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ABSTRACT

The convexity, closure and compactness of the numerical range among
other properties constitute a considerable literature in operator theory.
The properties of the essential numerical range and how they are related
to the familiar numerical range are studied. The study underpins the
role in operator theory. An outline of the basic concepts and defined
terms are provided. Similarly, proofs for simple propositions and theo-
rems used in the sequel are made in Chapter One. Chapter Two of this
work is devoted to the properties of the numerical range. Properties, for
instance, convexity, unitary invariance and the projection property have
been looked at. The connection between the spectrum of an operator and
the munerical range of the operator has also been given. The properties
of the essential numerical range have been examined in  Chapter Three.
The proofs of various properties studied, for instance, convexity have been
outlined. In Chapter Four, the relationships between the numerical range
and the essential numerical range have been studied. The proofs of the
theorems by J. Christophe and J. Lancaster have been shown. Finally,
the roles of the essential munerical range in operator theory have heen
discussed. Conclusions and recommendations for further research have

also been given.



Chapter 1

Introduction

In this Chapter. we begin by setting up the basic terms needed to dis-
cuss the numerical range and the essential numerical range. We give the
definitions of the numerical range, essential numerical range, spectrum,
essential spectrum as well as the spectral radius and the the essential

numerical radius.

1.1 Basic concepts

Definition 1.1.1 (Hilbert Space)

A Hilbert space, H, is a vector space endowed with an inner product and
associated norm and metric, such that every Cauchy sequence in ‘H has a
limit in H. A Hilbert space is also a Banach space. A Hilbert space has
an inner product structure.

Definition 1.1.2 (Algebra)

It A is a vector space over the set of complex numbers, C. then 2 is called
an associative algebra iff it is equipped with a multiplication operator

satisfying:
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e a(bc) = (ab)c
o a(b+c) =ab+ ac, (b+ c)a = ba+ ca

o (af)(ab) = (aa)(BD)

(We simply say an algebra instead of an associative algebra) 20 is called

a conunutative algebra iff a,b € 2 implies ab = ba.

B Wis called a subalgebra if it is a linear subspace and a,b € B =
ab € B. Clearly, a subalgebra is also an algebra. We say that 2 is unital

if it possesses an identity.

Given that K is either a set of complex numbers, C. or real numbers, R,
a normed algebra over K is an algebra 2 over K, which also carries a norm

||.ll, which is sub-multiplicative, in the sense that:
o |lxyll < |l Nyl for all .y € XA

Let V be a vector space. Clearly. the set of linear maps in V. denoted
by L(V). is an algebra. An identity of an algebra. 1. is an element g
such that @ = [a = al. for all @ € A, Any algebra has at most one
identity. In fact, if I}, I, are identities, then [, = I, [, = I,. We say that
20 is unital if it possesses an identity.
Definition 1.1.3 (Banach Algebra)
We recall that an algebra 2 over C is called a normed algebra, if it is

equipped with a norm 2 3 a — [la|| € R such that.

labll < lal[|[bl
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It is called a Banach algebra if it is complete in the norm. ||.||

Examples

(1). If X is a normed vector space, denote by B(X) the set of all
bounded linear maps from X to itself (the operators on X'). Then B(X)
is a normed algebra with the point-wise defined operations for addition

and scalar multiplication. Multiplication given by (wu,v) — uov, and the

norm is the operator norm:

[Ju()]]
[]]

= S’LL[’)H_,;HSIH'U,(.'l‘)H

”“H = SUPr#0

(2). It S is a set, 7°(5), the set of all bounded complex valued func-
tions on S, is a unital Banach algebra where the operations are defined

point-wise:

(f+9)x) = f(2x)+g(x)
(fa)le) = f(r)glx)
(Af)(x) = Af(x).

and the norm is the sup-norm;

H/LHDC - '%Lp:rESi.f(:wl

Definition 1.1.4 (Ideals)

Let 2 be some algebra over a field K.
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(a). A subset J C U is called left ideal in A, if

e J is a linear subspace of 2A:

e ar € J,VaeA, v e

(b). A subset J C %0 is called a right ideal in 2, if

e J is a linear subspace of 2A;

e ra€J. Vaed v e

(¢). A subset J C A is called a two sided ideal in 2, if J is both a left
and right ideal in 2. Of course, it 2 is commutative, these three notions
coincide. In the study of (Banach) algebras, one deals almost exclusively

with two sided ideals. The reason is the following;

FACT: If J is a two sided ideal in an algebra A, then the quotient
space A/J carries a unique algebra structure, which makes the quotient

map

Q:Aza — o eA/T

an algebra homomorphism. Moreover. if A has « unit 1, and J C A, then

the algebra A/J has unit 1 = Q(1)
Theorem 1.1.5

Let 2 be a Banach algebra, then;

(7). If J is a left (or right. two sided) ideal in . then so is its closure,

Y
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(¢i). If A Is a unital Banach algebra. and J C %4 Is a left (or right, or

two sided) ideal, then Jc A

(¢i1). If J is a closed two sided ideal in 24, then when equipped with
the quotient norm, the algebra 21/J is a unital Banach algebra. Moreover,

if A is unital, and J C 2, then /3 is a unital Banach algebra.

PROOF. (7). Assume J is a left ideal. Clearly, J is a linear subspace, so
we only need to check the second condition. Fix ¢ € 2 and @ € 3, let
us prove that ar € J. Since r € J. there exists a sequence (1,)>2, C J,
with @ = lim,, _,~x,. Then the continuity of the left multiplication map

L, : A — 2 gives,

ar = L,z
== M”nﬂn,—moLa.:L"n.

= s sl

Since ax, € J. Vn > 1. this forces ar € J. In the case where J is a right
ideal, the proof is identical. In the case where J is two sided. we use the

above cases.

('1'1'). Assume J is a left ideal. We argue by contradiction. Suppose
J = 2. in particular. it follows that J contains 1. the unit in (. Since
the set GL(A) of all invertible elements is open. and contains 1, the fact
that 1 belongs to J gives the fact that the intersection GL(A)(J is non-
empty. In particular, this means that J contains some invertible elements

of . Of course, if we define @ = z7! € A, we have J 2 ax = 1. Since J
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contains 1. it will contain all elements of 2. which contradicts the strict
inclusion that J C A. In the case when J is a right ideal, the proof is

identical. In the case when J is two sided. we use the above cases.

(i11). Let us prove the first section. We know that the quotient space
20/3 is a Banach space, so the only thing we need to prove is the second
condition in the definition. Start with two elements v, w € 2(/J, and let

us prove the inequality;

lewllaz < vllagg-llwllas

For each € > 0 . we choose a, € v and b, € w. such that:

laell < lvllayz +e€

and

bl < Nlwllayz + ¢

Since a.be € vw, we immediately get
lowllazs < llacbell < flaell-[1bell < (lvllasz + €)-(lvllaz +€)

Since the inequality |[vw|la/; < ([[vflajz +€).(lvllasz + €) holds for all

e > 0 it will clearly imply |[vw|la/z < |[vllayz-llw||ayz
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Definition 1.1.6 (Involution)

Let 2 be an algebra. Then an involution on %A is a map:

*x:2A = 2

a — o

satisfying

o (a*) =aforallaec

o (aa+ Bb)* = aa* + 50 for all a.b € A and all complex numbers «

and 3.

o (ab)* =b*a* for all a.b e A.

If A carries an involution, we say that 20 is an involutive algebra or

a* —algebra.
Example

Let S be a subset of a * — algebra. 2. We set S* = {a* : a € S}, and
it " =5, we say S is self-adjoint. A self-adjoint sub-algebra S of 2 is a
* — subalgebra of A and is a * — algebra when endowed with involution
got by restriction.
Definition 1.1.7
A (™ algebra is an involutive Banach algebra 2 \ﬂ'ith a norm satisfying

the relations;
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o |AB]| < [ANIBI
o [l ATl = llAll

ATA| = || AP

If a C* algebra has unit element then it is called a unital C* algebra.

Examples

(1).The following algebras are C* algebras with involution given by

fe
(a). £>°(S) where S is a set:
(b). L>°(, p), where (€2, 1) is a measure space:
(¢). Cp(2) where Q is a topological space:
(d). B+(€) where Q is a measurable space.

(2). The scalar field C is a unital C* algebra with involution given by

the complex conjugation A — A
(3). B(H) is a €™ algebra.

To show this, we argue that B(H) is an involutive Banach algebra
using the Hilbert space adjoint as our involution. That is, if H is a
Hilbert space. then the map that sends a continous linear operator 1" to
its Hilbert space adjoint T is an involution. Thus B(H) is an involutive

Banach algebra.

We now check that equipped with this involution. B(H) satisfies the

C* equation,
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1T = IT|®

for all T € B(H) If T € B(H) then [|[T*T|| < ||T]|*. For the reverse

inequality, we observe that;

IT|I> = supjzj=|Tz|?
= sup|g=1{Tz, Tx)
= SUP|a|=1 <T*TJ?., .l'>
— suppag [T T

= |7

Thus B(H) is a C* algebra.
Definition 1.1.8
Let 2 be a C™ algebra. A linear functional ¢ : 2 — C is called positive
if o(a) > 0 whenever a > 0 for all a € (. More generally, if B is a C'*
algebra then a linear map ¢ : A — B is positive if ¢(AT) C B*
Definition 1.1.9
A state of a (" algebra is a positive linear functional of norm 1.
Definition 1.1.10
An operator K € ‘B(H) is said to be compact if for every bounded
sequence (i, ) of vectors of H the sequence ([\’.’1',;) has a convergent sub-

sequence.
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Definition 1.1.11

The subspace K(H) of all compact operator is an ideal of B(H).

In order to prove this, we need to show that, if A, B € K(H) and
T € B(H) then aA. A+ B, TA and AT are all in K(#H). That is, for any
bounded sequence (.r,,). we must show that (wAr,). ([A+ Blx,). (T'Ax,)

and (AT x,) all have convergent subsequences.

Since A is compact, (Ax, ) has a convergent subsequence (Ax,, ). Then
clearly (aAxr, ) is a convergent subsequence of (aAx,) showing that a4 is
compact. Also, (x,,) is a bounded sequence and so, since B is compact,
(Bx,,) has a convergent subsequence (mej). Then ([A + B]Cl?n.,;_l.) is a

convergent subsequence of ([A + Blz,), showing that A + B is compact.

Again, since T € B(H). T is continous and so (T'Ar,,,) is a convergent
subsequence of (T'Ax,) showing that T'A is compact. The proof for AT
is slightly different. Here. since (r,,) is bounded and [|[Ta,| < ||T|].||z.||
we have that (7x,) is bounded and so. since A is compact, (AT x,) has a
convergent subsequence, showing that 7°4 is compact.

Theorem 1.1.12

If H is a Hilbert space and B(H), the algebra of bounded operators on
H, let K(H) be the subspace of B(H) formed by all compact operators,
and [T] be the coset of T € B(H) in the Calkin algebra then the quotient

space B(H)/K(H) is an algebra on the complex plane.

PrOOF. Denote the quotient space B(H)/K(H) byv:
BH)/K(H) = {[T]: T € BH)}.

where,
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T ={T+K:KeK(H)}
for all T, N € B(H) and A € C,
[T) + [N] = [T + N = (&),

for let [T] and [N] be defined by,

T] = {[T+K]: KeKH)}
and [N] = {IN+K]: K e K(H)}

Then,

T+ [N] = {T+K)+(N+K): K¢ K(H)}
= {((T+K+N+K:KeKH)}
= T+ N+K+K:KekK(H)}
= {(T+N)+RK:KE€ K(H)}

= [T+ K]

© Also, AT = [AT] = (ii).

Let [T] be defined as above. then,

ATl = {MT+K): K€ K(H)}
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= [\T+AK: K e K(H))
= DN+ K:KeK(H)}

— [T

And lastly, [T][N] = [TN] — (iu).

Let [T] and [N] be defined as in (i) above then,

[TIN] = {(T+K)N+K):KekK(H)}

= {(IN+TK+KN+K2: K € K(H)}

= {TN+K:KeK(H)}

= [TN]

The quotient space B(H) /K (H) provided with equations () and (i) is
a vector space on the complex plane and the map defined on B(H)/K(H ) x
B(H)/K(H) into B(H)/K(H) by ([T).[N]) — [TN] is associative bilin-
ear with unit element [[]. Hence B(H)/K(H) is an algebra on complex
numbers with the unit element [/]. O
Definition 1.1.13
For a bounded linear operator T on a separable Hilbert Space. H. the

numerical range of T € B(H) is by definition the set,

W(T) := {{Tz,z) :z € H,|z|| = 1}

The following properties of the munerical range are immediate:
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W(al +8T) = a+ 3W(T)
W(T) = {AAeW(D)}

WU TU) = W(T),

(see, for example [10])
for ., § € C and for any unitary operator U. An element U € B(H)
is called unitary it U is invertible and its inverse given by U*.

Definition 1.1.14

The numerical radius w(T") of an operator T on H is given by,

w(T) = sup{|Al, A\ € W(T')} (see. [10])

Notice that. for any vector r € H. we have,

Tz, z)| < w(T)|z|?

i Definition 1.1.15

‘ The spectrum of an operator T € B(H). denoted by o(T') is defined by,

o(T)={N:T — X is not invertible}
Proposition 1.1.16
Let 'H be a Hilbert space and T € B(H). Then:

o(T)=a(T") = {A:xca(T)}
PrOOF. If A is not contained in o(T). let R = (A=T)"". Forall 2,y € H,

(,y) = (R(A=T)z,y)
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= ((\-T)z,R'y)

= (&.(A-T)Ry)

Thus (A —T)*R* = I, and similarly. R™(A - T) =1 But (A=T)" =
A — T, so that;

R = (A-T9)7"

= o=
Thus p(T)* C p(T*). Moreover.
p(T) € p(T7)
= p(T)

Tn other words, p(T*) C p(T)*. We conclude that o(T) = o(T*)".

Definition 1.1.17

The point spectrum of an operator T" € B(H), 0,(T) is defined as;

o,(T)={X€a(T).Tf=Af for some feHt}

Those A not in the spectrum o(T) are called the resolvent set, p(T) of T’
and thereupon ,the operator (1" — M )~!is called the resolvent operator
for T

Definition 1.1.18

The spectral radius r(T) of an operator T on H is given by,

r(T) = sup{|A| : A € o(T)} (see, [10])
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Definition 1.1.19
If11:B(H) — B(H)/K(H), defined by. T — T + K. K € K(H)

is the map from B(H) onto the Calkin-algebra, B(H)/K(H), then the
essential numerical range of T denoted by W.(7T") is the numerical range

of the coset containing 7" in the Calkin algebra.

Stampfli, Williams and Fillmore [5] gave the definition of W.(T) as
follows:

W.(T) = VW (T + K) where the intersection runs over the compact
operators K € IC(H).
Definition 1.1.20
The essential spectrumn, o.(7T) is the spectrum of the coset [T in the

Calkin algebra. More precisely.

(T) =Ngexanl o T+1\>} where T € B(H). (see,[11])

Definition 1.1.21

The essential numerical radius w.(T) of an operator T on H is given hy.

we(T) = sup{|A[. A € W(T)}
Proposition 1.1.22
Let H be a Hilbert space and T € B(H). Theno(T) = o.(T)Jo,(T) J o, (T*)*,
where o,(T*)" = {\: A € 0,,(T")}.

PROOF. Suppose A is not an element of | Jo,(T') | Jo,(T%)*. Then nul(T—
A) = nul(T—X)" = 0. Thus (T"— A) is injective and has dense range. If A
is not an element of o.(7'), then (7"— \) is Fredholm and thus ran(7T — \)

is closed. But then (7" — A) is bijective and hence A is not an element
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of o(T). Thus o(T) C o.(T)Jop,(T)Jop(T*)*. The other inclusion is

obvious.

Definition 1.1.23

Let H be a Hilbert space and T° € ‘B(H). Then the semi-Fredholm
domain p, (1) of T is the set of all complex numbers A such that A1 —
II(7T) is either left or right invertible in the Calkin algebra. If u \6 C,
then g is called a (77) - singular point if the function A — Py p_y) is

discontinous at p. Otherwise, y is said to be (7)) - regular.

If € psp(T) and p is singular (respectively, p is regular), then we
write p € pSp(T), (vespectively, phn(T))
Theorem 1.1.24
Let T € B(H) and suppose that X\ € da(T). Then either A is an isolated

point or A € o.(T).

PROOF. Suppose A is not contained in o (1), Then by Proposition 1.1.22,
we may assume that A € o,(7) (otherwise consider A and T*). Since

A € 9o (T), we can find a sequence {A},, C p(T') such that A\ = lin, oA,

Since ker(T — \,) = {0} for all n > 1 while ker(T — \) # {0}, we
conclude that A € p3.(T). Since p(T) has no accumulation points in
por(T), and since A is not contained in o.(7"), we conclude that A is

isolated in o(7).

Definition 1.1.25
Let A€ B(H), A>0. The trace of A is:
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Tr(A) = Z(Avl.zn) € [0, oc]

i

If Tr(A) < oo then A is called trace class.

Definition 1.1.26 (Eigen values and Eigen vectors)

If © is a non-zero vector such that T is a scalar multiple of v, then the
line through 0 and ¢ is an invariant set under 7" and © and is called a
characteristic vector or eigen vector. The scalar A such that Tv = Av is
called a characteristic value or eigen value.

Definition 1.1.27 (Dual of a normed space)

Let X be a normed vector space. The dual space to X, denoted by X* is
the space of bounded linear functionals. In other words, X := B(X,K).

clearly,

o]l = supp<il{v, )] < o0

Definition 1.1.28
An operator T is called normal i\t 77T =TT, Normal operators may be
regarded as a generalization of self-adjoint operators 17" in which 7™ need

not be exactly 7" but commutes with 7". (see, [10])

1.2 Statement of the problem

First. we review the properties of the munerical range available in litera-

ture. The relationship between the spectrum of the operator T' € B(H)
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and the numerical range, W (7). of the operator is then reviewed. Sec-
ondly, the properties of the essential numerical range, W,(7"), defined for
the Calkin algebra are studied. Then we find the relationships between
the essential spectrum, o.(7"), and the essential numerical range of the
operator T'. Thirdly, the properties shared by both the numerical range
and the essential numerical range are determined. Finally, we investigate

the role of the essential numerical range to the field of operator theory.

1.3 Objectives of the study

e To investigate the properties of the essential numerical range

e To establish the relationships between the numerical range and the

essential nunerical range

e To find out the role of the essential numerical range to the field of

operator theory.

1.4 Significance of the study

The findings of this study are aimed at striking the relationships between
the usual numerical range and the essential numerical range, reveal the
properties of the essential numerical range and the roles of the essential
nunerical range in Operator theory. Thus the findings of this study will

contribute immensely to the field of Operator theory.
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1.5 Research Methodology

This involved reading various texts and articles on the numerical range
and the essential numerical range, solving problems, discussions with su-
pervisors. browsing the internet for journals on the topic and visiting

university libraries for research materials.

1.6 Notations and organization of the study

Let 'H denote Hilbert space.  Unless otherwise stated we will assuine
that the underlying field is the complex field C'  and the norm on H is
I . B(H) will denote the space of all bounded linear operators from the

linear space H to linear space H. We write B(H) := B(H,H).

This work is divided into four broad Chapters. In Chapter One, we
attempt to give simple proofs and definitions that we anticipate to use
in Chapter Two. Chapter Three and Chapter Four. In Chapter Two, we
give a detailed review of the numerical range. We mostly refer to facts
that are already available in literature. We prove various properties of the
numerical range and also prove the spectral inclusion theorem. In Chapter
Three, we proceed to build our study by defining the essential numerical
range and give its properties. Here, we also prove most of the properties
of the essential numerical range. In Chapter Four and Chapter Five, we
continue outlining more results of our study. This Chapter is devoted

to giving the relationships between the numerical range and the essential

'C R and Q denote complex, real. and rational number fields respectively. while Z
and N denote integers and positive integers respectively
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munerical range based on their properties. We also give the relationships
between the numerical range and the essential numerical range based on
the theorems by J. Christophe and the J. S. Lancaster. Finally, we discuss
the roles of the essential numerical range in operator theory. We identify
some of the classes of operators that can be identified by the property

that 0 is in the essential numerical range.




Chapter 2

Properties of the Numerical

Range

2.1 Introduction

In this Chapter, we review the properties of the numerical range of an op-
erator 1" acting on a fixed complex separable infinite dimensional Hilbert
space. We give proofs of a number of properties and show the relation-
ship between the spectrum of an operator and the numerical range of the

operator.

Let ‘H be a Hilbert space equipped with the inner product (,), and
let B(H) be the algebra of bounded linear operators acting on H. We
recall that the numerical range (also known as the field of values) W (7))

of T'e B(H) is the collection of all complex numbers of the form (T, x)

where x 1s a unit vector in H. i.e.

W(T) = {(Tz,z):ze€H,|z| =1}

21
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For an operator T" on a Hilbert space H, the following are known
results on the numerical rage:
(a). W(T) is invariant under unitary similarity.
(b). WA(T) lies in the closed disc of radius ||7]| centred at the origin.
(¢). W(T) contains all eigenvalues of T'
(d). W(T*)={X: A€ W(T)}
(). W(I) = {1}

More generally. if « and 3 are complex numbers and T is a bounded

operator on H, then,
Wial + 31) = aW(T)+ 3
(f). If H is finite dimensional then 1W(7) is compact.

The last fact follows from the compactness of the unit sphere of H and
continuity of the quadratic form associated with 7. If H is infinite di-
mensional, then it supports bounded operators with non-closed numerical
range.

If % is a Banach Algebra with unit e. then the Algebraic Numerical

Range of an arbitrary element a € 20 is defined by,

Vi) = {fla): fed.|fl=r(1)=1)

Here, 21" denotes the space of all continuous linear functionals on 2.

If a =T and A = B(H) then V(T) = W(T) and V(T) is a non-empty,
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compact and convex set. (see, [8])

2.2 Elliptic range theorem

We start the proof of the elliptic range theorem as a pre-requisite to
proving the Toeplitz- Hausdorff theorem

Theorem 2.2.1 (Elliptic Range Theorem)

Let T be an operator on a two-dimensional space. Then W(T) is an

ellipse whose foci are the eigenvalues of T (See for example, [4])

Proor. Without loss of generality, we can choose T as an upper trian-
gular matrix i.e. the Schur decomposition theorem guarantees that any
square matrix 7" may be transformed by unitary similarity transformation
to upper triangular form. with its eigenvalues on the diagonal. Also. since
W(T) is invariant under similarity transformation. it suffices to consider

only upper triangular matrices in this proof.

Thus let

/\1 a
0 N

A —

where A and Ay are the eigenvalues of 7.

If Ay = Xy = A, we have,

and,
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W(T—-X)={z:]2] < ’—;—'} and W(T) is a circle with centre at A and
la]

radius %

If A\, = Xy and a = 0, we have,

| A0
:[1:

0 A
Ifr=(f9)

(Tz,z) = MIf*+ Xalgl

where t = [f|? and |f]* + |g]* = 1.

So W(T) is the set of convex combinations of A} and Ay and is the

segment joining themn.

If If Ay #£ Ag and a # 0, we have,

AL=A2
i - A1L+A2 == 2 &
= 0 Y3
p)
—i6
A+ A roae”"”
—10 1 2 o
e T — 5 | =
0 -—r
= B
g
T
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W(B) is an ellipse with centre at (0,0), and minor axis |a|, and foci
at (r,0) and (—r,0).

Thus W(T') is an ellipse with foci at A, Ay and the major axis has an

inclination of © with the real axis. U

2.3 Convexity of the numerical range

Theorem 2.3.1 (Toeplitz-Hausdorf Theorem)

The numerical range of an operator T' € B(H) Is convex. (see, [10])

PROOF. Let a, 8 € W(T) such that o = (T'f, f), 6 = (Tg,g) and || f|| =

lgll = 1.

We need to show that the segment containing « and [ is also contained
in W(T). Let V be the subspace spanned by f and ¢ and E be the
orthogonal projection of H on V', so that Ef = f and Eg = ¢g. We also

have for the operator ETE on V',

(ETEf, f) = (Tf.f):
(ETEg.g9) = (Tg,g)

By the elliptic range theorem. W(ETE) is an ellipse. Hence W(ETE)
contains the segient joining o and (. It is easy to see that W(ETE) C

W(T) and that W (T) contains the segment joining a and /3.
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2.4 Non-similarity invariance of the numer-

ical range

Theorem 2.4.1 (Non-similarity invariance of the numerical range)

(see, [10])

Proor. Let Ty be the operator associated with the matrix

and T\ = \T,. where.
0 1
0 0
Thus W(Ty\) = AW (T}), the closed disc of radius |A| centred at the
origin, so all the different operators T\ have different numerical ranges.

But for A # 0 all these operators are similar.

i 0
Indeed. Sy :=
0 1
is non-singular and S,7;S; " = Ty (See for example, [1])

2.5 The Projection property

The projection property holds for the numerical range. According to

the projection propertv;
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ReW(T) = W(Rel'), where T € B(H) and Re stands for the real
part. This comes about as a result of the fact that every operator 7" &

B(H) can be written as; T = ReT +iIMT. (see, [19])

2.6 Extreme points of the closure numeri-
cal range

Theorem 2.6.1
The extreme points of the closure of the mumnerical range W (T') of a normal

operator T are eigenvalues of T" if and ouly if W/(T) is closed. (see, [10])

PrOOF. Let W(T') be closed. We can assume that the extreme point is
z =0 and that W(T) C {\: ImXA > 0} and (Tz,2) =0 € W(T); hence
((T' = T*)x.2) = 0. Since the operator +(T — T*) > 0, it follows that
(T — T*)ar = 0. Consequently. 2 is an element of the closed subspace

{f:Tf=T*f} =N. Since T is normal, we have;

1" = TT 2

= TT%

and hence the subspace N is invariant for 7" and 7|y is self-adjoint. Obvi-
ously, W(T'|n) € W(T') and W(T'|n) C R. Hence W(T|y) € W(T)R,
and thus T|y = 0 and Tx = 0. i.e. 0 € W.(T'). The converse is true for

any operator 7. The compact convex set W (7T') is the convex hull of its
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extreme points. When the latter are eigenvalues of T'. as assumed in the

theorem. we have:

W(T) C colo,(T))

C co(W(T))

2.7 Spectral Inclusion

The spectrum of an operator 7' consists of those complex numbers A
such that T — Al is not invertible. For the purpose of showing that the
spectrum of an operator is contained in the closure of the numerical range,
it is enough to look at the boundary of the spectrum. Tl’le’boundm'y of
the spectrum is contained in the approximate point spectrum. o, (1),
which consists of complex numbers A for which there exists a sequence
of unit vectors {ux,} with ||(T" = M), || — 0. Since W/(T) is convex. it
suffices to show that o,,,(T) C W(T).

Theorem 2.7.1 (Spectral Inclusion theorem)

The spectrum of an operator is contained in the closure of its numerical

range. (see, [10])

Proor. Consider anv A € o,,,(T) and a sequence {x,} of unit vectors

with |[|[(T — Al )a,|| — 0
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By the Schwarz inequality.

|(T — M)a,. x0)] < (T = Ar,|| =0

Thus {Tzy, Eu) =+ A

So, A € W(T')




Chapter 3

The Essential Numerical

Range

3.1 Introduction

In this chapter. we investigate the properties of the essential numerical
range, for instance, convexity, unitary invariance and projection property.
We also determine the essential numerical range of an essentially normal
operator and find how the essential numerical range is connected to the

diagonal set among other properties.

We recall that Stampfli, Williams and Fillmore [5] gave the definition

of W.(T) as follows:

We(T) = W(T + K) where the intersection runs over the compact

operators K € K(H).

w
=
D]
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3.2 Properties of the essential numerical range

A. G. Chacon and R. G. Chacon [4] gave the the properties of the essential

numerical range as follows:
Let T'€ B(H) then:
(1). W.(T) is a non-void compact and convex set.
(2). Wo(T) = {0} if and only if T is compact.

(3). If T is an essentially normal operator, then W (T) = co(o.(T))

and the essential numerical radius, w.(T) = ||T|..

(4). If M is a closed linear subspace of H such that M+~ has finite di-
mension. Then W.(T) = W.(PyT|y). where Py, denotes the orthogonal
projection onto M.

According to A. G. Chacon and R. G. Chacon [4], W.(T) is a closed
subset of W(T) and the essential spectrum, o.(7T) is always a compact
subset contained in o (7).

Theorem 3.2.1
W.(T) = W(T) if and only if Ext(W(T)) C We(T). Therefore, W,(T) =
W(T) if W(T) has no extreme points. Here, Ext(W(T')) denotes the set

of extreme points of W (T).

Proor. If Ext(W(T)) € W.(T). then Ext(W(T)) c WA(T) c W(T).

Taking convex hulls. we obtain 1W(7') = W, (T). The reverse implication

is obvious. (see, [21])
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Theorem 3.2.2
If W(T) has a corner at the point A, then A is in W,.(T') or A is a reducing
cigenvalue of finite multiplicity for T which is an isolated point of o(T").

(see, [21])

PrROOF. Recall that A is called a corner of a convex set C'if A € (" and
(' is contained in a sector of vertex A and opening less than 7. The proof
proceeds as follows: If A is not in W, (7)), then A must be a corner of
W{(T). Thus A is an eigenvalue of T'. Thus the eigenspace corresponding
to A reduces T. The rest of the proof follows from elementary Fredholn
theory. T'— A is Fredholm (A is not in 0.(7")) of index 0 (A reduces T'); in
particular, A has finite multiplicity. If A is not isolated. then there exist
A, € o(T) such that A, # A, A\, = A, and T — ), is Fredholm of index
0 (this set is open). Hence. there exists @, € H such that ||a,|| = 1,
x, € rg(I' — A) and T, = A\,x,. Thus the weak limits of x,, lie in the
rg(T — XN)(Vker(T — A) = 0. This yields a contradiction since x,, — 0

weakly and (Ta,,, x,) — A implies A € W,.(T).

3.2.1 Unitary invariance

The essential numerical range is wnitarily invariant. For, let T be an

operator on B(H) then W, (T) is unitarily invariant. That is;

W (UTU) = W (T) for any unitary operator T € B(H). (see, [11])
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3.2.2 Essential numerical range of identity

The essential numerical range behave in a nice and predictable way under
affine transformations of 7. That is:

W.(aT + 51) = aW (T) + 5, for all o, 5 € C. Thus it is easy to see
that We(I) = {1} (see. [11])

3.2.3 The projection property

The essential numerical range obeys the projection property. For instance;

for an operator T" € B(H) we have,
ReW . (T) = W.(ReT), where T € B(H) and Re stands for the real

part. This comes about as a result of the fact that every operator T' €

B(H) can be written as: T = ReT + il MT. (see, [19])

3.2.4 Convexity

Theorem 3.2.3

The essential numerical range of an operator T € B(H) is convex.

PROOF. The essential numerical range is defined as W.(T') = (. (1 W(T + K).
Therefore. since each W (T + K') is convex by the T(>eplitz—Hausdorﬁ the-
orem. W(T + R') is convex as well. Consequently, (YW (T + K) is convex

as well. Therefore, W, (T") is convex.
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3.2.5 Spectral inclusion
The essential spectrum, o.(7), is contained in the essential numerical
range, W (T). (see, [21])
3.2.6 Essential numerical range of a scalar
For any scalar A, we have;

W(T+X) = WA(T)+ A

for all A € C. (see, [12])

3.2.7 Essential numerical range of an essentially nor-

mal operator

Let X' be an essentially normal operator i.e. X*X — X X* is compact.
Then W.(X) = coo (X). Indeed for such an operator, the essential nori.

i

I1X]|c equals the essential spectral radius, p, (X)) ie.

“)(He - pe()()

Note that e X + i/ = Y is also an essentially normal operator for any
6 € R and pc € C. Let 2 be an extremal point of of W, (X). With suitable

0 and p, we have;

p 10

s = WAY)
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= max{ly| :y € W.(Y)},

the maximum being attained at the single point ez + . Since coo,.(T) C
W.(Y) and p.(Y) = W.(Y), this implies that ¢z + u € 0.(Y). Hence
z € 0.(Y), so that W.(X) = coo.(X). (see, [19])

3.2.8 Essential numerical range of an operator in a

(™" subalgebra with no finite projections

Let X be an operator lving in a C* subalgebra of B(H) with no finite

dimensional projections. Then for any real 8, we have
W(Ree? X) = W.(Ree?X)

Thus from the projection property for W(.) and W.(.). we infer that

W.(X) = W(X) (see, [19])

3.2.9 The essential numerical range and the diago-

nal set
For an operator A € *B(H) the diagonal set, A(A). is defined as;

A(A) = {X:thereis a basis{e,}>o, with {e,, Ae,) = A}.

n=1

b

This definition was given by J. Christophe [19]. He also gave an alterna-

tive definition of the essential numerical range of an operator A € B(H)
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as;
We(A) = {X:thereis an orthonormal system{e,},,

with lim,—oo(en, Aen) = A}

The equivalence of A(A) and W,(A) was checked by J. Christophe [19] as
follows: Let {,}>2, be an orthonormal system such that lin,—o (r,, Ax,) =

n=

A. Ifspan {x, }><, is of finite co-dimension p, we immediately get a basis,

€1y €piC€pyr1 = Ty €pyn

such that lim, - (€,, Ae,) = A\. If span {x, }>2, is of infinite co-dimension,
we may complete this system with {y, }°2, in order to obtain a basis. Let

P; be the subspace spanned by y; and {x, : 2-l << 24/'}. By Parker’s

theorem, there is a basis of P;, say {€]}iea,, with:

; 1
(e].Ae]y = ——=Tr AP

dim P; a

Since »—‘P—/Tr APj — Xas j — oo, it is possible to index {e] } jenyea, in

dim

order to obtain a basis {f,},2, such that:

li:'ll[.,,:x<fn.-‘_1fn> - /\

Thus from the foregoing proof of equivalence, J. Christophe [19] in Propo-

sition 1.2 gives the relationship as:

int W.(A) C A(4) C W,(A)
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where int W,.(A) denotes the interior of W, (A).



Chapter 4

Results and Discussion

4.1 Introduction

In this chapter we discuss the relationships between the numerical range
and the essential numerical range. We prove two theorems in this chapter
that show how the numerical range and the essential numerical range are
related. Finally, we discuss the roles of the essential numerical range in
operator theory and give conclusions and recommendations for further

research.

4.2 John Lancaster theorem

The relationship between the numerical range and the essential numerical
range is given in the result by John Lancaster.

Theorem 4.2.1 (John Lancaster theorem)

For T € B(H) we have W(T') = conv{W (T)|JW.(T)} - (see, [21])

38




CHAPTER 4. RESULTS AND DISCUSSION 39

Proor. Clearly, W(aT 4+ 3) = aW(T)+ 8 for all a, 8 € C. Theretore by

rotation and translation. we can assiume that 1V(7") is contained in the
closed right half plane and 0 € EJ‘T(W'('\_T—)) — W(T). Then there exists
a sequence {x,}><, of unit vectors of H such that (T'x,,x,) — 0. By
weak sequential compactness of the unit ball of H. we can assume that

{&, }22, converges weakly to v € H with ||z]] < 1. We prove that x is the

0 vector, and hence 0 € W, (T).

If ||z|| = 1, then z,, — x strongly. But;

(Ta,z)] < HT(x—a),2)|+|(Tap,a—x)|+ [{(Tan, x,)]

< o —w, T o) + || T — 2| + [(Ta,, )] — 0

Hence (T'z,x) = 0 and 0 € W(T'). So assume 0 < |lx|| < 1. Clearly the
operator ReT is positive since W(T') is contained in the closed right half

plane. Then;

[SIEd

I(ReT )2,

= ((ReT)zyn, Tn)

Tnl

= Re(Txp,, x,) — 0,

so |[(ReT)x,|| — 0. This clearly vields Re(Tx.x) = 0 so (Tx,x) is

purely imaginary. On the other hand;

(T(x—zp)yx—xy) = Tx.ax—x,)— (Tay,x)+ Ty, x,) > —(Tx, x)
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and
|z —zal> = 1—2Re(r —zn,2) — |2l°,
$O (Tyn, yn) = —(Tx,2)/(1 = ||2||*) where y, = l\li:h Thus we have

produced a non-zero purely imaginary points in W (7)) which lie in the

upper and lower half planes. However this implies that 0 is a non-extreme

point of W(T), thus completing the proof of the inclusion. The equality

follows from the inclusion by the Krein-Milman theorem.

O

The theorem below by J. Christophe [19] also reinforces the John
Lancaster theorem
Theorem 4.2.2

Let T" be an operator. then:
(0). IEW(T) Cc W(T) then W(T) is closed.
(¢4). There exist normal finite rank operators R of arbitrarily small

norm such that W(T + R) is closed.

PROOF. Assertion (i) is due to Theorem 4.2.1. We prove the second

assertion and implicitly prove Lancaster’s result.

We may find an orthonormal svstem {r, } such that the closure of the
sequence {(Tx,.r,)} contains the boundary of the essential numerical

range, oW (7).

Fix e > 0. It is possible to find an integer p and scalars z;. 1 < j < p,

with |z] < € such that;
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co{(xj, Ta;) +z;: 1 < j<p} DOW(T).
Thus, the finite rank operators,

i = Zl<j<l’ 2 @ ; has the property that W(7 4+ R) contains
W.(T). We need this operator R. Indeed. setting X = T + R, we also
have W(X) D W.(X). We then claim that W(X) is closed (this claim

implies assertion (7)). By the contrary, there would exist,

z € SW(X)\W.(X).

Furthermore, since W (X)) is the convex hull of its extreme points, we
could assume that such a z is an extreme point of W (X). By suitable
rotation and translation, we could assume that z = 0 and that the imagi-
nary axis is a line of support of W (X). The projection property for W (.)
would imply that W(ReX) = (&, 0] for a certain negative number ., so

that 0 € W.(ReX).

Thus we would deduce from the projection property for W,.(.) that

0 € W.(X); a contradiction. (see, [19])

4.3 Role of the essential numerical range

4.3.1 Operators with the Small entry property

This is a matricial property. An operator 1" € B(H) has the small entry
property if for every € > 0. there is a basis {¢,} such that [(Te,.e,)| < €

for all n and m. The condition 0 € W, (T') is equivalent to the fact that the
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operator T has the small entry property. That is; if the operator 1" has the
small entry property, then for any e > 0, there is a basis so that all entries
of the matrix of 7" have absolute value less than e. In particular, the diag-
onal entries of the matrix must have an accumulation point A with |A| < €
and since W (T) = {\ : there is an orthonormal sequence {x,} <, with
limy, o (T, x,) = A}, its evident that A € W.(T). And since W.(T)
is closed. 0 € W.(T). We conclude that 0 € W.(7") is equivalent to the
property that the operator T" has the small entry property. Thus we infer
that the essential numerical range serves to identify the class of operators

that satisty the small entry property. (see,[9])

We give the theorem by Q. F. Stout [12] that reinforces that the
condition 0 € W,.(T) is equivalent to the fact that the operator T  has
the small entry property.

Theorem 4.3.1

For any T € B(H). the following conditions are equivalent:
(a). 0 e W.(T)
(b). There is a basis & such that T € kernel(hull(ke)).
(¢). T has the small entry property.
(d). There exists a sequence of bases &,y such that Teq,y — 0 uniformly

in B(B(H)). (see, [12])

PRrROOF. The proof can be found in Q.F. Stout [12], Theorem 2.3
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4.3.2 Zero diagonal operators

An operator T' € B(H) is called zero diagonal if there exists an orthonor-
mal basis {e,} for H such that (Te,.e,) = 0 for all n. We state the
theorem below by D. Bakic [9] without proof.

Theorem 4.3.2

Let T € B(H) be a bounded operator on a separable Hilbert space. M.
Then there exists an orthonormal basis {¢, } for H such that lim(Te,,, ¢,) =

0 +f and only if 0 is in the essential numerical range of T .

Thus from this theorem. we infer that 0 is in the essential numerical
range. We conclude that the notion that an operator 7" is zero diagonal
is equivalent to the fact that 0 € W,(T'). Thus the essential numerical

range also serves to identify zero diagonal operators. (see, [9])

The essential numerical range plays an important role in solving prob-
lems from the operator theory. The list below of mutually equivalent
conditions indicates the importance of the essential numerical range.
Theorem 4.3.3
For an operator A € B(H) the following conditions are mutually equiva-

lent.

(a). There exists an orthonormal basis {e, } for H such that lim, (Ae,, e,) =

(b). 0 € W,.(A)

(¢). There exists an orthonormal sequence {a, } in H such that lim,,(Aa,,a,) =
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(d). There exists a sequence of unit vectors () in ‘H weakly converg-
ing to 0 such that lvm,, T, = 0.

(e). There exists an orthogonal projection P € B(H) with an infinite

dimensional range such that PAP is a compact operator.

(f). For each e > 0 there exists an orthonormal basis {e,} for H such

that [(Ae,, e,,)| < e, for all n and m.

(g). For each e > 0 and p > 1 there exists an orthonormal basis {¢, }
for H such that "> |[(Ae,. e,)|" <€

(h). There exists a sequence of zero diagonal operators A, in H such
that A = (norm)lim,, A,

(7). There exists a zero diagonal operator T € B(H) and a compact
operator K € K(H) such that A=T+ K

(j). There exists an operator B € B(H) such that A= B*B — BB".

In this case A Is self-adjoint necessarily.
(k). The spectrum of A has at least one non-negative limit point and
at least one non-positive limit point. (see. [9])
PROOF. (a) < (b), This is due to the assertion of Theorem 4.3.2 above.
(b). (¢), (d) and (e) are equivalent, (see, [5]).

(e) & (f) < (9)
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on

(a) = (i): Let us take the orthonormal basis from (a) and define
K € B(H) by Ke, = (Ae,.,e,)e, for all n. Since (4e,.e, — 0, K is

compact. Obviously. 7= A — K is zero diagonal.

(4) & (k) & ()

4.4 Conclusions and Recommendations

In line with the objectives of our study. we have studied the properties of
the essential numerical range. We have also looked at the relationships
between numerical range and the essential numerical range. Finally, we
have discussed the role of the essential numerical range in operator the-
ory. We have found out that, just like the familiar numerical range, the
essential numerical range is convex. Both the essential numerical range
and the familiar numerical range satisty the properties, for instance, uni-
tary invariance and the projection property. Our study has also shown
that the essential spectrum is contained in the essential numerical range.
This is contrary to the well known fact that the spectrum is contained
in the closure of the munerical range. We have revealed that the essen-
tial numerical range is non-void and compact set. We have also given
the essential numerical range of an essentially normal operator as well as
the connection between the essential mumerical range and the diagonal
set. We have shown that the essential numerical range is a subset of the
closure of the numerical range. This is as a result of the John Lancaster

theorem and the J. Christophe theorem. This study has also revealed
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some of the roles of the essential numerical range. We have found out
that the essential numerical range can be used to identify zero diagonal
operators as well as the class of operators that satistv the “small entry
property’. We have also given a list of mutually equivalent conditions

that show the importance of the essential numerical range.

Although the numerical range has had a great role in various aspects
of operator theory e.g. similarity of operators e.t.c.,we wish to recommend
that there is a need to investigate in which of such areas can the numerical
range be replaced with the essential numerical range in such a way that
the results still carrv through. Consequently. the equality of spectra of a
given pair of operators has been considered by several authors. But the
equality of essential spectra for the same operator is still wanting in the
extant literature of operator theory. We wish to recommend this area for

research.
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