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ABSTRACT

The concept of numerical range on a Hilbert space was first introduced

by O. Toeplitz in 1918 for matrices. This notion was independently ex-

tended by G. Lumer and F. Bauer in the sixties on finite dimensional

Banach spaces. J. G. Stampfli introduced the maximal numerical range,

proved its convexity and used it to derive an identity for the norm of

derivation in 1970. In 1972, J. G. Stampfli and J. P. Williams defined

and studied the essential numerical range of an operator. In our work,

we looked at the joint essential numerical ranges. In particular, this

study has shown that the properties of numerical ranges such as com-

pactness, nonemptiness and convexity do hold for the joint essential nu-

merical range. The study has also shown that the closure of the joint

numerical range of an operator is star-shaped with elements in the joint

essential numerical range of the operator as star centers. Further, we have

shown that the joint essential spectrum is contained in the joint essen-

tial numerical range by looking at the boundary of the joint spectrum.

Convexity, nonemptiness and compactness of the joint essential numerical

range were shown by first proving the equivalent definitions of the joint

essential numerical range. Basing on the convexity of the joint essential

numerical range, other results were obtained. The results of this study

are helpful in the development of the research on numerical ranges and

may also be applied by mathematicians in solving several problems in

operator theory.
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Chapter 1

Introduction

1.1 Background Information

Denote by B(X) the algebra of bounded linear operators acting on

complex Hilbert space X. The numerical range of T E B(X) is defined

as

W(T) = {( Tx, x) : x E X, ( x, x ) = I}

which is useful in studying operators, see [ 2, 5, 13, 14, 28, 29, 30]. Let

A be a complex normed algebra with unit e, let a = (aI, ... , am) E Am.

The joint algebra numerical range Vm(a, A) is defined by

Vm(a, A) = {(J(al), ... , f(am)) : f E A*, II f 11=1= f(e)}

where A * is the set of all bounded linear functionals on A. It was shown

in [13] that Vm(a, A) is always a compact convex subset of C'".

Denote the set of self-adjoint operators in B(X) by S(X). Since every

T E B(X) admits a decomposition T = T, + iT2 with Ts ;T2 E S(X),
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W(T) can be identified with

{(( T1x,x), (T2x,x)): x E X, (x,x) = I}.

This leads to the joint Numerical range of T = (Tl' ... , Tm) E s(x)m,

Wm(T) = {(( T1x,x), ... , (Tmx,x)): x E X, (x,x) = I},

which has been studied by many researchers in order to understand the

joint behaviour of several operarors T1, ... , Tm, see [ 1, 8, 16, 21, 22, 24,

31] .

Let K(X) be the ideal of all compact operators in B(X). Researchers,

while studying finite rank or compact perturbations of operators, consid-

ered the joint essential numerical range of T E s(x)m as

When m = 2, Wem (T) is identified with essential numerical range of

T = Tl + iT2 E B(X) defined by

We(T) = n {W(T + K) : K E K(X)},

see [ 4, 10, 17, 19,26,27,43]. The essential numerical range for m = 1

was introduced and studied in [27]. The joint essential numerical range

was studied, for example, in [ 10, 38 ] among others.

Convexity of Wm(T) and Wm(T + K) has been studied by various re-

searchers and concluded that Wm(T + K) is usually non-convex while

Wm(T) is convex for m = 1 and is not convex in general for m ~ 2, see [
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8, 13, 14, 19, 27, 32]. It is thus unexpected for the set Wem (T) to be con-

vex since it is an intersection of non-convex sets. This could be the reason

why convexity of Wem (T) is rarely discussed for m > 3. Many properties

of Wem (T) have been studied by some researchers under the assumption

that Wem (T) is convex. Other researchers studied Wem (T) without dis-

cussing its convexity. This study has shown that Wem (T) is always convex

by first establishing several equivalent formulations of the joint essential

numerical range for T E s(x)m then showing that Wm(T) is star-shaped

with the elements in Wem (T) as star centers. We have also shown that

Wem (T) contains the joint essential spectrum (Jem (T) by looking at the

boundary of the joint spectrum. Here, the joint essential spectrum (Jem(T)

is defined as the joint spectrum (Jm(T) , where (Jm(T) = (J~1(T)U (J~(T)

while the left (right) joint spectrum (J~ (T) ((J~ (T)) is the set of all

A = (>'1, ... , Am) E em such that {1i - Ai}~l generates a proper left(right)

ideal in the Calkin algebra of X.
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1.2 Literature Review

The joint essential numerical range has lots of application in mathe-

matics, mostly in solving problems in operator theory. For the purpose

of this study it was important to have a good background in functional

analysis, operator theory and general topology. Knowledge of numerical

ranges, algebra numerical ranges and the joint essential spectrum was

most important for this study.

Numerical ranges of a single operator T has been greatly studied and

its properties determined. In [ 13, 28, 29, 32, 33, 39 ], it was established

that this numerical range of a single operator T is convex and its closure

contains the spectrum of the operator T. For a normal operator T, they

established that the closure of the numerical range is the convex hull of

the spectrum of T. It was also shown that the numerical radius is norm

equivalent to the operator norm II T II which satisfies ~ II T II :S w(T) <

liT II·
Much work has also been done on the algebra numerical range and its

properties. In [13] for instance, F. F. Bonsall and J. Duncan showed that

the algebra numerical range is a compact convex subset of a complex

plane.

It is worth noting that much has also been done on the essential nu-

merical ranges [ 10, 27,34]. The essential numerical range for m = 1 was

introduced and studied in [27] by P. A. Fillmore, J. G. Stampfli and J. P.

Williams. It is therefore known that the essential numerical range of T

is contained in the closure of the numerical range of T. This knowledge
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and much more about the essential numerical range was vital for this

study. The joint numerical range of T has too been studied by several re-

searchers. Convexity of the joint numerical range and that of the closure

of the joint numerical range was studied by several researchers and con-

cluded that the closure of the joint numerical range is usually non-convex

while the joint numerical range is convex for m = 1 and is not convex in

general for m ;:::2, [ 8, 13, 14, 19, 27, 32].

The study of the Joint essential numerical ranges has captured great

interest especially in [ 17, 38 ] in which it was defined and several of its

properties examined. It was thus unexpected for the set of the joint essen-

tial numerical range to be convex since it is an intersection of non-convex

sets. This could be the reason why convexity of the joint essential numer-

ical range is rarely discussed for m > 3. Many properties of Wem (T) have

been studied by some researchers under the assumption that the joint

essential numerical range is convex. Other researchers studied the joint

essential numerical range without discussing its convexity. This study,

being an extension of the study of the numerical ranges, has determined

that the properties of the numerical ranges also hold for the joint essen-

tial numerical ranges. In particular, the study has shown that the joint

essential numerical range is always a convex set.

It must be noted that much has also been done on the joint essen-

tial spectrum. In the case of a single operator, the boundary points of

the numerical range of an (self-adjoint) operator belong to its spectrum;

consequently in the finite-dimensional case, they are in fact eigenvalues.

Abramov [1], Buoni and Wadhwa [16] have investigated the relation be-

tween the joint spectrum and the joint numerical range. Abramov [1]

IMASEN~ :..'N_,vE~~rr·Yl
S"G~S~L~URAt,~{ I-....- .•......-.--- ...
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showed that the conical point of the closure of the joint numerical range

of an m-tuple of operators T = (Tl' ...,Tm) belongs to the joint approxi-

mate point spectrum of T. Dash [23] studied the relationship between the

joint essential spectrum and the joint spectrum and showed that the two

are equal. This fact was useful in the sequel.

In this study, we also showed that the joint essential spectrum is con-

tained in the joint essential numerical range. This study relied heavily on

[27].

1.3 Statement of the Problem

The properties of Wem (T) have not been exhaustively studied. It was

not clear whether the general properties of the numerical ranges hold for

Wem (T). This study therefore investigated whether the properties of the

classical numerical ranges also hold for the joint essential numerical range.

1.4 Objectives of the Study

This study was aimed at:

1. Determining whether Wem (T) is a compact convex set.

2. Investigating whether Wm(T) is always star-shaped with elements

in Wem (T) as star centers.

3. Investigating whether O"em(T) c Wem (T)
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1.5 Significance of the Study

The study of the joint essential numerical ranges is of great interest to

mathematicians since its knowledge plays an important role in solving

several problems in operator theory. This study was an extension of the

study of numerical ranges. We sincerely hope that the results obtained

will be vital in the development of the research on numerical ranges and

may also be applied by mathematicians in solving several problems in

operator theory.

1.6 Research Methodology

To obtain the results, we first proved many equivalent definitions of

the joint essential numerical range. This study then showed that the

closure of the joint numerical range is star-shaped with the elements in

the joint essential numerical range as star centers. To determine whether

the joint essential spectrum is contained in the joint essential numerical

range, this study looked at the boundary of the spectrum.



Chapter 2

Basic Concepts

2.1 Introduction

In this chapter, definitions essential to the study are simplified and given.

2.2 Normed and Banach Spaces

Definition 2.2.1

A real valued function

II . II: V -t lR

is called a norm on a vector space V if it satisfies the following properties:

(i) II x 112: 0 \f x E V

(ii) II x 11= 0 ¢:::} x = 0

(iii) II ax II = I a III x II \f x E V and a E lK

(iv) II x + y II < II x II + II y II \f x, y E V (Triangle inequality)

8
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I . I denotes the usual absolute value. If II . II is a function with properties

(iii) and (iv) only it is called a semi-norm.

Definition 2.2.2

A normed space X is a vector space with a norm defined on it. We denote

it by (X, II . II)· If IK = IR it is a real normed space. If IK = <C it is a

complex normed space.

Definition 2.2.3

A sequence (xn) is a Cauchy sequence (or fundamental) if V f > 0:3 N

N(f) such that for all n, m > N ===}II Xn - Xm II < f.
Definition 2.2.4

A normed linear space X is said to be complete if all Cauchy sequences

in X are convergent.

Definition 2.2.5

A Banach space is a complete normed space.

Definition 2.2.6

An inner product space is a linear space X together with an inner product

(,) : X X X ---t IK where IK = IR or C such that,

(i) (x, y) = (y, x)

(ii) (A x + f-L y, Z ) = A ( x, z ) + u ( y, z )

(Hi) (x, x ) 2 ° with equality only for x = 0, the zero vector.

The function (,) is called an inner or scalar product. We denote the inner

product space (or sometimes a pre-Hilbert space) by ( X, (,) ).

Definition 2.2.7

The norm II . II in X given by II x II = v1X:x) is called the norm defined

by the inner product (,) in the inner product space X.
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Definition 2.2.8

A Hilbert space (X, (, )) is a strongly complete inner product space.

Definition 2.2.9

A subset S of vectors of X is said to be orthonormal if

(i) II x II = 1 V xES

(ii) (x, y) = 0 if x =I- y and x, yES

Definition 2.2.10

An operator is a mapping from a vector space X to a vector space Y over

the same field that preserves the algebraic properties of the vector spaces.

Definition 2.2.11

An operator T is linear if:

(i) The domain 1)(T) is a vector space and the range lies in the vector

space over the same field.

(ii) For all x, y E 1)(T) and scalar A, ex E lK,

T(AX + exy) ATx + exTy.

Definition 2.2.12

A linear operator T : D(T) -------t Y, where D(T) c X, is said to be bounded

if there is a real number m > 0 such that

II Tx II < m II x II V x E D(T) (2.1).
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Here, the norm on the left is that of Y, and the norm on the right is that

of X. The norm of the bounded linear operator T is

II T II = sup
XED(T) : x#O

II Tx II
II x II .

With m = II T II, the above formula, (2.1) becomes

II Tx II:::; II T IIII x II·

Definition 2.2.13

The adjoint of a linear operator T E B(X) is a linear operator T* E B(X)

defined by the relation (Tx, y) = (x, T*y) V y, x E X.

Definition 2.2.14

A bounded linear operator T : X ~ X on a Hilbert space X is said to

be

• Self-adjoint or Hermitian if T* = T,

• Normal if TT* = T*T,

• Unitary if T is bijective and T* = T-1,

• Hyponormal if T*T - TT* 2:: a or equivalently, II Tx II 2:: II T*x II
VxEX.

Definition 2.2.15

If M is a closed linear subspace of the Hilbert space X then X is the

orthogonal direct sum of M' and M.l, and we write X = M E9M.l. If

every x E X is written uniquely in the form x = y+z : y E M, Z E M.l,
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we write x = y E8z.

The operator P = PM defined by Px = Y is the projection (or orthogonal

projection) on M. The space M is called the subspace of the projection

P.

Definition 2.2.16

For a Hilbert space X, P E B(X) is called an idempotent if p2 P.

1£ P is an idempotent, then so is 1 - P.

Definition 2.2.17

A functional is a mapping from a Normed space X into the scalar field ~

or C.

A functional f : D(J) ---t lK is linear if it's domain is in a vector space

X and the range is in the scalar field lK of X.

Definition 2.2.18

A linear functional f :X ---t ~ or <C is said to be bounded if there exists

a real number m > 0 such' that

I f(x) I < m II x II V x EX (2.2).

Furthermore, the norm of f is

II f II = sup I f(x) I .
xED(f) : Jxll=l

With m = II f II, formula (2.2) now implies

I f(x) I ::; II filii x II ..

We shall denote the set of bounded linear functional by A * .

MASENQ L ".-:;:.~ ~;"~vl
S G ;'" . _ '- -t.. ~ .. ' • I
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Definition 2.2.19

X*, the set all linear functionals on a vector space X, is the dual space

of X.

2.3 Compact Operators

Definition 2.3.1

A subset S of a normed linear space is compact if and only if every se-

quence (sm) in S has a subsequence (smj) = (smI' sm2' ... ) that converges

in S.

Definition 2.3.2

A pre-compact subset in a normed linear space is one whose closure is

compact.

A linear map T : X --+ Y, where X and Yare a pre- Hilbert space and a

Hilbert space respectively, is compact if it maps the unit ball in X to a

pre-compact set in Y.

Equivalently, T is compact if and only if it maps bounded sequences in X

to sequences in Y with convergent subsequences. That is, T E B(X) is

compact if for every bounded sequence (xm) E X, the sequence (Txm) E Y

has convergent subsequence.

Compact operators on X will be denoted by JC(X).

A compact linear operator is continuous, whereas the converse IS not

always true.

Definition 2.3.3

The rank of an operator is the dimension of its range. An operator with

finite dimensional range is therefore of finite rank.
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The identity operator on a Hilbert space X is compact if and only if X

is finite dimensional.

2.4 Algebras

Definition 2.4.1

An algebra over a field IK is a vector space A such that for each ordered

pair of elements x, yEA a unique product xy E A is defined with the

properties:

(xy)z

x(y + z)

(x +y)z

a(xy)

x(yz)

xy +xz

xz+yz

(ax)y = x (a y) V x, Y E X, a E IK, IK = lRor C

A normed Algebra is a Normed space A which is an Algebra such that

V x, yEA

i) II x y II :s; II x II II y II

ii) and if A has an identity e, then II e II = 1

A Banach algebra is a complete Normed algebra.

Definition 2.4.2

A subalgebra of an algebra A is a vector subspace M such that V x, x' E

M, we have xx' EM.
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Definition 2.4.3

An involution on an algebra A is a mapping * : A -----* A defined by

x f-----t x* such that V x, yEA, and A E C, the following conditions are

satisfied:

(i) (x + y)* = x* + y*

(ii) (AX)* = '\x*

(iii) (xy)* = y*x*

(iv) (x*)* = x

*-algebra or an involutive algebra is an algebra A with an involution.

Definition 2.4.4

A Banach *-algebra is a Banach algebra A with an involution satisfying

the property

II x II = II x* II, V x E A.

Definition 2.4.5

A *-algebra (with identity) is called symmetric if e + x* x has an inverse

for every x E A.

Definition 2.4.6

C* - algebra is a symmetric Banach * - algebra A such that II xx* II = II
X 112 V x E A.

Definition 2.4.7

A positive linear functional is a linear functional f on a Banach algebra

A with an involution that satisfies

f(xx*) > OVx E A.
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Definition 2.4.8

A left (or right) ideal in an algebra A is a vector subspace MeA such

that for all x E A and y E M, xy E M (or yx EM).

An ideal in A is a vector subspace that is both a left and right ideal in

A.

2.5 Convex and Star-shaped Sets.

Definition 2.5.1

A subset C of a linear space M is convex if 'II x, y E C the segment

joining x and y is contained in C, that is, tx + (1- t)y E C'II t E [0,1].

A set S is starshaped if :3yES such that 'II xES the segment joining

x and y is contained in S, that is Ax + (1 - A)y E S 'II A E [ 0, 1 ].

A point yES is a star center of S if there is a point xES such that the

segment joining x and y is contained in S.

Starshapedness is related to convexity in that a convex set is starshaped

with all its points being star centers. A starshaped set is not necessarily

convex.

Recall that a subset M of C is connected if it cannot be split into two

nonempty open sets.

Definition 2.5.2

A norm 11.11 is strictly convex if II x II
together imply that x = y.

1, II y II 1, II x + y 11= 2
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Strict convexity is automatic for Hilbert spaces.

Definition 2.5.3

If M is a subset of a linear space X, then a convex hull M, represented

by conv(M) is the smallest convex subset of X containing M and is thus

the intersection of all convex subsets of X that contain M.

2.6 Numerical Ranges and the Spectrum

Definition 2.6.1

The numerical range of a bounded single linear operator T on a Hilbert

space X is subset of the complex numbers given by

W(T) = {(Tx,x) x E X, II x 11= 1 }.

Theorem 2.6.2

For any operator T on X, the following properties hold:

(i) W(cd + j3T) = ct + j3W(T) V o, j3 E C

(ii) W(T*) = {X : A E W(T)}.

(iii) W(U*TU) = W(T) for all unitary operators U (i.e. U*U I

UU*).

P. Halmos book [29] has a detailed account of this subject.

Definition 2.6.3

The spectrum of an operator T is defined as

a(T) = {A E C : T - AI is not invertible}.
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Definition 2.6.4

The resolvent set p(T) of the operator T is defined as

p(T) = {A E C : T - AI is invertible }.

Lemma 2.6.5

(Ellipse Lemma). Let T be an operator on a two dimensional space. Then

W(T) is an ellipse whose foci are the eigenvalues of T.

See Gustafson and Rao [28] for the proof.

Theorem 2.6.6

(Toeplitz-Hausdorff). The numerical range of an operator is convex.

See Gustafson and Rao [28] for the proof.

Theorem 2.6.7

The spectrum of an operator is contained in the closure of the numerical

range.

This was proved by Gustafson and Rao [28] by looking at the boundary

of the spectrum which is included in the approximate point spectrum.

Definition 2.6.8

An operator T E B(X) is convexoid if

W(T) = conv O'(T).

Here conv O'(T) is the convex hull of the spectrum of T.
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Definition 2.6.9

The numerical radius w(T) and the spectral radius r(T) of the operator

T are defined as follows:

w(T) sup {IAI A E W(T)} sup {I ( Tx, x ) I, "x II = I}

and

r(T) sup {IAI A E a(T)}.

Definition 2.6.10

An operator T E B(X) is

(i) spectraloid if w(T) r(T)

and

(ii) normaloid if " T 11= r(T)

or equivalently

II T 11m = II t» II (m = 1,2, ... )

P. Halmos [29J showed that the classes of normaloids and convexoids are

both contained in the class of spectraloids.

Definition 2.6.11

A point A = (AI, ... , Am) E Wm(T) is an extreme point if A is not in any

open line segment contained in Wm(T) .

., It is known that a set of extreme points is contained in a set of boundary

points. _
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For a bounded normal operator T on a Hilbert space X, the extreme

points of the closure of the numerical range are in the spectrum of T.

This is from the fact that the convex hull of the spectrum is the closure

of the numerical range and because the extreme points of the convex

hull of a compact set are in the compact set.

See' Berberian [11] for this and more.

Theorem 2.6.12

Every extreme point of the numerical range W (T) is an eigenvalue of the

spectrum O"(T).

See J.G. Stampfli [39] for the proof.

Definition 2.6.13

An operator T E B(X) is paranormal if

II Tx 112 < II T2x II II x II V x E X.

Definition 2.6.14

The algebra numerical range of an arbitrary element a E A is defined by

V(a) {f(a) f E A*, f(1) 1 = II f II}

where A is a complex Normed algebra with unit and A* the set of all

bounded linear functionals on A.
Definition 2.6.15

Let K(X) be the ideal of all compact operators acting on complex Banach

space X, and let 7r be the canonical projection from B(X) onto the Calkin

~algebra B(X)jK(X). Denote also by II . lie the essential norm II T lie =

inf {II T + K II : K E K (X) }.
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The essential numerical range We(T) of T is defined by

We(T) = V(7r(T), B(X)/JC(X), II . lie)

for T E B(X) and X is infinite dimensional space.

Definition 2.6.16

Let B(X) denote the set of bounded linear operators acting on the com-

plex Banach space X. An operator T E B(X) is said to be Fredholm if it

has closed range with finite dimensional null space and its range of finite

co-dimension.

We shall denote the null space and range of T by N(T) and R(T) respec-

tively.

The index of a Fredholm operator T E B(X) is given by

i(T) = a(T) - (3(T)

where a(T) = dim (N(T)), and (3(T) = codim (R(T)).

Definition 2.6.17

An operator T E B(X) is called Weyl if it is Fredholm of index zero.

An operator T E B(X) is called Browder if it is Fredholm and T - AI is

invertible for A =I=- 0 E C.

Definition 2.6.18

The essential spectrum CJe(T), the Weyl's spectrum CJw(T) and the Brow-

~der's spectrum CJb(T) are defined by
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(Je(T) = {A E e :T - AI is not Fredholm}

(Jw(T) = {A E e :T - AI is not Weyl };

(Jb(T) = {A E e :T - AI is not Browder}.

Definition 2.6.19

The joint spectrum (/m(a) of a commuting m-tuple of elements a

(al) ... ) am) E X is defined as

(/m(a) = (/~(a) U (/~(a)

where the left (right) joint spectrum (/~ (a) (/~ (a)) is the set of all A =

(AI) ... ) Am) E em such that {bi-Ai}~l generates a proper left (right) ideal

in the Calkin algebra and b, = 7r(Ti) is the coset containing T; 'if i E [1) m]

and 7r the canonical homomorphism from B(X) to the Calkin algebra

8(X)jK(X).

Consult F. F. Bonsall and J. Duncan [13] for the notion of the joint

spectrum.

Definition 2.6.20

The joint essential spectrum of an m-tuple of operators T = (Tl) ... ,Tm)

denoted by (/em(T) is the joint spectrum (/m(a) of a = (al) ... ) am) EX.

The set (/~ (T) (/~ (T)) is known as the left (right) joint essential spectrum

and denoted by (/~m (T) (/~m (T)). The oem (T) is a nonempty compact

subset of em for an m-tuple of essentially commuting (commuting modulo

the compact) operators T = (Tl) ...)Tm).
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According to A, T, Dash [23], the joint essential spectrum CJem(T) of

T = (TI' .." Tm) is equivalently defined as

where

a~JT) = {A = (>'1, .. " Am) : BI(TI - AII) + ..,+ Bm(Tm - AmI) is not

a Fredholm operator for all operators B = (BI' .. " Bm) on X }

and

a;JT) = {A = (AI, .. " Am) : (TI - AII)BI + ..,+ (Tm - AmI)Bm is not

a Fredholm operator for all operators B = (BI' .. " Bm) on X },

Definition 2.6.21

A point A = (AI, ... , Am) E em is the joint approximate compression

spectrum CJc(T) of T if and only if there exists a sequence {xn} of unit

vectors in X such that

II (Ai -Ji)*Xn \\------t 0 (n ------t (0), i= 1, ... ,m.

Definition 2.6.22

A point A = (AI, ... , Am) E Wm(T) is a bare point of Wm(T) if there is a

spherical surface through A such that no points of Wm (T) lie outside this

spherical surface.

The set of the bare points of Wm (T) is included in the set of extreme

\ points of K and dense in it. See S. K. Berberian [11].
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Definition 2.6.23

Ajoint approximate point spectrum O"7r(T) of an operator T = (TI, ... ,Tm)

is a point A = (Ai, ... , Am) E em such that for a sequence {xn} of unit

vectors in X we have

II (Ai - Ti)xn II------t 0 (n ------t (0), i = 1, ... , m.

Ajoint eigenvalue (point spectrum) , O"p(T), of an operator T = (TI, ... , Tm)

is a point A = (AI, ... , Am) such that for a nonzero eigenvector x there is

1i,x AiX' i = 1, ... ,m.

The joint residual spectrum O"r(T) of T is a point A = (AI, ... , Am) such

that for a nonzero vector x there is

T*i X AiX' i = 1, ... ,m

where :\i is the complex conjugate of Ai and Tt is the adjoint of the

operator t;
Definition 2.6.24

If we denote by F, the set of all Fredholm operators, then if for F c em
and A = (AI, ... , Am) E F there exists a closed convex cone K with vertex

(0, ...,0) such that F c K - A, we shall call the point A a conical point

of F. Here, a closed subset K c em satisfies the following properties:

(1) K + K c K,

( 2 ) aK c K for all a > 0,
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( 3 ) K n (- K) = {(0, ... , O)}.

Definition 2.6.25

For any m- tuple T = (Tl' ... , Tm) of operators, the joint operator norm,

joint numerical radius, joint spectral radius and joint approximate point

spectral radius respectively, of T are defined by:

II T II = sup {(II T1x 112+...+ II Tmx 112)1/2: II x II = 1},

wm(T) = sup {(I (TIX,X) 12+...+ I (Tmx,x) 12)1/2 : II x II = 1},

Tm(T) = sup {(I )'l 12+ + I Am 12)1/2 : A E O'(T)},

T7r(T) = sup {(I Al 12+ + I Am 12)1/2 : A E O'7r(T)}.

It '
I

.fi



Chapter 3

Numerical Ranges

3.1 Introduction

The concept of numerical range or the classical field of values on a Hilbert

space was first introduced by Toeplitz in 1918 for matrices. In 1962, Bauer

introduced the notion of numerical range on finite dimensional Banach
,

spaces. The subject of numerical range and numerical radius 'has con-

nections and applications to various areas such as C*-algebras, iterations

methods, Krein space operators, factorisation of matrix polynomials, di-

lation theory and unitary similarity which all constitute an active field of

research in operator theory [ 5, 7, 9, 12]. For a bounded linear operator

T on a Hilbert space X, the numerical range W(T) has been studied by

various writers and its properties given. It is therefore known that W(T)

is bounded (not necessarily closed) convex set whose closure W(T) con-

tains the spectrum a(T) of T. If T is normal, W(T) = conv a(T) and T

js said to be convexoid. Furthermore, the extreme points of W (T) are

< eigenvalues of T. See [ 16, ]8, 19, 28 J for these and more details.

26
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The notion of the joint numerical range Wm(T) was investigated by

Halmos [29] and Dash [22] among others. They sought to find out how

much of the knowledge about the numerical range in the single operator

case carried over to the analogous situation in the case of an m-tuple

of operators. Studying convexity of Wm (T), researchers concluded that

Wm(T) was convex for m = 1 and not convex in general for m 2: 2.

This first section of this Chapter focuses on the numerical range of two

linear operators on a Hilbert space. The study has in this first section

showed that the properties of the numerical range of a single operator

also hold for the numerical range of two operators. The second section of

this chapter will focuss on the joint algebra numerical range.

3.2 Numerical Range for two Linear Oper-

ators.

Definition 3.2.1

The joint numerical range W(T, A) of two linear operators T, A E B(X)

where X is a Hilbert space is defined as

W(T,A) = {( Tx,x), (Ax,x): x E X (x,x) = I}.

The numerical radius w(T, A) is defined by

w(T, A) = sup {IAI A E W(T, A)}.

The spectrum a(T, A) of two linear operators T and A is defined as
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J(T, A) = {A E e : ((T - AI) (A - AI)) is not invertible }.

The spectral radius r(T, A) is defined as

r(T, A) = sup {IAI : A E J(T, A)}.

The joint eigenvalue (point spectrum), Jp(T, A), of the operators T, A E

B(X) is a point). E e such that for a nonzero eigenvector x there is

(Tx - Ax)(Ax - AX) = O.

The joint approximate point spectrum J7[(T, A) of the operators T, A E

B(X) is a point A E em such that for a sequence {X17J of unit vectors in
,

X with II Xm 11=1 we have

II (T - ).)xm II II (A - ).)xm 11----+ 0 (m ----+ (0).

The followi?g theorem, whose proof was adopted from Charles Amelin

[3], shows that the numerical range of two linear operators is convex.

Theorem 3.2.2 .

W(T, A) is a convex set.

I

PROOF,.. Let hI, /'2) E W(T, A). Let also (YI, Y2) E X such that ( TYl, u, )
/'1, (TY2' Y2) = /'2, (AY1, YI) = 1 and ( AY2, Y2) = 1. Consider the

binary forms C, : C X C ---t C, i = 1,2 defined by
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,

It is to be shown that C2 = 1 while C1 assumes every value on the line

segment that joins 11 and 12. To do this, for

and

assume that

Then, for C1 to exhibit the above behaviour, it must be shown that while

C2 = 1, C takes on every real value from 0 to 1 inclusive. Choose w of

modulus 1 such that

Re( AYl, Y2 ) w 2: 0 and

(0:12 - a21) w is real.

For real variables m and n, let 0:1 = m and 0:2 = wn. Let t = WO:12 + W0:21
I

be real and z = Re (w ( AY2, Yl )) 2: O. Thus C = m2 + tmn and

C2 = m2 + 2zmn + n2. Solving for C2(m, wn) = 1, we obtain

n = -zm ± VI + (z2 - l)m2
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which is real valued for m E [-1, +1]. Now n is a function of m. With the

above value of n, the form C becomes

We can let Co(m) = C(m, wn). For m E [0,1]' Co(m) is a continuous real

valued function with Co(O) = 0, Co(1) = 1 so that Co(m) assumes all

values between 0 and 1 as we had desired. o
We now abbreviate the essential numerical range of two linear operators

T, A E B(X) by We(T, A).

Definition 3.2.3

The essential numerical range, We(T, A) of two linear operators T and A

is defined as

n{W((T, A) + K) : K E K(X)}.

Theorem 3.2.4

Let T be nonnegative, self-adjoint operator and T A AT. Then

PROOF. Suppose M E We(T, A), we must show that M E We(T) We(A).

There is a sequence of unit vectors (xm) E X converging weakly to 0 E X

such that

Let-em = t+«; There is emk = 0 for some subsequence such that 0 E

We(T, A) and 0 E We(T) We(A). If not, let em =I=- 0 \:j m. Let Ym = II~:II·

...."'vi
-~-~ ··1
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Thus (Ym) E X is sequence of unit vectors converging weakly to 0 E X

such that

((AYm, Ym) (Txm, xm)) ~ f-l.

Since (AYm, Ym) E We(A), u E We(T) We(A) 0

Theorem 3.2.5

The joint approximate point spectrum O"7r(T, A) is contained in W(T, A)

PROOF. Suppose>. E O"7r(T,A). There is a sequence z.., EX: (Axm,xm) =

1 and II (T - >')Xm 1111(A - >')Xm II~ 0 (m ~ 00).

Then, -by Schwarz inequality,

1((Txm,xm) (Axm,xm)) - >'1 1(( (T - >')xm,xm) (A - >.)xm,xm ))1

< II (T - >,)xm II II (A - >,)xm II

Thus (( Txm, Xm ) ( Axm, Xm )) -+ >. as m -+ 00.

Therefore, x E W(T, A)

and

O"7r(T,A) c W(T, A).

o
The immediate consequence of the above theorem is the next corollary

which we state without proof.

Corollary 3.2.6

Conv O"7r(T,A) ~ W(T, A).

Here Conv O"7r(T,A) denotes the convex hull of the joint approximate point

spectrum of the two operators T and A.
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Recall that the point spectrum CJp(T, A) is contained in the spectrum

oi'I', A).

Recall also that the essential spectrum is a subset of the spectrum and

its complement is called the discrete spectrum.

Theorem 3.2.7

Spectrum CJ(T, A) c W(T, A)

PROOF. We look at the boundary of CJ(T, A). Let). E oCJ(T, A) where

oCJ(T, A) is the boundary of CJ(T, A). We need to show that). E W(T, A).

From Halmos, [29], ). E oCJ(T, A) is contained in CJ7r(T, A). Since W(T, A)

is convex by Theorem 3.2.2, it suffices to show that CJ7r(T,A) is contained

in W(T, A). Theorem 3.2.5 completes our proof. 0

3.3 The Joint Algebra Numerical Range

The study of the algebra numerical range of an element a E A where A

is a complex normed algebra with unit has drawn the attention of many

researchers. -For instance, F. F. Bonsall [13] showed that this algebra

numerical range is a compact copvex subset of the complex plane and

that it contains the spectrum CJ(a) of a. In this section, the properties of

the joint algebra numerical range of an arbitrary element a were examined

and results obtained.

Definition 3.3.1

Let A be a C* -algebra with identity 1. A linear functional 1is a state

if l(x*x) ~ 0'11 x E A and II 1 II = 1(1).If II 1 11= 1 then 1 is called a

normalized state. The set of all states of A is denoted as P(A) or P.
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States separate points of A.

Recall that P is nonvoid, since by Hahn-Banach theorem, there is

f E A* : f(e) = 1 = II f II (A* is a set of all bounded linear

functionals on A).

Also, P is a convex set for the w*-topology. See [25] for this and more.

An element a of a unital Banach algebra A is hermitian if Vm(a) c R

Also a is strongly hermitian if a and a2 are both hermitian.

If a = h + ik where hand k are (strongly) hermitian and hk kh,

then a is (strongly) normal.

See K. Mattila [36] for these and more.

Theorem 3.3.2

Vm(a) is a nonempty convex and compact set.

PROOF. We first show that Vm(a) is nonempty. By Hahn-Banach the-

orem, P -I 0 since there is f E A* : f(a) -I 0 and II f 11= 1 for

a = (aI, ... , am). Thus f(a) E Vm(a) and hence Vm(a) -I 0.

To show convexity, let iI, 12 E P,).. E [0,1]. Let also,

f = )..h + (1 =: )..)12· But P is convex and f E P. Also, f is linear,

positive and II f II = 1 giving f(a) = )..iI(a) + (1 - )..)h(a) E Vm(a).

For compactness, since the map

aA : {f ~ f(a), (P, w* .; topology) ~ C} is continuous, P = Vm(a) is

compact.

o
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REMARK 3.3.3

The joint essential spectrum, aem (T), of an operator T E B (X) is con-

tained in the spectrum a(T).

If there is no confusion, we will in what follows, use the arbitrary

element T instead of the element a when dealing with the algebra

numerical range. It should therefore not be construed for the operator T.

Proposition 3.3.4

PROOF. From the definition a(T) = {A E C : (T-A) is not invertible}. It

must therefore be shown that A E Vm(T). Now, (T-A) is not left invertible

implies 1 tJ. A(T - A). For an arbitrary x E A not left invertible, we have

x(T - A) and (x' x(T - A) = (x' x)(T -: A) is impossible). By Neumann

series (1 - (1 - y)-l), y is invertible if yEA and II 1 - y II < 1. Thus,

V x E A, 111 - x(T - A) II 2: 1. We construct f E P : A = f(T).

Choosing f E A*, by Hahn Banach theorem, we obtain

V x E A, f(x(T - A)) = 0, f(1) = 1.

Given x E A, rJE C, let y = x(T - A) + rJ such that f(y) = f(rJ) = rJ·

Suppose rJ i- 0, then \I y II ::: II rJ \III 1 + rJ-1x(T - A) \I 2: II rJ II
implying that If(y)1 :S II y II . Hence II f II = 1, f E P. If x = 1,

then, f(T - A) = f(T) - A = 0 implying that A = f(T) E Vm(T). Thus

a(T) C Vm(T). D
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Theorem 3.3.5

PROOF. From remark 3.3.3 and Proposition 3.3.4, it is clear that (Je
rn

(T) c
o

Theorem 3.3.6

For an operator T = B(X) where X is a complex Hilbert space and

a = T E B(X), the joint algebra numerical range Vm(T) equals the

closure of the joint numerical range Wm(T), i.e Vm(T) = Wm(T)

PROOF. To prove the above theorem, the following result by S. Mecheri

[37] is needed.

Proposition 3.3.7

. 1 . 1
sup{Re/-L, /-L E Vm(a)} = mf( -(111+ta II -1)) = lim (-(111+ta II -1)).

t>O t t--o+ t

PROOF. Let h = sup{ Re/-L, /-L E Vm(a)} = sup{ Ref(a), f E P}. Then,

Vy> 0, 1 + tRef(a) < 11+ tf(a)1 = If(1 + ta)1 ~ 111+ ta II .

Thus

h ~ inf{(~(111 + ta II -I))}.
t>O t

Let m = inft>o{(i(111 + ta II -I))}. Therefore', h ~ m.

Conversely, let x E A be such that II x II = 1, f E A* and

f(x) = II f II = 1. Consider the map 9 : A f---> CC defined by

g(y) = f(yx). Then 9 E P,and 9 is linear and Ig(y)1 < II y II, g(l) = 1.
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Thus,

II (1- ta)x II 2:: f((l - ta)x) > 1 - tRef(ax) = 1 - tReg(a). 2:: 1 - tho

Therefore,

II (1 - ta)x II 2:: (1 - th) II x II, V x E X.

Let x = 1 + ta, then,

(1 - th) II (1 + ta) II ~ II (1 - ta)(l + ta) II ~ (1 + t2) II a 112.

Then,

m < i:1(II 1 + ta II -1) < h + t II a 112
1- th

and

m ~ inf h + t II a 112= h = inf h + t II a 112.
t-+O+ 1- th t->O+ 1- th

Thus, there is limt->o+(t(111 + ta II -1)).

To prove Theorem 3.3.6, proposition 3.3.7 is applied to show that,

o

. 1
sup{ReJ-L, J-LE Vm(T)} = lim (-(111 + tT II -1)).

t-+O+ t
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By the same way as the first part of the proof of proposition 3.3.7, the

map x/\ : B 1----+ (Bx, x), B(X) 1----+ C is an element of P. Letting

. 1
hI = sup{Re/1, /1 E Vm(T)} , m = lirn (-(111 + tT II -1)),

t->O+ t

then hI < m.

Conversely,

11(1- tT)x 1111x II ~ Re((1- tT)x,x) > (1- thl) II x 112.

Choose t small enough to get 1 - ih.; > O. Let x = (1 + tT)y with

II y 11= 1. Then

Thus

Just as in the proof of proposition 3.3.7, this last inequality implies that

m ::; hI

Theorem 3.3.8

Let T be an m- tuple self-adjoint operator. Then Wem(T) = Wm(T) if

o

and only if Ext(Wm(T)) S;;; Wem(T) where Ext(Wm(T)) denotes the set
I

of extreme points on Wm(T).

PROOF. Let Ext(Wm(T)) S;;; Wem(T), then



CHAPTER 3. NUMERICAL RANGES 38

Ext(Wm(T)) ~ Wem(T). Therefore,

Wm(T) ~ conv(Ext(Wm(T)) ~ conv(Wem(T)) = Wem(T).

But Wem(T) ~ Wm(T),

thus Wem (T) = W m (T)

Conversely,

If Wem(T) = Wm(T), then

Ext(Wm(T)) ~ Wm(T) ~ Wem(T).

Thus we have Ext(Wm(T)) ~ Wem(T).

D
Theorem 3.3.9

Wem(T) = Vm(T)

PROOF. This is clear from Theorems 3.3.6 and 3.3.8 D



Chapter 4

Joint Essential Numerical

Range

4.1 Introduction

The essential numerical range We(T) of a single operator T is defined as

the algebra numerical range of the coset T + K(X) in the Calkin agebra

B(X)jK(X) where K(X) is the ideal of all compact operators on X. In

[13], Bonsall and Duncan proved that We(T) is nonempty, compact and

satisfies We(T + (3) = We(T) + (3 for any scalar (3. Further, they showed

that 0 E We(T) if and only if T is compact.,
The joint essential numerical range Wem (T) of an m-tuple of operator

T = (Tl' ...,Tm) E B(X) was studied in [17, 38] among others. While

discussing the properties of Wem (T), researchers did not show whether the

general properties of numerical ranges hold for this set i.e whether it is

compact, convex and contains the joint essential spectrum of the operator

T. The first section of this chapter has shown that Wem(T) c Wm(T)

and that Wem (T) is a compact convex set. To prove convexity, this study

39
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came up with several equivalent definitions of Wem (T) using the work

done in [27] on a single operator T E B(X). Since Wm(T) is not convex

for m ~ 3 and Wem (T) is the intersection of non convex sets, it was

showed that W m (T) is star shaped and each element of Wem (T) is a star

center of Wm(T). This, together with the above equivalent definitions led

to the main result of the research that Wem (T) is a compact convex set.

4.2 Joint Essential Numerical Range

The following theorem shows the relation between the joint numerical

range Wm(T) of T, its closure Wm(T) and the joint essential numerical

range Wem(T). One consequence of the theorem is that Wm(T) is closed

if and only ifWem(T) C Wm(T).

Theorem 4.2.1

Here conv denotes the convex hull.

PROOF. From the properties of the joint numerical range, it is linear and

so WmCBT + ex) . = ,8Wm(T) + ex V,8, ex E C. Also, an arbitrary element,
T = (Tl' ... , Tm) of a unital algebra A has a joint algebra numerical

range Vm(T) defined as

1 = II f II}

where a linear functional f is a state and A* is a set of all bounded

linear functionals on A. By Theorem 3.3.6, Vm(T) = Wm(T). The joint
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essential numerical range of an operator T = (Tl' ..., Tm) E B(X) is the

joint algebra numerical range Vm(7f(T)) of the coset in B(X)/K(X) that

contains T. Here, 7f is the canonical projection from B(X) to the Calkin

algebra B(X)/K(X) and K(X) is the ideal of all compact operators on

X. This joint essential numerical range is denoted as

W m(T) and Wem (T) are therefore obtained by evaluation of all states of

B(X) (that vanish on K(X)) at the operator T. From Dixmier [25], every

state f on B(X) is convex with the form

f Afo+(l-A)fA

where A E [0,1]' fo is a state that annihilates K(X) and fA is a state in-
•

duced by the nonnegative trace class operator A : fA(Y) = trace(Y A)

for Y E B(X).

Therefore W m(T) is the convex hull of Wem (T) and the trace class numer-

ical range consisting of the numbers fA (T). We then show that the trace

class numerical range consisting of the numbers fA(T) is just Wm(T).

The operator A has a spectral d,ecomposition A = ~AmC, xm)xm where

the Xm is an orthonormal set, Am 2: 0, and ~Am = 1. Consequently

belongs to Wm (T) because any convex subset of the plane (or ]Rm) contains

convex combinations of its countable subsets. o
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Corollary 4.2.2

Wm(T) is closed if and only ifWe=(T) c Wm(T).

PROOF. Suppose Wm (T) is closed,

then Wem(T) c Wm(T) = conv Wm(T) = Wm(T).

Conversely, ifWem(T) c Wm(T), then Wm(T) = convWm(T)

o

Theorem 4.2.3

Let X be an infinite dimensional complex Hilbert space and T = (TI' ... , Tm) E

B(X). Let r = (rl' ...,rm) E em. The following properties are equivalent:

(2) r E n {Wm(T + F) : F = (FI' ... , Fm) E F(X)}. Here, F(X) is a set

of finite rank operators in B(X).

(3) There exists an orthonormal sequence of vectors {Xn}~=l E X such

that

(4) There exists a sequence of unit vectors {xn} ~=l E X convergmg

weakly to a E X such that

(5) There exists an infinite-dimensional projection P such that
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P(Tj - rjI)P E JC(X) for j = 1, ... , k,

PROOF. First, we show that (1) implies (3). Let r E Wem(T), then there

is a sequence {xn} of vectors such that

( Txn, xn) ~ r, II Xn II = 1, Xn ~ a weakly.

Suppose we have chosen the set {Xl, ... ,Xn} satisfying I( Txn,xn) -rl <

;, V i. Let M be the subspace spanned by Xl, ... , Xn and P be the

projection onto M. Then we have II PXn II ~ a as n ~ 00. Let

Zn = II (1 - P)Xn 11-1 ((1 - P)xn).

We have

This gives

(II (1 - P)Xn 11-1 (T(1 - P)Xn), II (1 - P)Xn 11-1 (T(1 - P)Xn))

II (1 - P)Xn 11-2 {'(Txn, Xn) - (Txn, PXn) - (T PXn, Xn)

We choose rzIarge enough such that

1
I(Tzn,zn) -rl < n+1
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If we let Zn Xn+l we get

1I( TXn+l, Xn+l) - r] <--n+1

To prove that (3) implies (5)

Let {xn} be an orthonormal sequence with ( Txn, xn) ----+ r. By

passing to a subsequence we can assume that

00

L I( TXn,xn )12 < 00
n=l

(4.3)

Let nl = 1. Then

002: I ( Txn1, Xn ) 12 ::; II TXnl 112
n=l

and

00

L I ( i»; Xn1 ) 12 < II T*Xnl 112 .
n=l

Thus, by Bessel's inequality, there is an integer n2 > nl such that

and
00 1L I (Txn,xn1) 12 < 2'

n=n2

IfLhis procedure is repeated, a strictly increasing sequence {nt}~l of
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positive integers is obtained such that we have

and
00

(4.4)

(3.3) and (3.4) imply that

00L 1 (Txnt>xnt ) 12 < 00 (4.5)
t,l=l

If P is an orthogonal projection onto the subspace M spanned by Xn1, Xn2, .•. ,

then

00 00I: I ( PT PXnt> Xnt ) 12 = L 1 ( TXnt> Xnt ) 12 < 00 (by (4.5)),
t,l=l t,l=l

hence PT P is a Hilbert - Schmidt operator and therefore PT P E JC(X).

We now show that (2) implies (3).

Let {xn} be a sequence of unit v~ctors with Xn ---70 weakly such that

Suppose we have an orthonormal set of vectors {Xl, ... , xn} such that

1 ( Txn, Xn ) 1 < 2~· Let P be the orthogonal projection onto subspace M

spanned by {Xl, ... , xn}. In order to exhibit a unit vector Xn+l E M.l with

I( TXn+I,Xn+I)1 < 2n~1' we must show that 0 E Wm(I - P)Ti(I - P)IM-L

i = 1, ... ,m. To do this,
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let z, = (ftl,.··,ftm) EWm((I-P)Ti(I-P)IM.L) : i = 1, ... ,mand

ftIM = (ftlIM, ..., ftmIM). Also, let

B = ((I - P)T1(I - P)IM.L, ..., (I - P)Tm(I - P)IM.L))

and

F = p.P - PTP - (I - P)TP - PT(I - P). Here, F is of finite rank.

For P = I - P, we obtain,

From Magajna [35], Wm(ftIM EB B) = conv(Wm(ftIM) UWm(B)). There-

fore, since Wm((I - P)1i(I - P)IM.L) is convex and contains u; it follows

that

Hence 0 E Wm(I - P)Ti(I - P)IM.L as required.

We then show that (3) implies (4).

Let [z.,} be an orthonormal sequence with ( Txn, xn) ----+ r. But every

orthonormal sequence {xn} converges weakly to zero and II Xn II = 1.

To show that (4) implies (1).

Suppose that for a point r E em there is a sequence {xn} E X such that

Since every sequence {xn} -? 0 weakly, and II Xn II = 1, we have

r E Wem(T).
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To prove that (5) implies (1), let P E B(X) be an infinite dimensional

projection such that (PTjP - rjP) E JC(X), j E [1,m]. There is thus

an orthonormal sequence {xn} E X such that PXn = x; V n. Let K =

(Kl' ... , Km) E JC(X). For any Kj : j E [1,m], PTjP - rjP = K, and

thus ( (PTjP - rjP)xn, xn) = (Kjxn' Xn ) implying ( Tjxn, xn) =

rj + (Kjxn' Xn ) . From the orthonormality of sequence {xn}, we get

Kjxn converging weakly to 0 in norm as n --+ 00, j E [1,m]. Therefore,

(Tjxn,xn) ---t rj as n --+ 00 implying r E Wem(T).

To prove that (1) implies (2), let r E Wem(T), then there is a sequence

{xn} of vectors such that

( Txn, xn) ----: r, II Xn II = 1, Xn ---t 0 weakly.

But Wem (T) = n {Wm(T + F) : F = (Fl' ... , Fm) E F(X)}, where,

F(X) is a set of finite rank operators in B(X). This implies that

r E n {Wm(T + F) : F = (FI, .. :, Fm) E F(X)}.

o
Theorem 4.2.4

Suppose T = (Tl' ... , Tm) E B(X.)".

(i) Wem (T) is notiempty, compact and convex .

. .
(ii) Each element r E Wem (T) is a star center of W m(T).

PROOF. To prove this, for the self-adjoint operators T = (Tl' ...,Tm) E

B(X), let Wem (T) fulfil condition 3 of Theorem 4.2.3. We first prove that

Wem(T) is nonempty. For an orthonormal sequence {xn}~=l of vectors in
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X, the sequence {(Txn, xn) }~=l is bounded. Choose a subsequence and

assume that (Txn, xn) converges. Then Wem(T) is nonempty.

The compactness of Wem(T) can be seen right from its definition. The

joint essential numerical range, Wem (T) is defined as the intersection of

all sets of the form

Wm(T + K) : K E JC(X)

where JC(X) denote the sets of compact operators in B(X). Being an

intersection of compact sets, the joint essential numerical range is also

compact.

To prove that each element r E Wem(T) is a star center of Wm(T), it

should be shown that (1 - >.) p + >.r E Wm(T) : >. E [0, 1J where

r E Wem(T) and p E (W m(T). Assume without loss of generality that

II T II = 1. Suppose S E (Wm(T) so that s = )..r + (1 - )..)p.

Let {xn} and {en} be orthonormal sequences in X such that

and

II Xn II = II en II = 1.

Then,

s )..( Txn, xn) + (1 ~ >.)( Ten, en )

( TV).xn, V).xn) + (TvIl=>:en, vIl=>:en )
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((T..fi.xn + T~en), (..fi.xn + ~en))

(II ..fi.xn 112 + II ~en 112)

A II Xn 112 + (1 - A) II en 112

A + (1- A) = 1

Thus, (1 - A) r + AP E Wm(T).

Convexity of Wem (T) is proved by showing that for r, p E Wem (T) and

A E [0,1]' Ar + (1 - A)p E Wem(T). Now, r E Wem(T) = Wem(T + F)

for every FE F(X) and p E Wem(T) ~ Wm(T + F). From Theorem

4.2.3 above, Ar + (1 - A)p E Wm(T + F). Thus,

Ar + (1- A)p E n{Wm(T rt- F) : FE F(X)} Wem(T).

Hence Wem (T) is convex.

D

4.3 Joint Essential Spectrum

The concept of joint spectrum for a family of operators was first intro-

duced by R. Arens and A. P. Calderon [6]. Since then, some researchers

have asserted its definition and properties which have been generalized

to the joint essential spectrum and in some instances to joint Browder

spectrum. The successful definitions among them have been carried out

by J. L. Taylor [41] and A. T. Dash [23]. This study has used the defini-

tion 'by A. T. Dash. However, it must be noted that it was shown by M.

Cha and M. Takagunchi [~O]that Taylor's joint spectrum coincides with
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Dash's joint spectrum in the case of commuting normal operators.

Many authors showed the relation between the joint numerical range and

the joint spectrum. For instance, Abramov [1] has shown that the conical

point of the closure of the joint numerical range of an m-tuple operator

T = (Tl' ...,Tm) belongs to the joint approximate point spectrum of T of

a family of self-adjoint operators. Studying on the boundary points of the

joint numerical range, M. Cho and M. Takagunchi [19] proved that the

extreme points of the closure of the joint numerical range of an m-tuple

operator belong to the joint approximate point spectrum of the operator.

This study has in this section showed the relation between the joint es-

sential spectrum and the joint essential numerical range of an operator

T = (Tl' ...,Tm). In particular, the study has proved among others that

the joint essential spectrum of the operator T is contained in the joint

essential numerical range of T for T = (Tl' ...,Tm). To do this, the study

has made good use of the available literature above. In addition to the

above literature, A. T. Dash's proof that the joint spectrum equals the

joint essential spectrum was quite useful in the sequel. Also important

to the study was the result by M. Cho [18] that the joint spectrum for a

strongly commuting m-tuple of operators on a Banach space equals the

joint approximate point spectrum for it.
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Lemma 4.3.1

(A. T. Dash (23J)

Let d = (d1l ... , dm) be an m-tuple of elements in a unital C*-algebra of

x. Then:

m

o E (7m(~=(di - Ai)*(di - Ai))
i=l

m

o E (7m(L (di - Ai) (di - Ai) *) .
i=l

See A. T. Dash [23] for the proof.

The above result by A. T. Dash was important for the proof of the main

result in this section.

Corollary 4.3.2

For an m-tuple of operators T

m

o E (7em (L (Ti - Ai) * (Ti - Ai))
i=l

/MASEW' . """I:RSITvl
S.G. . RY I
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(b) (Al, ... ,Am) EO"~rn(T) if and only if

m

o E O"em(I)Ti - Ai) (Ti - Ai)*).
i=l

See A. T. Dash [23] for the proof.

The following proof was then used by A. T. Dash to show the relationship

between the joint spectrum and the joint essential spectrum of an m-tuple

of operators.

Theorem 4.3.3

(A. T. Dash [23})

Let T = (T1, ... , Tm) be an m-tuple of operators on X. Then:

(b) O"~(T) O"~rn(T) U O"p(T*)*, and hence we have

(c) O"m(T) O"em(T) U O"p(T*)*, where T* = (Tl*' ... , T:n) and star on

the right represents complex conjugates.

It is well known that O"!n(T) = O"7r(T) and O"~(T)

A = (A1, ... , An) E O"7r(T) Wand only if

O"s(T). Clearly,

m

o E O"7r(I)Tj - Aj)*(~ - Aj))
i=l

and A E O"s(T) if and only if A* E O"7r(T*) if and only if

m

o E O"7r(I)Tj - Aj)(Tj - Aj)*).
i=l

See A. T. Dash [23] for the proof.
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The following Theorem by Huang Danrun and Zhang Dianzhow proves

that (}m(T) = (}7r(T)

Theorem 4.3.4

Let T = TI, ...,Tm be a commuting m- tuple of normal operators. Then

(}m(T) = (}7r(T).

See [31] for the proof.

Theorem 4.3.5

Let T = (TI' ... , Tm) E B(X) be an m- tuple of operators. Then

See Wrobel Volker [44] for the proof.

It was proved that (}7r(T) is a nonempty compact subset of em by J.

Bunce [15] while Berberian [11] .showed that every compact set contains

the extreme points of its closed convex hull.

Theorem 4.3.6

Let T -:- (TI' ... , Tm) E B(X) be an m- tuple of bounded linear operators

on a Hilbert space X.

PROOF. Suppose A = (AI, ... , Am) E (}7r(T). There is a sequence Xm E X

of unit vectors such that ( Xm, xm) = II Xm 112'= 1 and

1, ...,m.
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By Schwarz inequality,

Therefore,

D

Recall that the boundary points of the joint spectrum are contained in

the joint approximate point spectrum. Consequently, the joint spectrum

is contained in the closure of the joint numerical range.

The following theorem by A. T. Dash is important for the next theorem.

See [23] for its proof.

Theorem 4.3.7

Let T = (T}, ... , Trrt) be a commuting m-tuple on X. Then

1. A = (A}, ... , Am) E (J~m (T) if and only if there exists a sequence {Xm}

of unit vectors in X with Xm ---t 0 weakly such that

II (Ti ~ Ai)Xm II---t 0 as m ---t 00, for each i, 1 :::;i :::;m.

2. A = (.A,}, ... , Am) E (J~m (T) if and only if there exists a sequence {Xm}

of unit vectors in X with Xm ---t 0 weakly such that

II (Tt - A;)Xm II---t 0 as m ---t 00, for each i, 1 :::;i :::;m.

Moreover, the sequence {xm} can be chosen orthonormal.

IMA~NC ';~IVERSITYI
.. S.G.~ L:8R ARY ~
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Theorem 4.3.8

The joint essential spectrum (7em(T) of the operator T = (TI' .. " Tm) is

contained in the joint essential numerical range Wem (T) of the operator

PROOF, By letting A = (AI, .. " Am) E (7em(T), it should be shown that

A = (AI, .. " Am) E Wem(T), Dash defines the joint essential spectrum as

Suppose A = (AI, .. " Am) E (7L(T) then from Theorem 4,3,7 there is a

sequence (xm) of unit vectors in X such that" (Ii - AJ)xm II----t a \;f i =

1, .. " m as Xm ----t a weakly,,
Now, by Schwarz inequality,

Therefore, (Iixm, xm) ----tAi \;f i = 1" .. " m.

Hence A = AI, .. " Am E Wem (T),

Likewise, let A = (AI, ,.. , Am) E (7~m(T) then A* = (Ai, .. " A~) E (7~m(T*),

This gives A = (AI, .. " Am) E Wem (T*) [Wem(T)]* (the complex

conjugate of Wem(T)) and again A = (AI, .. " Am) E Wem(T), 0



Chapter 5

Summary and

Recommendation

5.1 Summary

In this section the main results of the study are highlighted basing on

the objectives of the study. Our objectives were to determine whether

Wem(T) is a compact convex set; to investigate whether Wm(T) is always

star-shaped with elements in Wem (T) as star centers and finally to investi-

gate whether O'em(T) C Wem(T). We therefore state that these objectives

were achieved. It was shown in section 4.2 that the closure of the joint

numerical r.ange is star-shaped with the elements of the joint essential nu-

merical range as star centers of this closure. We also, in this same section,

showed that the joint essential numerical range is nonempty, compact and

convex. Section 4.3 contains the other main result that the joint essential

spectrum of an operator is contained in the joint essential numerical range

of the operator. This was proved by looking at the boundary of the joint

spectrum of T.

56
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5.2 Recommendation.

This study has clearly shown that the study of the joint essential numer-

ical ranges is still an interesting and active area to be researched on in

pure mathematics. Although we have investigated several properties of

the numerical ranges for the joint essential numerical range, there is still a

lot that needs be investigated. We therefore invite researchers to investi-

gate several other properties of the joint essential numerical range. There

is also need for investigation on whether the knowledge of the joint essen-

tial numerical range can be applied to various areas such as C*-algebras,

iterations methods, Krein space operators, factorisation of matrix poly-

nomials and dilation theory which all constitute an active field of research

in operator theory.


