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ABSTRACT

The convexity. closure and compactness of the numerical range among

other properties constitute a considerable literature in operator theory.

The properties of the essential numerical range and how they are related

to the familiar numerical range are studied. The study underpins the

role in operator theory. An outline of the basic concepts and defined

terms are provided. Siuiilarly, proofs for simple propositions and theo-

rems used ill the sequel cue made in Cluipter One. Cliapie: Two of this

work is devoted to the properties of the numerical range. Properties, for

instance, convexity. unitarv invariance and the projection property have

been looked at. The counection between the spectrum of all operator and

t he numerical range of r he operator 111:1.salso been gi\'(~tl. The properties

of the essential numerical range have been examined in Chapter- Thr-ee.

The proofs of various properties studied, for instance, convexity have been

outlined. In Chapter- FO'lLr-.the relationships between the numerical range

<met the essential numerical range have been studied. The proofs of the

theorems by J. Christophe elm I J. Lancaster have been shown. Finally.

the roles of t.h« essential uurnerical range in operator theory have been

discussed. Couclusious and reconnneudat ions for further research have

also been givell.

v



Chapter 1

Introd uction

In this Chapter. we begin by setting up the basic terms needed to dis-

CIlSS the numerical range and the essential numerical range. We give the

definitions of the numerical range, essential numerical range, spectrum,

essential spectrum CIS well as the spectral radius and the the essential

Ilill nerical racli us.

1.1 Basic concepts

Definition 1.1.1 (Hilbert Space)

A Hilbert space, H, is (:1, vector space endowed with an inner product and

associated norm and metric. such that every Cauchy sequence in H lias a

limit in H. A Hilbert space is also a Banach space. A Hilbert space has

an inner product structure.

Definition 1.1.2 (Algebra)

If 21 is a vector space over the set of complex numbers. C then 2l is called

HI1 associati \'e dJgchrn iH it is equ ipp<:'d xvit It (\ 11m I t iplication operator

satisfving;

1
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• u( be) = (al)) c

• a(b + c) = ab + ac, (b + c)a = ba + ca

• (a(3)(ab) = (aa)((3b)

(We simply sayan algebra instead of an associative algebra) 2l is called

a commutative algebra iff 0, bE 2l implies ab = ba.

ob E \)3. Clearlv. a subalgebra is also all algebra. V'.,ieS8Y that 2l is unital

if it possesses cHI identity.

Given that lK is either c1. set of complex numbers. ce. or real numbers.R,

a nonned algebra over lK is all algebra 2t over lK, which also carries a norm

11.11, which is sub-multiplicative. in the sellse that:

• IIT.1J 1\ < II· ,.1111 y II fo r all .('.1) E 2l

Let V be c1 vector space. Clearly. the set of linear maps in V, denoted

bv L(V). is an algebra. All identity of an algebra. 21. is an element 1 E 2t

such that a = 1(1 = «l . EO! all u E 2l. Auv rllge]n(-t has at most one

identity. In fact, if 1].12 are identities, then 11= 11h = h· V'.Jesay that

2l is unital ·if it possesses an identity.

Definition 1.1.3 (Banach Algebra)

vVe recall that an algebra 2l over ce is called a normed algebra. if it is

equipped wit.h a norm 21 :3 (L t---1 Iiall E ~ such that

Ilu{)11 < 11(11111)11



CHAPTER 1. INTRODUCTION 3

It. is called a B anacli algebra if it is COlliplete ill the norm. 11.11

Examples

(1). If X is a normed vector space, denote by B(X) the set of all

bounded linear maps from X to itself (the operators on X). Then B(X)

is it norrued algebra with the point-wise defined operations for addition

and scalar iuultiplicat iou. Multiplication given by ('IL, v) r--+ U,OV, and the

norm is the operator uoriu:

II all IILiCe)11
snp,-j:.o IITII

saPllxll::;J 111L(·1')II

(2). If S is a set, j)OO(S), the set of all bounded complex valued func-

tions on S, is a uni ta I Banach algebra where the operations are defined

point-wise:

U+g)(.c)

(fC;)(.I:)

(),f)(.r)

fer) + .r;(T)

f (.i-).rJ (c)

),f(.1') .

and the norm is the sup-norm;

II f 11ex: 8/LP,rES If (:1:) I

Definition 1.1.4 (Ideals)

Let 21 be soiue algebra O\'e1' H field K
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(a). A subset J c 0. i::; called lejt. ideal in 0., if

• J is a linear subspacc of 21:

• ax E J, \/a E 0., :r: E J.

(b). A subset J c 21 is called a right ideal in 2(, if

• J is a linear subspace of 2L

• .u: E J. \/0 E 2l. .1 E J.

(c). A subset J c 0. is called a two sided ideal ill 2(, if J is both a left

and right ideal ill 0.. Of course. if 0. is rounnutative. these three notions

coincide. In the study of (Banach) algebras, one deals almost exclusively

wit h two sided ideals. The reason is the following;

FA CT: If 3 is a two sided ideal in an algebra 0.. then the quotient

Sl)(J.CC 21/3 carries tt unique olqclnii structure, which makes the quotieni

'IIWl)

Q : 0. :3 (J f-1 [a] E 21/J

an ulqebra lunuoniorplnstn. Moreover. iJ0. has Ii Wilt 1. and 3 C 21. ih eu

the algebra 2(/3 has uuit 1 = Q(l)

Theorem 1.1.5

Let; 21 be a Bcwadl algeiJn:'1" iuen,

('I). If J is :::1 left (or right. two sided) ideal ill 2l. then so is its closure,



CHAPTER 1. INTRODUCTION 5

(ii). If 2l is a Ull itn! Beuncli algebra.. niic! 3 C 2l is a left (or right, or

two sided) ideal, then J C 2l.

(iii). If 3 is a cioscc! lll() sir/eel idea} ill 2l. then whelJ equippec' wit II

the quotient 1101'111, the elgebr« 2l/3 is a, ullital Bnnncb algebra. Moreover,

if 2l is unital, and 3 C 2l, then 2l/3 is a unital Banach algebra.

PliOOF. (-t:). Assuuie I] is a left ideal. Clearly, 3 is ct linear subspace, so

we only need to check the second couditiou. fix (I, E 2l fwd T E 3, let

us prove that 01' E J. Since .» E J, there exists a sequence (xn)~=l C 3,

wit h .r = li771n-vxJ". Then the coutinuitv of t he left multiplication map

La : 2l -7 2l gi \·e~.

l irn.T/.--7co t.»;

lirnn--7coCU;n

Sillce (/:1:/1 E 3. VII ~ 1. this forces 0.1 E J In the case where J is it right

ideal. the proof is identical. In the case where J is two sided .. we use the

above cases.

(ii). Assume J is cl left ideal. \I\'e argue by contradiction. Suppose

J = 2l. in partirular. it follows that J contains l. the unit in 2l. Since

the set GL(A) of all invertible elements is open. and contains 1, the fact

that 1 belongs to J gives the fact that the intersection G L( A) n3 is non-

empty. In particular. this means that J conta.ins some invertible elements

of .r. Of course, if we define a = X-I E 2l, we ha.ve J ::1 ax = 1. Since J
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cout ains 1. it will cont aiu ;-111 elements of 21. which contradicts tile strict

inclusion that J C 2l. III the case wheu J is a right ideal. the proof is

ideut ical. III the UU:ie when J is two sided. we llse tile above cases.

('i ii). Let us pion' tile first seetio]}. \?lie know t hat the quotient sp;-Lce

2l/J is a Banach space, so the only thing we need to prove is the second

condition in the definition. Start with two elements u, iu E 21/3, and Jet

us prove the inequality;

I'm each f > 0 . \\'C' choose 0, E I' awl h( E IF. such that:

anr I

Since a.b, E II'LC. we innnediately get

Since t he inequality Iluwlh/J ~ (1Il'II'21/J + f).(II'ull'?l/J + E) holds for all

E > 0 it will clearly imply Ilvwll?l/J ~ IlvI121/J.llwll?1/J

o
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Definition 1.1.6 (Involution)

Let 21 be an algebra. Then em involution on 21 is ,1 1118p:

a r--7 a*

satisfying

• (a*)*=aforallaE21

• (aa + 8b)* = (la* + 6b* for all a. b c. 2{ and all complex numbers Ct

and 3.

• (ab)* = b*o,* for all 0,. bE 2l.

If 2l carries an involution, we say that 21 is an involutive algebra or

a * - alqebra.

Example

Let 5 be a Sl1hset of cl * - alqebr«. 2L \\ie set 5* = {(L* : a E 5}. and

if 5* = 5. we sc\y 5 is self-adjoint. A self-adjoint sub-algebra 5 of 2l is a

* - subol qelna of 21 and is a * - algebra when endowed with involution

got bv restriction.

Definition 1.1. 7

A C* algebra is an invoJutive Banach algebra 21 with a norm satisfying

t he relations;
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• IIABII < IIAIIIIBII

• IIA*II = IIAII

• IIA* All = IIAI12

If a C' algebra has uuit element t.heu it is called a unital C* algebra.

Examples

(l).The following algebras are C* algebras with involution given by

f r--t f:

(0). (OC(S) where 5 is a set:

(b). UX;(D. J-i.), where (0., Ii) is a measure space:

(c). Cb(0.) where 0 is a topological space:

(d). B.xJO) where n is <:1 measurable space.

(2). The scalar field C is ,I unital C* algebra with involution given by

the complex conjugation A r--t A.

(3). '13(H) is a C* algebra.

To show this, we argue that '13(H) is an involutive Banach algebra

using the Hilbert space adjoint as om involution That is, if H is a

Hilbert space. t hen r lic Illel]) that seurls c\ coutinous linear operator T to

its Hilbert space adjoint T* is an involution. Thus IB(H) is an involutive

Banach algebra.

'vVe 1I0W check that equipped wit h t his involution. '13(H) satisfies tile

C* equation,
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IIT*TII

for all T E '13(H) If T E 'l1(H) then IIT*TII ::; IITI12 For the reverse

inequality, we observe that;

IITI12 s'u,PIIJ;II=11ITxI12

S'U,PIIJII=l(Tx, T:c)

S1LJJII:rll=I (T*T:I: . ./")

SllPllllI= ,II T*Tllllxl12

IIT*TII

Titus '13(H) i~ a C* algebra.

Definition 1.1.8

Let. 2l be a C* algebra. A linear functional ip : 2( H C is called positive

if ip(a) ~ 0 whenever a ~ 0 for all a E 2l. More generally, if B is a C*

algebra then a linear map <p : A -+ B is positive if ip(A+) C B+

Definition 1.1.9

A state of a C* algebra is C\ positive linear functional of norm 1.

Definition 1.1.10

All operator K E '13(H) is Selic! to be compact if for every bounded

sequence (Tn) of vec-tors of H the sequence (1\.111) has e\ convergent sub-

sequence.
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Definition 1.1.11

The subspace IC(H) of all compact operator is an ideal of IJ3(H).

In order to prove this, we need to show that, if A. B E IC(H) and

T E IJ3(H) then aA. A+B. TA and AT are all in IC(H). That is, for any

bounded sequellce (.rJ. \~'e must show that (nAcn). ([A + B]:rn), (T.4:1'1I)

and (ATT,,) (\,]1have convergent subsequences.

Since A is compact. (AJn) bas a convergent subsequence (AxnJ. Then

clearlv (0 AC/I,) is a convergent subsequence of (nA.t/l) showing that C1.A is

compact. Also, (xn,) is a bounded sequence and so, since B is compact,

(Bxn,) has a convergent subsequence (Bxn). Then ([A + B]xn) is a

convergent subsequence of ([A + B]xn), showing that A + B is compact.

Again. since T E IJ3(H). Tis continous and so (TAlnJ is a convergent

subsequence of (T .04.1:11) showing that TA is compact. The proof for AT

is slightly different. Here. since (-Tn) is bounded and IIT1'n II ::; IITII·IITnll
we have that (T."I'II) is bounded and so. since A is compact. (AT1'n) has a

convergent subsequence, showing that 1'.'-\ is cornpact.

Theorem 1.1.12

If H is a Hilhert spece fl,JJ(IIJ3(H), tile elgebr« of hounded operators 011

H, let IC(H) be the subs]Jace of IJ3(H) formed /)J' cdl compact operators,

and [T] be the coset ofT E IJ3(H) in the Calkin algebra then the quotient

space IJ3(H)jIC(H) is all aJgebra on the complex pld,ne.

PROOF'. Deuot e the quotient SPMP IJ3(H)jIC(H) b.

IJ3(H)jIC(H) = {[Tl : T E IJ3(H)}.

where.
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[T] = {T + J( : J{ E K(H)}.

for all T, _V E '13(H) and A E C,

[T] + [N] = [T + N] -t U),

for let [T] aud [N] be defined by,

[T] {[T + }\"]: J( E K(H)}

and [N] = {[!V + [\-]: !\" E K(H)}

Then.

[T] + [lV] = {(T + J{) + (.\1 + J() : K E K(H)}

= {(T + J{ + N + K : K E K(H)}

= {T + N + J( + J( : J( E K(H)}
'--v--"

= {(T+N)+1\: [{ E JC(H)}

= [T + 1\]

Also, A[T] = [AT] -t (ii).

Let [T] be defined as above, then,

A[T] = {A(T +h') : 1\ E K(H)}
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{AT + Af{ : K E IC(H)}

{AT + K : K E IC(H)}

= [AT]

And lastly, [T][N] = [TN] -j (iii).

Let [1'] and [iV] be defined as in (z) above then.

[T][N] {(T + f()(1V + K) : K E IC(H)}

{(T.!Y + TK + f": N + f(2, : f\' E IC(H)}
v

{TN + K : K E IC(H)}

[TN]

The quotient space IJ3(H)jlC(H) provided wit h equations (i) and (h) is

a vector space on the complex plane and the map defined olllJ3(H) j IC(H) x

IJ3(H)jlC(H) into IJ3(H)jlC(H) by ([1'], [N]) 1-1 [TN] is associative biliu-

ear will! unit eleiueu! [f]. Hence IJ3(H)jlC(H) i::;ell! algelllCl on complex

numbers with the unit element [f]. o
Definition 1.1.13

For a bounded linear operator T on a separable Hilbert Space. H .. the

numerical range of T E IJ3(H) is by defini tion the set,

1;\/(1') := {(Tx, J;) : .T E H, Ilxll = 1}

The following properties of the numerical range cue immediate:
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II.(n I + BT)

\!{/(T*)

W(U*TU)

= (\ + ,jll'(T)

(:\, A E liV (T)}

W(T).

(see, for example [10])

for 0:, (3 E C and for any unitary operator U. All element U E 'B(H)

is called 'unitaTY if U is invertible and its inverse given by U*.

Definition 1.1.14

Tile numerical radius III (T) of an operator T all H is gi ven by,

w(T) = S1ip{IAI, A E I/l/(T)} (see. [10])

Notice that. for any vector .r E H. we h.ive.

I(TT, x)1 < w(T)II:rI12

Definition 1.1.15

The spectrum of all operator T E 'B(H). denoted by a(T) is defined by.

a(T) = {A : T - AI is not irl'UeTt'ible}

Proposition 1.1.16

Let H be a Hilbert spnce eni! T E 'B(H). Then.

a(T) = a(T*)* '- {-:\: A E a(T)}

PROOF. If A is not contained ill (J(T). let R = (/\-'-T)-'. For all T, y E H,

(x, y) (R(A - T)x, y)



CHAPTER 1, INTRODUCTION 14

((A - T'[i; R*y)

(x, (A - T)* R*y)

Thus P - T)* R: = 1, and similarlv. R*P - 1')* = I, But (/\ - T)* =

A - T*, so that;

R* (">: - T*t]

[(A - Trr1

Thus p(T)* c:;;;p(T*), Moreover.

()(T*)* C p(T*')

p(T)

III other words, p(T*) c:;;; p(T)* We conclude tl)rlt CT(T) = CT(T*)*,

o

Definition 1.1.17

The point spectrum of an operator T E '13(H), CT)'(T) is def-ined as;

CT1'(T) = {A E CT(T), Tf = Aj [o: some j E H}

Those A not iu the spectrum CT(T) are called the resoluent set, p(T) of T

.u«! thereupon .t be operator (1' - A1)-) is called the resol uent opeiuior

for T

Definition 1.1.18

The spectral radius r(T) of au operator T on H is givell by,

7'(T) = S1ip{!A! : A E CT(T)} (see, [10])
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Definition 1.1.19

If n : IJ3(H) -+ IJ3(H)/K(H). defined bv. T f-1 T + K. ]\' E K(H)

is tile map from '13(H) onto the Calkin-algebra, IJ3(H)/K(H), then the

essential numerical range of T denoted bv HTe(T) is the numerical range

of the coset containing T ill the Calkin algebra.

Stampfli, Williams and Fillmore [5] gave the definition of vVe(T) as

follows;

H'e(T) = n H1(T + K) where the intersection runs over the compact

operators K E K(H).

Definition 1.1. 20

The essential spectrum. oAT) is the spectrum of tile coset [T] in the

Calkin cLlgebnl . .\ lore precisely.

Definition 1.1.21

Tile essential muuerical radius u'e(T) of ;-HI operator T ou H is given by.

Proposition 1.1. 22

LetH be a Hill)ert; spece a,ndT E IJ3(H). Tl1ellrT(T) = rTe(T) UrTp(T) UrT'J(T*)*,

where Cfp(T*)* = {~ : /\ E Cfp(T*)}.

PROOF. Suppose /\ is not cUI element of U Cfp(T) U Cfp(T*)*. Then nnl(T-

,\) = /l1I/(T - ,\)* = O. Thus (T - /\) is injoct ive .uul ltilS dense range. If'\

is not an element of Cfe(T), then (T -,\) is Fredholm and thus ran(T - ,\)

is closed. But then (T - ,\) is bijective and hence ,\ is not an element
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of O'(T). Thus O'(T) <;;:; O'(JT) UO'p(T) UO'p(T*)*. The other inclusion is

obvious.

o
Definition 1.1.23

Let H be (1 Hilbert SJMce and T E 'B(H). Tl.en the semi-Fredholm

domain PsF(T) of T is t11(-' set of all complex numbers A such tliat Al -

I1(T) is either left or right invertible ill the Calkin algebra. If fl' E iC,

then 11 i::;called a (T) - singular point if the function A J---7 Pkcr(T-A) is

discontinous at /-L. Otherwise. l.i is said to be (T) - regular.

If f.i E PsF(T) and /-L is singular (respectively, /-L is regular), then we

write /1 E p!p(T), (respectively, p:~p(T))

Theorem 1.1.24

Lei T E 'B(H) ami SlljJjJose tlui! A E (w(T). Then eit uei A is an isolated

point or A E 0'e (T).

PROOF. Suppose /\ is 110t contained ill 0', (T). TIle11 by Propositiou 1.1.22.

we JUdV assuiuo tltdt A E O',,(T) (otherwise cousidr-r :\ and T*). Since

A E ()O'(T), we can find a sequence {A}n <;;:; p(T) such that A = l,tmn-Hx;An.

Since keT(T - An) = {O} for all ti 2: 1 while keT(T - A) =1= {O}. we

conclude that A E (J~F(T). Since p~F(T) has no accumulation points in

(J,dT). and since A is not contained in O'e(T), we conclude that /\ is

isolated in O'(T).

o
Definition 1.1.25

Let A E '13(H), A 2: O. The trace of A is:
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TT(A)

If Tr-(A) < 00 then A is called trace class.

Definition 1.1.26 (Eigen values and Eigen vectors)

If 'I' is cl non-zero vector such rhal TI) is Cl scalar multiple of u. rhen the

line through 0 and I' is all invariant set under T and /1 and is called a

cluiracteristic vector' or- eiqen vector. The scalar A such that Tv = AU is

called a chosiicteristic ualue 01' eiqen uaiue.

Definition 1.1.27 (Dual of a narmed space)

Let x be a norrned vector space. The dual space to x, denoted by x* is

the space of bounded linear functionals. III other words, X := 23(x. IK).

clearlv.

Definition 1.1.28

All operator T is called noruuil if T*T = TT*. Normal operators niay be

regarded as a generalization of self-adjoint operators T in which T* need

not be exactly T but commutes with T, (see. [10])

1.2 Statement of the problem

First. we review the properties of the numerical rauge available ill litera-

t ure. The relationship betweell the spcrtnuu of the operator T E '13(H)
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and the numerical range, TV(T). of the operator is then reviewed. Sec-

ondly, the properties of the essential numerical range, We (T), defined for

the Calkin algebra are studied. Then we find the relationships between

the essential spectrum, (Je(T), and the essential numerical range of the

operator 1'. Thirdly. the properties shared by both the numerical range

and the essential numerical range are determined. Finally, "ve investigate

the role of the essential numerical range to the field of operator theory.

1.3 Objectives of the study

• To investigate tbe properties of the essential numerical range

• To establish the relationships between the numerical range and the

essential numerical range

• To find out the role of the ossent ial numerical range to the field of

operator t heorv.

1.4 Significance of the study

The findings of this study are aimed at striking the relationships between

the usual numerical rallge and the essential numerical range, reveal the

properties of the essential numerical range and the roles of the essential

numerical range ill Operator theory. 'Thus the findings of this study will

eontri bute immensely to the field of Operator theorv.
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1.5 Research Methodology

This involved reading various texts and articles 011 the numerical range

awl the essential numerical range, solving problems, discussions with su-

pervisors, browsing the internet for journals on the topic and visiting

university libraries for research materials.

1.6 Notations and organization of the study

Let H denote Hilbert space. Unless ot herwise stated we will assume

t hat the underlying field is the complex field C I and the norm Oll H is

11.11 'B(H) will denote the space of all bounded linear operators frail! the

linear space H to linear space H. \I\'e write 'B(H) := 'B(H, H).

This work is divided into four broad Chapters. In Chapter- One, we

attempt to give simple proofs and definitions that 'vveanticipate to use

ill Cliopter Two. Cliapte: Tluee and ChapUT Four. III Chapter Two. we

give a detailed review of the numerical range. We mostly refer to facts

t hat are already available in literature. \ Ve prove various properties of the

numerical range and also prove the spectral inclusion theorem. In Ctuvpie:

Three. we proceed to huild our study by d('fillil1g t he essential numerical

range and give its properties. Here, we also prove most of the properties

of the essential numerical range. In Chapter Four and Chapter Fiue, we

continue outlining more results of our studv. This Chapter is elevoted

to giving the relationships between the numerical range and the essential

Ie lR and Q denote complex. real. and rational number fields rcspcctivclv, whik- Z
and dt-uotv illt<'gns and positive iJ1tq~crs respectively



CHAPTER 1. rVTRODUCTION 20

1111111ericalrange based 0]] their properties. \tVealso give the relatiouslups

between the numerical range and the essential numerical rallge based on

the theorems by J. Christophe and the J. S. Lancaster Filially. we discuss

the roles of the essential numerical range in operator theory. We identify

some of the classes of operators that can be identified by the property

that 0 is in the essential numerical range.



Chapter 2

Properties of the Numerical

Range

2.1 Introduction

In this Chapter. we review the properties of the numerical range of an op-

erator T acting all a fixed complex separable infinite dimensional Hilbert

space. We give proofs of a number of properties and show the relation-

ship between the spectrum of an operator and the numerical range of the

operator.

Let H be a Hilbert spCLce equipped with the inner product (,). and

let '13(H) be the algebra of bounded linear operators acting on H. vVe

rec1:111that the nuiueriral l"C\.llge (also known a.s the held of values) 11"(T)

of T E '13(H) is tile collection of i".11 complex numbers of tile form (TI...I")

where x is a unit vector in H. i.e.

IV(T) {(Tx. x) : ~rE H, II.rll = 1}

21
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For HII operator T 011 R Hilbert space H. the following are known

results all the nuuierical rage:

(0). l'{.! (T) is invariant under uni tary similar! ty.

(b). W(T) lies ill the closed disc of radius IITII cl'ntred at the origin.

(c). v\!(T) contains <:111 eigenvalues of T

(d). vV(T*) = p: : A E vV(T)}

(e). 1IV(I) = {l}

!"IIore generally. if n and .3 are complex numbers and T is a bounded

operator on H, then,

i1"(ClI + JI) = ()H·(T) +.3

(f). If H is finite dimensional then 11·(T) is compact.

The last fact follows from the compactness of the unit sphere of Hand

continuity of the quadratic form associated with T. If H is infinite di-

rnensional, then it supports bounded operators with non-closed numerical

range.

If 2( is a Banach Algebra with unit c. then the Algebraic Numerical

Range of all .ubitrarv element a E 2l is defined bv.

v (a) { f (a) : f E 2ll IIf II = f (J ) = J}

Here, 2(' denotes the space of all continuous linear functionals on 2(.

If a = T and 2( = '13(H) then V(T) = H/(T) and V(T) is a non-emptv.

----------
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compact and convex set. (see, [8])

2.2 Elliptic range theorem

\\'e start the proof of the elliptic range theorem as a pre-requisite to

provi Ilg the Toepliiz- J-/ aus din Jj' iJl,CO'IC'1II

Theorem 2.2.1 (Elliptic Range Theorem)

Let T be an operator 011 a two-dimensional space. Then W (T) 1S an

ellipse whose foci are tile eigenvalues ofT (See for example, (4J)

PROOF. Without loss of gellerality, we can choose T as an upper trian-

gular matrix i.e. the Schur decomposition theorem guarantees that any

square matrix T inav 1)(-'transformed bv unit ary similaritv t rausforiuaf.iou

to upper triangular Iorur. wit.l: its eigellvalues on the dictgomd. Also. since

11' (T) is invariant under similarity trausformatiou. it suffices to consider

only upper triangular matrices ill this proof.

Thus let

where Al and A2 are the eigenvalues of T.

If A I = A2 = A. we have.

T-A= (0 a)o ()
aJl(1.
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W(T - A) = {z: Izl ~ I;I}, and 1/l'(T) is a circle with centre at A and

radius 1;1.

If A I = A2 and 0 = O. we have.

If:r:=(f,g),

A11fl2 + A21g12

tAL + (1 - t)A2'

where t = Ifl2 and III2 + Igl2 = 1.

~eglllellt joining them:

(

'\1-'\2
2

o
a )

'\2;'\] ,

(

T oe-iG
)

o -/
]]
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vV(B) is an ellipse with centre at (0,0), and minor axis lal, and foci

at (r,O) and (-T, 0).

Thus H/(T) is all ellipse wit h foci at )". A2 and the major axis has all

inclination of e with t he real axis. D

2.3 Convexity of the numerical range

Theorem 2.3.1 (Toeplitz-Hausdorf Theorem)

The numerical range of all operator T E B(J-J) is conuex, (see, [1Oj)

PROOF. Let Q, f3 E H!(T) such that cx= (Tf, f), f3 = (Tg, g) and Ilfll =

Ilgll = 1.

Vv'eneed to show that the segment cout aiuiug cy and /3 is also contained

m lI/(1'). Let V be the subspace spanned by f and 9 and E be the

orthogonal projection of H 011 If. so t hat Ef = f and Eg = g. We also

have for the operator E1' E Oil Ii.

(ETEi, f)

(ETEo9, g)

(1'f,f):

(To9, g)

Bv the elliptic: '/anlje tlicoreni. \\'(ET£) is an pllipse. Hence W(ETE)

contains the segment joining u and IJ. It is eClsy to see that W (E1'E) c
\I"(T) and that W (T) contains tile seglllPllt joining C\'and {J.

D
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2.4 Non-similarity invariance of the numer-

ical range

Theorem 2.4.1 (Non-similarity invariance of the numerical range)

(see. [lOJ)

PFWOF. Let 7>..be t lie opernt or associated with the matrix

Thus H!(TA) = )JV(Td· the closed disc of radius 1/\1 centred at the

origin, so all the different operators TA have different numerical ranges.

But for ,A -I 0 all these operators are similar.

( /\ 0)Indeed. SA :=
() 1

is non-singular and SAT,S-;1 = TA (See for example. [1])

o

2.5 The Projection property

The projection property holds for the numerical range. According to

t.he projection propertv:
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Rc1V(T) = \\ '(ReI) where T E P.(H) and R( stands for tile real

part. This comes about as a result of the fact that every operator T E

IB(H) can be written as: T = ReT + 'if M'I'. (see, [19])

2.6 Extreme points of the closure numeri-

cal range

Theorem 2.6.1

The extreme points of the closure oitae 11l11lleliCrlln1.1lge \,It' (T) oin nonun)

opernio: Tare eig;pJJVcllues olT jt euc! oul» jf H '(T) is closed. (.see, [lO})

PROOF. Let W(T) be closed. VVecan assume that the extreme point is

z = 0 and that W(T) r;;;; {A : Im.A ;:::O} and iT:«, x) = 0 E vV(T); hence

((T - T*):r:: 1;) = O. Since the operator +(T - T*) ;::: 0, it follows that

(T - T*)T = O. Consequently. T is an element of the closed subspace

{f : T f = T* f} = N. Since T is uorrnal, we have:

T*TJ; TT*:c

TTJ'

and hence the subspace N is invariant for T and TIN is self-adjoint. Obvi-

ously: l;V(TIN) C lIV(T) and W(TIN) cR. Hence l;V(TIN) C W(T) nR,
and thus TIN = 0 and Tx = O. i.e. 0 E l;Vc(T). The converse is true for

c\.J1\· operator T. The compact convex set H!(T) is the convex hull of its
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extreme points. When the latter ;-1xe eigenvalues of T. as assumed ill t he

theorem, we have:

l1l (T) C co( CTp(T))

C co(Hf(T))

vV(T)

o

2.7 Spectral Inclusion

The spectrum of an operator T consists of those complex numbers A

such that T - AI is not invertible. For the purpose of showing that the

spectrum of an operator is contained in the closure of the numerical range,

it is enough to look at- the boundary of the spectrum. The boundary of

the spectrum is contained in the approximate point spectrum, CTapp(T),

which consists of complex uurubers /\ Ior which there exists a sequence

of unit vectors {.L,J with II(T - A 1).1;" II ----1 0 Since II'(T) is C011\'ex. it

suffices to show that CTnPI,(T) ell' (T).

Theorem 2.7.1 (Spectral Inclusion theorern)

Tile spectrum of 311 opeintor is contained in the closure of its nuiueiicel

1C1l1ge. (see, [10))

PROOF. Consider anv A E CTul'l)(T) and (1 sequence {.I',,} of unit vectors

with II(T - A1)T,,11 ----10
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By the Schwarz inequality.

I((T - A1).I.". Tn}1 < II(T - /\1).1',,11 ---+ 0

Thus (T:r:'Ll x;n.) ---+ A.

So, A E w (T)

o



Chapter 3

The Essential Numerical

Range

3.1 Introduction

III this chapter. we investigate the properties of the essential numerical

range, for instance, convexity, unitary invariance and projection property,

'vVealso determine the essential numerical range of an essentially normal

operator and find how the essential numerical range is connected to the

diagonal set among other properties,

We recall that Stampfli. Williams and Fillmore [5] gave the definition

of We(T) as follows:

ll"c(T) = n \\'(T }\') where the iurersertion runs over the compact

operators A' E JC(H),

30
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3.2 Properties of the essential numerical range

A. G. Chacon and R. G. Chacon [4] gave t Iw the properties of the essential

numeriral range as follows:

Let T E IJ3(H) t hon:

(1). HAT) it) a non-void compact and convex set.

(2). 1Vc(T) = {O} if and only if T is compact.

(3). If T is all essentially normal operator, then lNe(T) = co(oe(T))

and the essential nurnerica! radius. 'lL'e.(T) = \\T\\,..

(c.J.). If j\f is a dosed linear subspace of H such t ha: lU.1. has finite di-

meusion. Theil 11",(T) = 1'1" (PI! Till! ). where P" denotes the ort liogoual

projection onto Xl .

According to A. G. CI1c1COll awl R. G. Chacon Hl· H/c(T) is a dosed

subset of 11'(T) and the csseut ial spectrum. o,(T) is <-11\\'(-1,\'S a compact

subset contained ill o(T).

Theorem 3.2.1

JtI.'e(T) = W(T) jf and ollly jf E.rt(W(T)) c 1Ve(T). Therefore. l1'r(T) =

1 \ Tn jf 1,\ Tn lJi:lS 110 t'xtrE'lllP )Joint,,;. Here. Eri (Ii' (T)) denotes t 11e set.

of extreme points of 1 \ ' (T).

PrWOF. If' Ell(\1.·(T)) c W,,(T). t heu E.ll(H(T)) c W('(T) c \V(T).

Taking COII\'(~X bulls. \\(' obtuiu 11'(T) = \1', (T). The reve-rse unplicat iou

is obvious. (.'ee. [21])

o
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Theorem 3.2.2

If 1qT) ha.sa. COnJel at the point. A. then A is in 1'l",,(T) or A is a reducing

eigetivelue of iinite IlJuitipiicity for T which is enisoletec' point of u(T).

(see. [21j)

PIlOOF. Recall t belt /\ is called 1"1 camel of cl convex set C if A E C and

C is contained in a sector of vertex /\ and opening l(~ss than 7T. The proof

proceeds as follows: If /\ is not in livAT), then A must be a corner of

W(T). Thus A is an eigenvalue of T. Thus the eigenspace corresponding

to A reduces T. The rest of the proof follows from elementary Fredholm

theory. T - A is Fredholm (A is not in ue(T)) of index 0 (A reduces T); in

particular. A has finite multiplicity. If A is not isolated then there exist

An E u(T) such that A" of. A. A" -+ /\. and T - A" is Fredholm of index

() (this set is open). He-nce. there exists /"1/ E H such that //:r,,// = 1,

u; E r.r;(T - A) and T.);/I. = Awe". Thus he weak limits of J.:n lie ill the

,,.g(T - A) n keT(T - A) = O. This yields a coutr adictiou since I:1l -+ 0

weakly and (T:I:n. 1'1/) -+ A implies A E \ \·,.(T).

o

3.2.1 Unitary invariance

The essential numerical range is 'Lmitanly uiuorumt: For, let. T be an

operator on iJ3(H) then W,,(T) is unitarily invariant That is:

1l.',,(U*TU) = HAT) for anv u nit.uv operator T E iJ3(H). (see, [11])
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3.2.2 Essential numerical range of identity

The essential numerical range behave in a nice and predictable way under

affine transformations of T. That is:

\;\iAaT + ,8I) = Q j;(/e(T) + /J for all a, ,8 E rc. Thus it is easy to see

that WeC!) = {1} (see. [11])

3.2.3 The projection property

The essential numerical range obeys the projection property. For instance;

for an operator T E IJ3(7-{) we have,

Re1J1f('(T) = lIVc(ReT). where T E IJ3(H) and Re stands for the real

part This comes about as a result of the fact that everv operator T E

IJ3(H) can be written as: I = ReI + i Ivl'T, (see. [LO])

3.2.4 Convexity

Theorem 3.2.3

The esseniinl tuunevicel range of an operator T E IJ3(H) is convex.

PROOF. The essential numerical range is defined as vVe(T) = nJ(EIC(H) W(T + K).

Therefore. sillce each IV( T + J{) is CO]}VC'x hy the Toepli tz- Ha usdorff the-

oreui. W (T + /.,:)is convex as well. Consequent lv. n vi' (T + K) is convex

as vvell. Therefore, \ V,,(l') is convex.

o
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3.2.5 Spectral inclusion

The essential spectrum, ac (T), is contained In the essential numerical

range. vV,,(T). (see. [21])

3.2.6 Essential numerical range of a scalar

FOl any scalar A. we hi-we;

for all A E C (see, [12])

3.2.7 Essential numerical range of an essentially nor-

mal operator

Ler X be an essentially normal operator i.e. X* X - X X* is compact.

Then '.Ve(X) = coo, (X). Indeed for such i-11I operator. the esseutial uorut.

IIXII" equals the PSs('lltirll spect ral radius. P, (X) i.e.

IIX lie = Pe(X)

ate that ei£) X + ILl = Y is also an essentially normal operator for any

()E IRand Ii E C Let .~be all extremal point of of II'{'(X). With suitable

e and 11. we have;

IIAY)
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the maximum being attained at the single point e
iB

z + u, Since cOC5e(T) C

1;l/e(Y) and Pe(Y) = l!V,,(Y), this implies that eiBz + IL E C5e(Y). Hence

z E C5p(Y). so that 1V,,(X) = cooAX). (see. [19])

3.2.8 Essential numerical range of an operator In a

C* subalgebra with no finite projections

Let X be an operator lying in a, C* subalgebra of '13(7-L) with JIO finite

dimensional projections. Then for any real e, we have

Th us from the projection property for Hi (.) and We(.). we infer that

1 \'( ( X) = \IF (X ) (see. [1a])

3.2.9 The essential numerical range and the diago-

nal set

For an operator A E '13(7-L) the diagonal set: 6.(A). is defined as:

This definition was givell by .J. Christophe [19]. He also gave an altema-

tive definition of the essential muuerical range of all operator A E '13(7-L)
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,;.,;'RAR"""m,l ,t..,.' ~ , lJ,
36

as;

p :there is on orthonormal 8:Y8tem{en}~=1

The equivalence of .6. (A) and vVc(A) was checked by J. Christophe [19] as

follows: Let {.tl1 }~=I he all orthonormal system such that limn=cx:,(.cl1. A.l:,I) =

A. If span {J:;7J~=1is of finite co-dimension p. we immediately get a basis,

.i:" .

such that limn=oo (e1l, Acn) = A. If span {:r:n} ~=l is of infinite co-dimension,

we may complete this system with {:Yn}~=l in order t.o obtain a basis. Let

P, be the subspace spanned by Yj and {z ; : 2j-1
~ ti < 2J}. By Parker's

theorem, there is a basis of Pj, say {ef}/EA), with;

(e/. Act)
1---TrAP.

diin Pj j

Since dim
l

P
J
TI APj ----t A a.s j ----t 00. it is possible to index {ef}iE1'l;lE'\j in

order to obtain a basis {fn }~= I such that:

Thus from the foregoing proof of equivalence, J. Christophe [19] in Propo-

sit.ion 1.2 gives the relationship as:



CHAPTER 3, THE ESSENTIAL NUl\IERICAL RANGE 37

where tut 1/\'e(A) denotes tile interior of lIAA),



Chapter 4

Results and Discussion

4.1 Introduction

III this chapter we discus« tile relat iouships between the numerical range

and the essential numerical range. vVeprove two theorems in this chapter

that show how the numerical range and the essential numerical range are

related. Finally, we discuss the roles of the essential numerical range in

operator theory and give conclusions and recommendations for further

research.

4.2 John Lancaster theorern

The relationship between the numerical range and the essential numerical

range is given in t ln- result liv .Iolui Lancaster.

Theorem 4.2.1 (John Lancaster theorem)

For T E '13(H) we have W(T) = conv{vV(T) U H/e(T)} - (see, (21})

38



CHAPTER 4. RESULTS AND DISCUSSION 39

PROOF. Clearly, W(nT + (3) = n1!\I(T) + (j for all CY,.B E cc. Therefore by

rotation and translation. we can assume t hat IV (1') is contained in the

closed right half plane aud 0 E E.d(W(T)) - \ V(T). Then there exists

a sequence {xnJ~= l of unit vectors of H such that (Tx", :£n) ---+ O. By

weak sequential compactness of the unit ball of H. we Cr1,11 assume that

{fn}~=J converges weakly to .l.: E H with IITII ::; 1. \\·e prove that .r is the

o vector, and hence 0 E vVe(T).

If Ilxll = 1, then Xn ---+ x strongly. But;

I(T:c,:I:)1 < I (T(.e - xll)·:t:)1 + 1(T.l"n,:r; - :l.:n) I + I(T:r:n,xn)1

< I (;/" - TII. T*c) I + liT II II:/" - :l:1I11 + I (TTI/' :CI/) I ---+ 0

Hence (Tx,x) = 0 and 0 E \'I! (T). So assume 0 < 11:e11 < 1. Clearly the

operator ReT is positive since H/(T) is contained in the dosed right half

plane. Then;

so II(ReT)Lflll ---+ O. This dearly vields Rr-:(Tl"J) = 0 so (T1",:I:) IS

purely imaginary. On the other hand;

(Tel; - xlL), J" - .rll)
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alld

1 - 2Re(c - 1:n. T) - 11.1"112.

so (T.1Jn' .1Jn) ---7 -(T.t. )")/(1 - 11.r112) where .1J1I. = 1\:=:::11' Thus we have

produced a non-zero purely imaginary points ill III: (T) which lie in the

upper and lower half planes. However this implies that 0 is ct. non-extreme

point of vV(T), thus completing the proof of the inclusion. The equality

follows from the inclusion by the Krein-Milman theorem.

o

The theorem below In' J. Christophe [IG] also reinforces the John

Lancaster theorem

Theorem 4.2.2

Let T be a.n opeuitoi tlie» ..

(i). If \lVe(T) C IV(T) then 1;ji(T) is closed.

(ii). There exist normal finite rank operators R ofarbitl'arjJy small

110rm such that VII (T + R) is closed.

PROOF. Assertion (i) is due to Theorem 4.2.1. vVe prove the second

assertion and impliritlv prove Lancaster's result.

\\'e may find all orthonormal svstern {.f,,} such that the closure of the

sequence {(T1'I1"/''')} contains the boundary of the essential numerical

range, 61,ve(T).

Fix f > O. It is possible to find an integer p and scalars ?:j. 1 < j < p,

wit h Izl < f such that;
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Thus. the finite rank operators,

R = Ll<j<P ::.)./:)@:I;) has the property that W(T + R) contains

lIT, (T). \\'e need this operator R. Illdeed. set t iug .\ = T + R. we also

1I,t\'(' \\'(X) => 11',.('\). \\.(' t lu-n claiiu r hat \\'(X) is closed (t his claim

implies assertion ('I)). Bv the contrary, there would exist,

::. E (H1i(X)\W,.(X).

Furthermore. since H'(X) is the convex hull of its extreme points, we

could assume that such a z is an extreme point of VV (X). By suitable

rotation and translation, we could assume tliat c = 0 and that the iniagi-

Jl(tl'Y axis is a line of support of II·(X). The projection propertv for Ill)

would iruplv that W(ReX) = (:/:.0] for (-\certain l1egative number cI:. so

that 0 E W,.(ReX).

Thus WE:' would deduce from the project ion propertv for lV, (.) that

() E II', (X); C1 co II t li-td ic t i()II . ( S( '(-" [19])

o

4.3 Role of the essential numerical range

4.3.1 Operators with the Small entry property

This is a iuat ricial ]lI'OPE'ltV. All operator T E 23(H) bas the stnall ('rd7'y

propevtu if for every f > O. there is a basis {en} such that I(Ten. em)1 < E

for all » and .n. The condit ion 0 E 1Jl, (T) is equivalent to t be fact t hat the
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operator T has the small entry propertsj. That is: if the operator T has the

small ent ry property. theu for any f > O. t here is a basis so that all entries

of the matrix of T have absolute value less than f. III particular, the diag-

oual entries of the matrix must have an accumulation point A with IAI < E

and since 1;l"e(T) = {A : there is on orthonormal sequence {XnL~'=1 with

/il1!.lI->x(Tt/l .. t/l) = A}. its evident that A E 11',,(1'). And since 11',,(1')

is closed. 0 E \ {;,,(T). \1\'(, cowhide t hat 0 E I\',,(T) is equivalent to tile

propertv that the opere!tor T has the sm all entry propertu. Thus we infer

t hat the essential numerical range serves to ident.ifv the class of operators

that satisfy the small en LTY properts). (see, [9])

vVe give the theorem by Q. F. Stout [12] that reinforces that the

condition 0 E VVe(T) is equivalent to the fact that the operator T has

t he small entru properu].

Theorem 4.3.1

For cU1." T E IJ3(H). the (olloH'ing conctit icns cll"f' eouivnlent:

(II). 0 E II,AT)

(c). T has the Slllc!ll entry property.

(d). There exjsts cl sequence of buses ((n) such that T~(n) ---7 0 unifor111ly

in 1J3(IJ3(H)). (see. (12})

PrWOF. The proof can he found in Q.F. Stout. [12]. Theorem 2.3

o



CHAPTER 4. RESULTS AND DISCUSSION 43

4.3.2 Zero diagonal operators

An operator T E lJ.3(H) is called zero diaqonal if there exists an orthouor-

mal basis {en} for H such that (Ten· E'n) = 0 for all u, \I\fe state the

theorem below by D. Bakic [9] without proof.

Theorem 4.3.2

Let T E lJ.3(H) be a bounded operator on a separable Hilbert space. H.

Th C /I th ere crisis {J n oith.o /I()1'1I/(// basis {(' 1/ } for H s II ('17 th 0 t l i111 (Fell' ('1/) =

U 'if and only if 0 'is in the essential numerical ranee of T.

Thus froui this theorem, we infer that 0 is ill the essential numerical

range. \;Ve conclude that th notion that all operator T is zero diagonal

is equivalent to the fact that 0 E We(T). Thus the essential numerical

range also serves to identify zero diagonal operators. (see, [9])

The essential uumerical rallge plavs an important role in solving prob-

lems from the opera tor t heory. The list below of mutually equivalent

conditions indicates the importance of the essential numerical range.

Theorem 4.3.3

Fa)' elll opernt o: _-l E 'l;'(H) t uc: {ollc)\\'illl!, conclit iou» rl/'e iuut nnll, eciuivn-

lent:

(a). There exists all orthououuei besi» {en} f()[' H such that iirn; (Aen) e.n) =

U

(c), There exists ;-1,1/ art 11011ovuin! sequellce {(I I/} ill H such that tun; (Aan, 0",,) =

o.
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(d). There exisu, f),beC)uellce of unit vectors (T,,) iu H weakly converg-

ing to 0 such tiu-l.t InnnT:Cn = O.

(e). There exists all orthogonal projection P E 'B(H) with an infinite

dimensional range such the t PAP is a compact operator.

(f). For each f > 0 there exists cl.11ortiJoIlonnai iJi:l.bis{en} io: H sucl:

tun: [(Aen,e'ml[ < E. for all nand m,

(y). For eect: f > 0 a ucl ]J > 1 there exist« i:l.1l 011honottue! bClSib {f' n }

fOIH slIcil tlin: L~l [(A(:'/I' (II)[P < f

(h). There existb <:1 seciueiice of' zero c/iagona i operetor» All i /J H eucl:

ti1i:l.tA = (-n.oT'In)linl."A"

('i). There exists a zero diagonal operator T E 'B (H) and a cotupect

operator K E K(H) such that A = T + K

(j). There exists an opeteiot BE 'B(H) such tue: A = B* B - BB·.

III tilis case A is self~i:-I(ljojJJt 11ecessntit».

(k). The spectrum of A has at lees: Ol1e non-negative limit. point and

et least Olle uou-posit ive limit point. (see. [9j)

PHOOF. (a) ¢=> (b). This is due to the assertion of Tlieoretu 4.3.2 above.

(b), (c). (d) and (e) are equivalent. (see. [5]).

(e) ¢=> (1) ¢=> (g)

(h) ¢=> (b)

(i) B (a)
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(0) =} (i): Let us take the orthonormal basis from (a) and define

J\' E '13(H) by I{('" = (Ae", e,,)en for al l n . Since- (.4('", C" --1 0, F is

compact, Obviously. T = A - 1{ is zero diagonal.

(j) ~ (k) ~ (b)

o

4.4 Conclusions and Recommendations

III line \\' it h the 0 bject i\'('S of our st udy. we 11i::1ve st udied tile properties of

tile essential numerical range. 'vVe have also looked at the relat iouslii ps

between numerical iaugo and the essential uuiuerical r.uige. Finally, we

11(-Lvediscussed the role of the essential n umerical range in operator r he-

ar), We have found out that, just like tile familiar numerical range, the

essential numerical range is convex, Both the essential numerical range

and the familiar numerical range satisfy the properties, for instance. uui-

tary invaiiauce and t.ho projection property. Our study has also shown

t hat the essential spec! l'lllll is contained ill the essential numerical range.

This is conr rarv to the well known fc1d that tile spect.rum is contained

ill the closure of the numerical range. \\'e have revoalecl that the essen-

t ia I numerical range is 11011- void (met com pact set, \ \ 'e have also gi ven

t he essential numerical range of 8,11 essentially normal operator as well as

the connection between t he essential numerical range and the diagonal

set, \/'v'e have shown that the essential numerical range is a subset of the

closure of the numerical range, This is as a result of the John Lancaster

theorem and the J, Christophe theorem, This studv has also revealed
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some of the roles of the essential numerical range. vVe have found out

rhat the essential numerical range can be usee! to ideutifv zero diagonal

operators as well as (11(-' class of operators that sat isfv the 'sllleLlI outrv

property'. We have also given a list of mutually equivalent conditions

that show the importance of the essential numerical range.

Although the numerical range has had a great role ill various aspects

of operator theory e.g. similarity of operators e.t.c ..,we wish to recommend

t hat there is a need to investigate in which of such areas can the numerical

range be replaced with the essential numerical range in such a way that

Hie results still earn' through. Consequently, the equality of spectra of a

given pair of operators has been considered by several authors. Gut the

equality of essential spectra for the same operator is still wanting ill the

extant literature of operator theory. We wish to recommend this Mea for

research.
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