬂ - y?(bo.’ll + bl)](u2)2

- y?fzu(bofl? + by )uga. (4.61)

From the coefficients of 1,uy, us, (uz)? and ug, in (4.61) we obtain, respectively, the fol-
lowing equations:

—yy fa2(box + b1) — yibo fo(boz — by) + yoko
— Yy fo(boz + b1) + 2uy5bo f — fo&7 (o) + €3 (wo) — fE3 (o) = 0, (4.62)

ke = 0, (4.63)

— fo265 (Yo) — foubs (Y0) — 2£u€5 (Yo) — (¥i far + Y3 faru) (boz + b1)

. y?fzubo - Qfozu(box + bl) + nybofu(boilf + bo + 21)1) = 0, (464)

_‘fz'ué.f(yO) - fu2 é‘f(yO) + y12b0f:1:u - y?boiﬁfﬁ ary y?blfzau
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o= yffxuz (bOI + bl) + 2y:13fu2

I

0, (4.65)

~f261(y0) = fubi(yo) + y1 fobo(1 + ) — yibifor — 4} fru(boz + b1) = 0. (4.66)

From the condition (4.27) we have

0 = u + yf(_faﬂui% — Fu (u2)2 - fzu22)
+ yf(_f:cuu2 - fu2(u2)2 - fuu22) + y?("‘fz - 2fuu2)

+yr — i f. (4.67)

The following equations arise from the coefficients of us, (us)?, uz, and 1, respectively:

N

yffrz + y?fzu + Qy?fu =0,
yffu"’ + yffu? = Oa

) s (4.68)
Yifutyifu =0,
yr +uf=0. )
From (4.68) we get
2 3
Y1 = ~Yi»
o } | (4.69)
y1 = -yt

where y? is arbitrary.

Differentiating (4.66) with respect to u and subtracting the result from (4.65) yields
3Y2bo fou +2y3fi2 =0
since fgy # 0, fu2 # 0 from (4.56).
From (4.70) and (4.68) we get
2 o 205, = 37 = 0. (4.71)

Putting (4.70) and (4.71) into (4.64) and (4.66), respectively, yields
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F2€(y0) + fous (o) + 2fu€3 (v0) = 0, (4.72)

f3€1 (o) + fuéi(yo) = 0. (4.73)

Differentiating (4.73) with respect to z and subtracting the result from (4.72) gives

—2fu&i(yo) =0 = &(yo) = 0. (4.74)
From (4.73) we have
& (yo) = €f(yo)§ﬁ, fz #0, (4.75)

where £(yo) is arbitrary.

We also have from (4.61) that yi,yf and y] are arbitrary since their coefficients vanish.

Introducing (4.63), (4.70), (4.71) and (4.75) into (4.62), we obtain

& (yo) = (& (o) — 2b0y?) f + yi(boz + b1) f, (4.76)

where £3(yo) is arbitrary.

In view of (4.34), we note that &} (yo), & (yo) and €] (yo) are arbitrary since their coefficients
in (4.26) vanish. Thus we so far have established the following:

€1(yo) = arbitrary,

& (yo) = —ff(yO)%,

& (yo) = arbitrary,

&(yo) = arbitrary, (4.77)
& (y) =0,

& (y0) = & (y0) f + y3(boz + b1) fz — 2boy; f,

€l(yo) = arbitrary,

& (yo) = arbitrary. j

Finally we now find f; = (f}, fZ,..., f2) by solving the following system of O.D.E.s (see
(4.48)):




df}((lz,a) : 8§o(fo) iz, 0) + E(fo),
dff((;;a) _ 5§o(f°)fl( a) + €(fo),
R B . sy,
dfi‘;z,a) _ %(fo) fi(z,) + E(fo),
dffc(izya) _ a’fo(f")fl( a) + & (fo),
df?((iz,a) i 350(f°) fil(z,a) + & (fo),
dffc(;,a) _ 55o(f°)f1( a) + €(fo),
df?éz,a) _ 3€o(fo)f1( a) + & (fo)-

CHAPTER 4. THE STABILITY GROUPS OF Urr + eUr = [F(X,U)Ux|x

First we solve (4.78). From (4.57) and (4.58) we see that

k 2k 2k
E2)==-2t+k and fl=t"="Z4(@t-"2
2 kO ko

)e——ko a./kl
which implies

k
&(f) = (kat — —é‘it Je~koolkt 4k — kot

In view of (4.77) we may let

E(f3) = hi(t*,,u,a) since it is arbitrary.
Differentiating (4.86) with respect to ¢ yields

9o (fo)

8t = (kl == k‘ot)e_koa/kl = kl,

which, when put into (4.78), gives the O.D.E.
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(4.78)

(4.79)

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)
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dfi (2, a)
da

We observe that (4.87) is a first order linear O.D.E. of the form

= [(kl == k‘ot)e_koa/kl = kl]fll(z, a) + hl(t*, x,u, a).

dfy

L+ P(a)f} = Q(a)

with
P(a) = (kot — ky)e™%/® 4 k)

Thus the integrating factor of (4.87) is efP(“)d“, where
k2
/P(a)da = (El— — kyt)e~Roolk 4 kg,
0

and hence

fi(z,a) = e /a e hy(t*,z,u,s)ds + c(z)e™ e,
0
where

kr k2
Aa, = (—1 —_ k‘lt)e_koa/kl + k1a7 As = (___1_ _ klt)e—kos/kl + k’ls,
ko ko

From the condition f{(z,a)|s=0 = 0 we have
fl(z,0) =c(z)e™® =0 = ¢(z)=0.

Finally (4.88) now becomes

fi(z,a) = e~4e /a e hy(t*, z,u, s)ds.
0
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(4.87)

(4.88)

(4.89)

(4.90)

Putting (4.58) and (4.90) into (4.31) we get the first component in the approximate Lie

groups of equation (4.30) for

f(.’L‘, u) = c(u)(boz + b1)2+ko/bo

2k,

)e—koa/kl + 6[6—140/0' eAshl(t*,x,u,S)dS],
ko g

(4.91)
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where A,, A, are as in (4.89) and t* is as in (4.58).
For the solution of (4.79) we observe from (4.57) and (4.58) that

1

8D = llor+b)e™ o+
0
0&(f2 1
é.oa(fo) = E (2()0.’1) + bl)eb"“ = bl]

Furthermore, from (4.58) and (4.75) we have

ff(fg’) = hg(u",t,z,a) = hs(t,z,u,a), since u™ =u

= ff(fg) = —h3(t,x,u,a)%.
fu  (u)(boz + b)

t 2= .
Bu = olw)(2b 1 o) from (4.56), hence

d(u)(boz + b1)
C(u)(2b0 + ko)

Putting (4.92) and (4.94) in (4.79), we have the O.D.E.

& (fo) =

dfi(z,a) 3 1

da bo

__c(u)(boz + b1)
C(u)(?bo + ko)

(2boz + by )e™® — by]f2(z, a)

h3(t7 T, U, a’)’

which is easily solved to give

fi(z,0) = —e B |

a B {c (u)(boz + bl)] ha(t, z,u,s)ds + c(z)eBe
0

c(u)(Zbo + k‘o)

where

1 1
B = 351~(2boz + bi)e™® + bobral, B, = 72 [—(2boz + b1)e”* + bobys].
0 0

From the condition f3(z,a)|s=0 = 0 we have
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(4.92)

(4.93)

(4.94)

(4.95)

(4.96)
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F2(z,0) = c(z)e_B“ =0 = z)=0,

and finally we obtain

fi(z,a) = —e—Ba/Oa Bs {Z((Z))((;Z:i:;)) } hs(t,z,u,s)ds. (4.97)

Thus the second component in the approximate Lie groups of (4.30) is

d(u)(boz + by)
c(u)(2bo + ko)

1 a
Tt = b—[(box +by)e —by] +e [—e”B“/ goe {
0

0

}hg,(t,x,u,s)ds] . (4.98)

Similarly, it can easily be shown that the solutions of equations (4.80) — (4.85) yield,
respectively,

f(,0) = [ halt,,u,5)ds,
0

a k
Fi(z,0) = ekoa(4+koa)/8/ gkos(4tkos)/8py (o) 4 ?Ouls,t,z,u,ul,s)ds,
0

a
5 —boa(l—boa bos(1—bos
blea) =& (1o )/0 ebos(I=bo) (4 — bouss, t, T, u, U1, uz, 5)ds,

Flza) = eC“/ e~ [hs(uly, t, 2, u, us, Us, ur1, ) + D fz — E flds,
0

L
2
D = yf(boa + bl); E = 2b0y?,

1
kia®, Cs=kos+ —k2s?,

where C, = koa + 5

ul, = ui1 + koauyy, y§ = arbitrary constant,

a
f17(z7a) = e_Ga/[; eG3h7(u1‘2,t,x,u,ul,u27u11,u12,3)d8,

k 1,k k 1 k
where G, = (?0 —bo)a + 5(?0 - bo)a2, &y = (—2(Z —bo)s + 5(50 — bo)s?,
k

0
uip = (5 — bo)aurs,
2
8 Jo [* 0
fl (Z,Cl) =e€ “/ € shg(Uqg == 2b0au22,t,x,u,u1,uz,uu,ulz,un,s)d.s.
0

Finally we get the last six components in the approximate Lie groups of (4.30), respec-
tively, as
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e/” ha(t, 7, u, 5)ds, (4.99)
0

U1 + @ula + 6|:ekoa(4+koa)/8/

< 6_k03(4+kos)/8h4(uza ta T, U, U, S)dS] ) (4]‘00)
0

ug — bouga + e[e_b"“(l_b"“)/o ebos(1=boS) b (w2 ¢z, u, uy, ug, s)ds] , (4.101)

u11(1 —+ koa)

-+ e[ec“/a e~ hs(ul,,t, T, u, ur, ug, Uy, 8) + Dfy — Ef]d.s] , (4.102)
0
k
Uiz + (—2-(1 — bo)uiza
(4.103)
- e[e‘G“/a eG‘h7(u*{2,t,x,u,ul,u2,u11,u12,s)ds] , (4.104)
0
U — 2bougza
(4.105)
- e[e‘J“/ eJ’hg(ugz,t,x,u,ul,u2,u11,u12,u22,s)ds] i (4.106)
0




Chapter 5

Conclusion

In this thesis we have extended the study of the stability of Lie groups of nonlinear wave
equations of the form

ute = [f(u)tgz, (5.1)

where f is an arbitrary function, to the significantly larger variable coefficient class of the
type

un = [f(2, u)us]s (5.2)
under arbitrary large perturbations of the form
Uy + eur = [f(z, w)ug)z (5.3)

As motivated in the Introduction (Chapter 0), the perturbation eu;(¢,z) is a standard
model of friction.

The main results obtained in this thesis include:

- the derivation of the exact Lie groups of the nonlinear wave equation (5.2) without
the complicated assumptions made in the study of Torrisi and Valenti (1985).

- the determination of exact Lie groups of the perturbed nonlinear wave equation (5.3)
for both arbitrary and specific functions f(z,u). These are new results and hence
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an improvement on the existing literature on the subject.

- the derivation of the stability of Lie groups of the perturbed nonlinear wave equation
(5.3) for various forms of f(z,u). This problem had not been studied before.

The thesis is also of scientific significance because it opens the way for further research in
still larger classes of nonlinear hyperbolic variable coefficient equations and their stability.




Stability of Lie Groups of
Nonlinear Hyperbolic Equations
by

N. Omolo Ongati

Supervisor:  Prof. Elemer E. Rosinger
Department: Mathematics and Applied Mathematics
Degree: Ph.D.

Summary

In this thesis the stability of the Lie group invariance of classical solutions of large classes
of nonlinear partial differential equations is studied. We give a theoretical framework for
the construction of approximate groups for nonlinear partial differential equations. In
particular, stability symmetries for the perturbed nonlinear wave equation

Ut + €Ut = [f(‘T7 u)ux]r

are presented here for the first time.

This research is a particularly important stability study, since it applies to large classes
of — earlier unknown — classical solutions of nonlinear partial differential equations as well
as to their symmetries. These equations and solutions model, amongst others, important
laws of nature.

Chapter 1 is devoted to the general concepts of Lie group theory. A detailed account is
given of the applications of Lie groups to both ordinary and partial differential equations.
To date the only known method of obtaining particular solutions to complicated systems
of differential equations is by Lie group symmetry analysis. This is now well known in
the literature.

The Lie group symmetry analysis, however, has some limitations. Any smuil perturbation
of an equation disturbs the group admitted by it and this reduces the practical value
of group theoretic methods in general. The theory of stability analysis presented in
chapter 2 overcomes this problem. This technique, originated by N.Kh. Ibragimov around

1i4




1988, generates groups that are stable under small, or even classes of more arbitrary,
perturbations of the differential equations involved.

The exact Lie groups admitted by the nonlinear wave equation

ue = [f(z,u)uzls

and the corresponding perturbed equation are discussed in chapter 3. Finally, in chapter
4, the construction of stability groups admitted by the perturbed nonlinear wave equation
are set out in detail.
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Opsomming

In hierdie proefskrif word die stabiliteit van die Lie-groep invariansie van klassieke oploss-
ings van groot klasse nie-lineére parsi€le differensiaalvergelykings bestudeer. Ons gee 'n
teoretiese raamwerk vir die konstruksie van benaderde groepe vir nie-lineére parsiéle differ-
ensiaalvergelykings. In besonder, stabiliteitsimmetrieé vir die geperturbeerde nie-lineére
golfvergelyking

Uy + euy = [f(z, u)uz]s

word hier vir die eerste keer gegee.

Hierdie navorsing is veral belangrik as ’'n stabiliteitstudie, want dit is van toepassing
op groot klasse — voorheen onbekende — klassieke oplossings van nie-lineére parsiéle dif-
ferensiaalvergelykings sowel as op hulle simmetrieé. Hierdie vergelykings en oplossings
modelleer, onder andere, belangrike natuurwette.

Hoofstuk 1 word gewy aan die algemene begrippe van Lie-groep teorie. Die toepass-
ings van Lie-groepe op beide gewone en parsi€le differensiaalvergelykings word in detail
behandel. Tot op hede was die enigste bekende metode om partikuliere oplossings van in-
gewikkelde stelsels differensiaalvergelykings te vind deur middel van Lie-groep simmetrie-
analise. Dit is nou goed bekend in die literatuur.

Die Lie-groep simmetrie-analise het egter sekere beperkings. Enige klein perturbasie van
'n vergelyking versteur dic ooreenstemmende groep, en dit verminder die praktiese waarde
van groep-teoretiese metodes in die algemeen. Die teorie van stabiliteitsanalise wat in
hoofstuk 2 uiteengesit word, oorbrug hierdie probleem. Hierdie tegniek, wat rondom 1988

116




deur N.Kh. Ibragimov ontwikkel is, genereer groepe wat stabiel is onder klein, of selfs
Klasse van meer arbitrére, perturbasies van die betrokke differensiaalvergelykings.

Die eksakte Lie-groepe van die nie-lineére golfvergelyking

uy = [f(z, U) gz

en die ooreenstemmende geperturbeerde vergelyking word in hoofstuk 3 bespreek. Laas-
tens, in hoofstuk 4, word die konstruksie van die stabiliteitsgroepe van die geperturbeerde
nie-lineér golfvergelyking in besonderhede uiteengesit.
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