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ABSTRACT

The designs used for experimentation generally require making all the possible paired

comparisons among the treatments but in plant breeding selection programmes the
<.-

comparison of interest is usually a subset of all the possible paired comparisons.

These comparisons are usually between the new varieties and commercial varieties

called control varieties. These designs for test versus control experiments when the

test treatments contain homogeneous material, such as mass selection in sugarcane

breeding, have received adequate attention. Breeders in sugarcane breeding

programmes have shifted from mass selection to family selection where the test

treatments are more heterogeneous. This shift has created a need for efficient

experimental designs to evaluate hybridized sugarcane families. In this study we

evaluate two designs, Augmented Block Design (ABD) and Reinforced Block

Incomplete Block Design (RBIBD), which have been proposed for test versus control

experiments though their efficiencies in test families versus control experiments are

not known. To evaluate the designs, we simulated data for five families and two

controls through Monte-Carlo simulation framework. RBIBD and ABD designs were

constructed and data fitted by inclusion of block effects and random errors. The fitted

data was then analysed and compared the Randomized Complete Block Design

(RCBD). More concrete results in this area could improve the efficiency of sugarcane

selection process which would be of great benefit to the stakeholders in the sugar

industry.
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1 CHAPTER ONE - INTRODUCTION

1.1 BACKGROUND
Experimentation is an integral component of any research investi~ation. The designs

used for experimentation generally require making all the possible paired

comparisons among the treatments. But this is not always the case. There exist

situations when the interest of the experimenter is only in the subset of all the

possible paired comparisons. This is usually the case in plant breeding selection

programmes where the comparison of interest is between the new (test) varieties and

the commercial varieties called check or control varieties. In test versus control

experiments the test treatments are either replicated or not replicated. The two designs

proposed for test versus control experiments are the augmented block design (ABD)

and reinforced balanced incomplete block design (RBIBD)

Plant breeders frequently evaluate large numbers of entries in field trials for selection.

Generally, the tested entries are related by pedigree. The simplest case is a nested

treatment structure, where entries fall into groups or families such that entries within

groups are more closely related than between groups. Some plant breeders prefer to

plant close relatives next to each other in the field. This contrasts with common

experimental designs such as the a-design, where entries are fully randomized.

Another design option is to randomize in such a way that entries of the same group

are separated as much as possible. This has been a problem to sugarcane breeders

especially since sugarcane selection relies on individual selection.



,
Sugarcane breeders .have traditionally employed intensive selection of individual

seedlings or seedling bunches (mass selection) to select seedling in seedlings stage.

Selection is usually subjective, based on visual appraisal for cane yield. Although

satisfactory gains have been achieved using individual seedling -selection, it is not

efficient according to Hogarth et al. (1997) and Skinner (1971). The lack of

replications, competition effects among seedlings and, because individual clone

selection is labor intensive and expensive, all contribute to reduce selection

efficiency.

Research carried out in some sugarcane breeding programmes in Australia and

Mauritius suggests that family selection would be superior to mass selection at this

stage. Family selection is particularly useful for traits with low heritability because,

unlike clones, families can be replicated across years and sites, thereby improving

estimates of family means as well as aiding in the identification of stable families.

Because sugarcane is exploited commercially as a clone, the rationale for family

selection is not to produce superior families with commercial value but rather to

identify families with a higher frequency of superior clones. Family selection makes

it possible to focus selection for superior clones (mass selection) on the best families,

because the probability of finding superior clones at later stages of the program is

highest within these families.

In this study we are interested in evaluating the experimental designs that would be

suitable for family selection in sugarcane breeding thus increasing the efficiency.
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1.2 STATEMENT OF THE PROBLEM

During seedlings stage of plant breeding large populations of genotypes of which few

would be eventually released for commercial cultivation are tested against

commercial varieties. Due to large numbers of seedlings involved, vast tracks of land

are required to evaluate the seedlings. It is impossible to ensure soil and nutrient

homogeneity. Since only a small percentage of the seedlings are passed to the next

stages, a lot of superior genotypes are lost and mediocre ones passed on due to

inefficient discrimination against the environmental effect and genetic effect. .

Many plant breeding programmes have adopted the use of family selection, i.e. large

numbers of individuals are picked from best performing families than from worst

performing families. Construction of experimental design for such scenarios which

goes against the a-design construction criteria is not known. Augmented block design

and reinforced incomplete block design have been proposed for test versus control

experiments though their efficiencies especially in test families versus control

experiments have not been tested.

In this study we are going to evaluate the relative efficiencies of the two proposed

designs, i.e reinforced balanced incomplete block design and augmented block

design, against randomized complete block design.
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1.3 RESEARCH OBJECTIVES

1. To determine the relative efficiency of reinforced balanced incom

design against randomized complete block design.

2. To determine the relative efficiency of augmented block design against

randomized complete block design

3. To compare merits and demerits of reinforced balanced incomplete block

design and augmented block design

1.4 RESEARCH HYPOTHESES

Let

/li be the true mean for the ith treatment

/lRi be the mean of the lh treatment in RBIBD

/lAi be the mean for the /h treatment in ABD

/le'ii be the mean for the /h treatment in RCBD with 4 reps

/le3i be the mean for the lh treatment in RCBD with 3 reps

The Hypothesis we will test are:

I--Io:/lRi= /le4i against HI: IlRi:;t /le4i

Ho: IlAi= lle3i against HI: IlAi:;t /lc3i

I--Io:/lRi= IlAi against HI: /lRi:;t IlAi
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1.5 CONCEPTUA,L FRAMEWORK
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2 CHAPTER TWO - LIRERATURE REVIEW

During the past 25 years the problem of comparing a single control to a set of test

treatments has received a good deal of attention. However, the problem of comparing

a set of more than one control to a set of test treatments in a block design setting has

received relatively little attention. Majumdar (1986) derived some sufficient

conditions for determining A-optimal designs in classes D(s,t;b,k) and then used

these sufficient conditions to establish the A-optimality of certain designs in classes

D(s,t;b,k) where s = t and in classes D(s,t;b,k) where k is substantially larger than

v. Parsad et. al. (1996) studied the optimality of designs for comparing s controls to

t test treatments within classes of binary designs whereas Jaggi et. al. (1996) have

obtained some partial results on A-optimality for designs in which the controls appear

equally often within blocks. Jacroux (2000, 2002) has derived some sufficient

conditions which can often be used to establish the A- and MV -optimality of

augmented block designs which can be obtained by augmenting the blocks of regular

block designs in the test treatments with replications of the control treatments. Two

additional papers which provide more recent overviews of known results for

comparing test treatments to controls are Majumdar (1996) and Gupta and Parsad

(2001). In this study, we are interested in determining the efficiencies of augmented

and reinforced balanced incomplete block designs in comparison of test families

against a set of controls.
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Augmented (Hoonuiaku) designs were introduced by Federer (1956) to fill a need

-" - - --- . - ~ - . -
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experimental material for new (test) treatments is just enough for a-single replication.

However, the connectedness property of the design is ensured by augmenting any

standard connected design in control treatments with new (test) treatments and

replications of the control provide the estimate of error. More precisely, an

augmented experimental design is any standard experimental design in standard

treatments to which additional (new) treatments have been added. The additional

treatments require enlargement of the complete block, incomplete block, row -

column designs, etc. The groupings in an augmented design may be of unequal sizes.

The most important of the augmented designs is the augmented block design where

the standard design is the randomized complete block design. The blocks are

expanded to accommodate the test treatments.

Das (1958) introduced a series of incomplete block designs which are obtainable by

including any number of control treatments, say, p in every block of an existing

incomplete block design with v treatments b blocks each of size k and r

replications. The resulting design will have v + p treatments distributed in b blocks

each of size k + p such that each of the p newly introduced treatments is replicated

b times and the original v treatments r times each. These designs were called

reinforced incomplete block designs. They have no fresh constructional problems
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and can be made available for any numbers of varieties by suitably choosing v and

p.

Yong-Bi et. al (1999) studied family and clonal trials to evaluate- family and clone

performance. They simulated test site with various patterns of environmental

variation to examine the effectiveness of randomized incomplete block designs under

different design parameters (constant block size, variable block size, block shape and

orientation, and family size). Simulations showed that blocks of fixed size 5-20 were

effective in removing most site variation in a test with 120 full-sib (both parents in

common) families of three seedlings per family ..

2.1 BLOCK DESIGNS

The most basic type of statistical design for making inferences about treatment means

is the completely randomized design (CRD), where all treatments under investigation

are randomly allocated to the experimental units. The CRD is appropriate for testing

the equality of treatment' effects when the experimental units are relatively

homogeneous with respect to the response variable. When the experimental units are

heterogeneous, the notion of blocking is used to control the extraneous sources of

variability. The major criteria of blocking are characteristics associated with the

experimental material and the experimental setting. The purpose of blocking is to sort

experimental units into blocks, so that the variation within a block is minimized while

the variation among blocks is maximized. An effective blocking not only yields more

precise results than an experimental design of comparable size without blocking, but

also increases the range of validity of the experimental results. In this chapter we will
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concentrate on randomized complete block design, incomplete block design and

balanced incomplete block design

2.1.1 RANDOMIZED COMPLETE BLOCK DESIGN

Any experimental design in which the randomization of treatments' is restricted to

groups of experimental units within a predefined block of units assumed to be'

internally homogeneous is called a randomized block design. Blocks of units are

created to control known sources of variation in expected (mean) response among

experimental units. There are two classifications or factors in a randomized complete

block design: block effects and treatment effects.

For instance, a typical block in an agricultural experiment is a field - fields differ

substantially in soil quality, etc., and the same experimental treatment might produce

different means in different fields. Formally, the design is as follows: within each of

the blocks, assign 1 experimental unit at random to each of v treatments. Thus, all

treatments appear within each block, and each block-treatment combination receives

1 experimental unit, which produces the observed response.
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Figure 2: An example ofRCBD on fertility trial

To analyse the results of RCBD, we assume additive and homoscedastic linear model

with fixed effects and without interactions:

Hence,

Table 1: Table of means for RCBD

Block
1 2 3 b

mean
Treatment

1 IJ11 IJ12 IJ13 IJ1b Y1.=IJ+t1

2 IJ21 IJ22 IJ23 IJ2b Y2.=IJ+t2

v IJv1 IJv2 IJv3 IJvb Yv.=IJ+tv

mean Y.1=IJ+b1 Y.2=IJ+b2 Y.3=IJ+b3 Y.b=IJ+bb

Treatment effects are relative such as
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Thereare two null hypotbeses that.can be tested i.e.
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• --" ~- ,.- "" - .~ .•.. ":.-- <: - -, --~~~

" .••.'\ t.::t"'!L~""';:';':~"","",_:';.L_···· 'I~f,·~·~ 'I .. \-,.f! ~I\~'L :- •• -.! ~, .••....:,""

determine if blocking was successful in reducing the variability in the

experimental units)

Table 2: The ANOY A table for RCBD

Source Sum of
Squares

Treatments SST

Blocks SSB

Error SSE

Total TSS

Mean Sum of
Square

Degrees of
Freedom F - Statistic

MST"7SSTI(v-I)

MSB=SSB/(b-l)

MSE=SSE/(b-1 )(v-I)

MST/MSE

MSB/MSE

v-I

b-I

(b-I )(v-I)

bv-l

2.1.2 INCOMPLETE BLOCK DESIGN

If in a block the number of plots is smaller than the number of treatments, then the

blocks are said to be incomplete and a design constituted of such blocks is called an

incomplete block design. Let v denote the number of treatments in an experiment

and k, where k < v, denote the number of plots in each of the blocks. In order to

ensure equal or nearly equal precision of comparisons of different pairs of treatments,

the treatments are allotted to the different blocks such that each pair of treatments has

the same or nearly the same number of replications and each treatment has an equal

number of replications, say, r.

Different patterns of values of the number of replications of different pairs of

treatments in a design, have given rise to different types of incomplete block designs.
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When the number of replications of all pairs of treatments in a'design is the same,

h fd . k b I bl k d .

pairs of treatment effects. It was first devised by Yates (19:3§) for agricultural

experiments. These designs have evidently some constructional problems because the

allotment of k of the v treatments in different blocks so that each pair of treatments

is replicated a constant number of times is not straight forward. The constructional

problems were solved by the joint efforts of Fisher, Yates and Bose (1939) among

others using combinatorial mathematics.

For incomplete block design we get two-way data classified according to blocks and

treatments. If there are b blocks in a design with v treatments and k as the block

size, then there are b x v cells in the two-way table with frequencies 0 or 1. Since k

of the v treatments occur in a block, the frequencies in the k corresponding cells in

the row for the block, are unity and those in the remaining cells of the row are zero.

The data obtained from such designs are, therefore, non-orthogonal. The b x v cells

frequency table is called the incidence matrix of the corresponding design usually

denoted by N. As the cells take two values 0 or 1 these designs are called binary

designs.

2.1.3 BALANCED INCOMPLETE BLOCK DESIGNS

An incomplete block design with v treatments distributed over b blocks, each of size

k, where k < v such that each treatment occur in r blocks, no treatment occur more
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· .
than once in a block and each pair of treatments occurs together in A blocks, is called

a balanced incomplete block design (BIBD). The symbols v, b, k, r and A are

called the parameters of the design. The five parameters are not independent, but

satisfy the two relations

1). vr = bk

2). A(v-1)=r(k-1)

A BlED is therefore commonly written as simply ( v, k ,A) , since band r are given

in terms of v , k , and A by

b = v(v -1)A
k(k -1)

r = A(V -1)
k -1

2.1.4 BIB CONSTRUCTION

There is no single method of constructing all BIB designs. Solutions of many designs

are still unknown. Solutions of all known designs indicating impossible designs have

been tabulated by Fisher (1940), Rao (1961) and Sprott (1962). We describe below a

few well-known series of BIB designs as detailed by Sharma (2000)

2.1.4.1 Unreduced BIB Designs

These designs are obtained by taking all combinations of the v treatments k at a

time. Therefore, the parameters of all, unreduced BIB designs are:

k b "C v-Ie ~ v-2ev, ,= k > r = k-I' .II- = k-2

These unreduced designs usually require a large number of blocks and replications so
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that the resulting designs will often be too large for practical purposes.

2.1.4.2 BIB Designs with Parameters

o 2.1
Before we describe the method, we explain the concept of mutually orthogonal Latin

v=;, b=; +s,k=s, r =x+l, ,1=1

squares which will be used in the construction of BIBdesigns.

A Latin square of order s is an arrangement of s symbols in an sxs array such that

each symbol occurs once in each row and once in each column of the array. For

example, the following are 4x4 Latin squares of order 4 in symbols A, B, C, and D:

ABCD
BADC
CDAB
DCBA

ABCD
CDAB
DCBA
BADC

ABCD
DCBA
BADC
CDAB

Two Latin squares are pair-wise orthogonal if, when one square is superimposed on

the other, each symbol of one Latin square occurs once with each symbol of the other

square. Three or more squares are mutually orthogonal if they are pair-wise

orthogonal. The three 4x4 Latin squares above are mutually orthogonal. .

A complete set of s -1mutually orthogonal Latin squares is known to exist for any

s = p"; where p is a prime number. Tables can be found in Fisher and Yates

(1963). Now we describe the methods of constructing BIBdesigns with parameters

given at 2.1

Suppose v = S2 treatments are set out in an sxs array. A group of s blocks each of

14



size s is obtained by letting the rows of the array represent blocks. Another group of

s blocks is given by taking the columns of the array as blocks. Now suppose one of

the orthogonal Latin squares is superimposed on to the array of treatments. A further

group of s blocks is obtained if all treatments common to a particular symbol in the

square are placed in a block. Each of the s -1 orthogonal squares produces a set of s

blocks in this manner. The resulting design is a BIB design with parameters in 2.1.

Example: For v = 32 = 9 treatments a 3 x 3 array and a complete set of mutually

orthogonal Latin squares of order 3x3 are:

123
456
789

ABC
CAB
BCA

ABC
BCA
CAB

Four groups of 3 blocks are obtained from the rows, columns and the symbols of the

two squares, as follows:

Rows (1 2 3)
(4 5 6)
(7 8 9)

Columns (1, 4, 7)
(2, 5, 8)
(3, 6, 9)

First square (1, 5, 9)
(2, 6, 7)
(3, 4, 8)

Second square (1, 6, 8)
(2, 4, 9)
(3, 5, 7)

This is a BIB design with parameters v = 9, b = 12, r = 4, k =3, and A= 1.

2.1.4.3 Complementary Design

The complement of the design in Example above obtained by replacing treatments in

a block by those which do not occur in the block, is the following
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(4, 5, 6, 7, 8, 9)
(I, 2, 3, 7, 8, 9)
(11 2, 3, 4, 5, 6)
(2, 3, 4, 6, 7, 8)
(I, 3, 4, 5, 8, 9)
(I, 2, 5, 6, 7, 9)

(2, 3, 5, 6, 8, 9)
(I, 3, 4, 6, 7, 9)
(I, 2, 4, 5, 7, 8)
(2, 3, 4, 5, 7, 9)
(I, 3, 5, 6, 1'08)
(I, 2, 4, 6, 8, 9)

The complementary design is also a BIB design with parameters v = 9, b = 12, r = 8,

k =6, A= 5.

In general if, we have a BIB design with parameters v, b, r, k, A then its

complementary design is a BIB design with parameters v'= v, b'=b, r'= b-r, k'. = v -k,

A' = b-2r + A.

The complementary design of the design with parameters in (2.1) will be a balanced

incomplete block design with parameters:

2 2. 2
v=s,b=s(s+I),r=s-l,k=s(s-I), A=S -s-I

The s(s+1) blocks of the design for v=l treatments have been arranged in s+ I groups

of s blocks each. Now suppose a new treatment is added to all the blocks in a

particular group and that the treatment added is different for each group; also, that

one further block is added which consists entirely of these s+ I new treatments. This

method produces a second series of BIB designs with parameters

2v=b=s +s+ I, r=k=s + 1,A= 1.

Its complement is also a BIB design with parameters

2 2
V = b = s +s+ 1, r = k = s ,A= s(s-l )
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2.1.4.4 Symmetric BIB Designs

A BIB design in which v = b or r = k is called a symmetric BIB design. In symmetric

BIB designs any two blocks have Atreatments in common.

2.1.4.5 a-Resolvable and Affine a-Resolvable Designs

It has been seen above that the blocks of the designs v = s2
, b = S

2 + s, r = s+ I, k = s, A

= 1 can be divided into (s+ I) groups, each consisting of s blocks such that in each

group each of the treatments is replicated once. That is, each group is a complete

replicate. Such designs are called resolvable designs or I-resolvable designs.

In general a BIB design is called a-Resolvable if its blocks can be divided into t

groups each consisting of m blocks such that in each group every treatment appears

exactly a times.

In addilion to this, if any two blocks of the design belonging to the same group have a

constant number of treatments in common, say q 1, and any two blocks belonging to

different groups have a constant number of treatments in common, say q2, then the

design is called affine a-resolvable BIB design.

2.1.-LG Dual Design

The dual of a BIB design with parameters v, b, r, k,A is obtained by interchanging the

treatment and block symbols in the' original design. The parameters of the dual

design are v' = b, b' = v, r' = k, k'=r. The dual of a BIB design is not always a BIB

design. If the original design is a symmetrical BIB design, then its dual is also a BIB

17



designwith the same parameters.

2.1.4.7 Residual Design

In a symmetric BIB design with parameters v = b, r = k, A delete une block and also

those treatments which appear in this (deleted) block from the remaining (b-1) blocks,

the design so obtained is known as the residual design. The residual design is also a

BIB design with parameters v* = v-k, b* = b-1, r*= r, k* = k-A, A.

2.1.4.8 Derived Design

By deleting any block of a symmetric BIB design with parameters v = b, r = k, A and

retaining all the treatments in b-I blocks that appear in the deleted block, we obtain a

BIB design which is called the derived design.

The parameters of the derived design are:

v" = k, b"= b-1, r= r-I, k= A,A= A-I.

2.2 ANALYSIS OF NON-ORTHOGONAL TWO WAY DATA

When the number of observations in a 2-way classified data is constant, the data are

called orthogonal; otherwise the data are called non-orthogonal. Data from

incomplete block design are non-orthogonal and require special analysis detailed

below (Das, 1979).
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Let the two factors ofc1assification be denoted by A and Beat p and q levels

respectively. Let nij denote the number of observations in the (i,j)th cell. Denoting

the kIll observation in the (i,j)th cell by Yijk

(k= 1,2, ... , nij), G = 1,2, ... , q), (i = 1,2, ... , p)

We make the following substitutions:

I.

nij

I Yijk = Tij ,the cell total
k=1

II.

qI 'F;J = Ai ,the marginal total corresponding to the /h level of A
)=1

III.

I'

L'F;J = BJ ,the marginal total ofB
;=1

IV.

I' qI Ai = I BJ = G , grand total
;=1 j=1

v.
,/ f q P

~ n. = n , n. = n . and '" n. = '" n.). = n ..L!j I. !j) L.. I. L..
)=1 i=1 J=1 i=1

When the data structure IS non-orthogonal the analysis is not simple as straight

solution of the normal equations are not always available. Taking the following

model:

Y ijk ::: f..L + f; + bi + e ijk

Where Y,/k is the random variable corresponding to the observation Yijk ; f..L , t, , hj

(i = 1,2, ... , k, j :::1,2, ... , r) are fixed effects. We assume that the levels of B

19



represent the different columns in the two-way table and those l of A, the different

rowsand G is the grand total.

Since cyk has zero mean and f1 , I; and bj are constants, we have' <:

Hence zz , t, (i = 1,2, ... w) and bj (j = 1,2, ... k) can be estimated by the least squares

method, t hat is, by minimizing the sum of squares.

E= 2)Yijk -,LL-t; _bj)2
ijk

The normal equations are

8E ~ .- = -2 L)Yijk - ,LL-I; -b) = 0 (J = 1,2,... ,q)
8bj jk

The above when simplified reduce to

ntt-l-" n.t,+"nb = G, L.,,-, L., -J J 2.2

n i,+ n t + " nb. = A,. (i = 1,2, ... , k)• t-r t L., U J
j

2.3

2.4

Obtaining hi from 2.4 and putting it in 2.3 we get

20



2.5

2.6

Substituting

( '" «», JQ for Ai-~~
) nj 2.7

2.8

= Cmi 2.9

ormal c.iuations (2.6) are written as

C I', +I c.j, =Qi (i=1,2, ... ,k)
111*;

2.10

These eq uions are called reduced normal equations. Q, is called the adjusted total

of the 0 f. ic ith level of A. The k equations at 2.10 are not independent, because when

these eg 1I Iions are added, both the left hand and the right hand sides vanish. That is,

IQ, = and I C
illl

= O. This can be proved easily by writing down their actual

express» "and adding.
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As Cilll = -'lIIi , it also. follows that the sum of the coefficients of the t.' s ineach

equation: ! 2.10 is zero. Obviously then, if ii (i = 1,2, ... , k )is a set of solutions of 2.1 0,

then ti + (i = 1,2, ... , k) where e is a constant, is also a set of solutions.

The equ» . )11 at (2.10) has thus no unique solutions since we have k equations and 2k

parametc to be estimated. To get unique solutions we impose the restriction

L:Ji = O. This implies that t.' s are estimated as deviates from the means. As a

matter 0, tact, the restriction need not be Ii; = 0 always. It can be any linear

function, !. I, 's other than their contrasts. Such restriction change e only.

When a . 'I of solutions of (2.10) is obtained, we can get the solutions of bj 's from

(2.4) if Sl' required, The error sum of squares,

2.11
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Instead ( -" 1iminating b j to get the reduced normal equations in Ii'S, we could have

eliminate /, 's and got the reduced normal equations in i, 's and finally the error s.s.

A

as functi 'I \ of bj 's. In this situation

2.12

Where J I
nA.

=B- ~
J

i n;

As 2.11 : II I 2.12 are both the same error sum of squares, we have

2.13

Next. r getting the sum of squares. of A we make the hypothesis

(I = I, = = t, = 0 and get the reduced model Yijk = J-l +b , + eijk

The crro un of square on this model is

So.the ~ of squares of A = E\ - E = IliQ

2.3 ;\' .LYSIS OF BIB DESIGN

Writing = {xir=1 and A = {Aj}~=I' then the incidence matrix of the BIBD is given

by the I \ matrix M = ((nij ))defined by
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if Xi E Aj

otherwise

This \ 1:11 i \. satisfies the equation

Where I I~ a v x v identity matrix and J is the v x v unit matrix according to Fisher

(193 ~)

Table .1:, ,~xample of tabular incidence Matrix for a BIBD with parameters (v, k, A)

Block
Treatments

1 2 3 v

1 0 1 0
0 0 1 1

1 1 1 0

Treatment
block size "»

Block
total

1
2
3

k
k
k
k
k
kb 0 1 0 1

To(~1

No, ,d' Ie r r r
Obscrv I' ',ml total AI A2 Av
Adju-re: 'tal Q, Q2 Qv

TI1U~ ,'n) 'equation 2.7

whe-e / 'enotes the entry in the above table in the cell defined by the ith treatment

and, ' 'k,

Usin; l 1 -nodel
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The lot Sum of Squares is given by

( J
2

IIyu
TSS = I I r:} _ ---,--i _i ------'--

i i rk

The In(l Sum of Squares unadjusted is given by

2:bj (2: 2: YijJ'
SSBu = _i_, __ -,--'-)-~

k rk

The ; re nent Sum of Squares unadjusted is given by

2:t' (2:2:Ylj J'
SSTu = --' _ --'--'--="')--'--

r rk

Since' tr. I rnents appear in different blocks we need to adjust the treatment sum of

squares block effect. To get the Adjusted Treatment Sum of Squares (SSTA) we

use I 'c! !uced normal equations obtainable from equation 2.6 as follows

Noti',g Ii It:

TIm',

Taking I c restriction Iti = 0 then the solutions ofthe treatment effects are as
m+i

[0110'\'s
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TI1Ll.

Q; vA .
t; = -, where E = - (1 = 1, 2, ... , v)

rE rk

The, l.it led Treatment Sum of Squares is

SSTA = Lt;Q = r~LQ:
I I

The, li led Block Sum of Squares is given by

SSB A = SSTA + SSBu - SSTu

The rr: Sum of Squares is given by

SSE = TSS - SSBu - SSTA

Table ~: ie ANOV A table for BIBD
---

SOUl 'l'
Degrees of Sum of Mean Sum F - StatisticFreedom Squares of Square---

Trea 1'1 . I (unadjusted) v-I SSTu

Bloc S I nadjusted) b-I SSBu

Tres 11: I (adjusted) v-I SSTA MST MST/MSE

Blol s ( .ljusted) b-I SSBA MSB MSB/MSE

Erro rk-b-v+ 1 SSE MSE
-- --
Tot rk-l TSS
-- -
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2.4 REINFORCED BALANCED INCOMPLETE BLOCK DESIGN

The technique of reinforcement was initiated to control large intra-block variances

butif looked from another angle, this may also be used to compare a set of tests with

a set of controls. The reinforced designs were developed to meet the need of

experimental situations, where it may not be possible to use balanced incomplete

block(BIB) design, a lattice design or a partially balanced incomplete block design.

Since BIB designs are used to make all the possible paired comparisons among the

treatments but in this case we are interested only in the subset of all the possible

paired comparisons. Inadequate experimental resources may also not allow equal

replication of all treatments. To deal with this. situation, Das (1954) suggested a

design obtainable by adding some extra treatments to each of the blocks of a BIB

design. With a given number of treatments w, the p extra treatments can always be

so adjusted such that v (= w - p) treatments form ~ BIB design. The resulting design

will have v + p treatments distributed in b blocks each of size k + P such that each

of the p-newly introduced treatment is replicated b times and the original v

treatments are replicated r times each. These designs have no fresh constructional

problems and can be made available for any number of varieties by suitably choosing

v and p.

Using the homoscedastic and fixed effects mode of the form
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Das (1958) stated the reduced normal equations < for reinforced incomplete block

designsto the following:

( )

v+p A v

r __ r_ t. __ r_ "t ---"t. =Q.
I ~m ~I Ik + p k + P m=v+1 k + p ;'#

{i = 1 2 ... v}, , , 2.14

(b) b V+P r v
b--- till --- I till' ---It; = QIII

k + p k + P m''''111 k + P ;=1

{m = v + 1,v + 2,.··, v + p} 2.15

Where t, and ti' stand for the original treatments replicated r times and t m and tm'

standfor the newly introduced treatments each replicated b times.

Das(1978) showed that equations 2.14 and 2.15 are derived through the use a two-

waytable below (Table 5) and Equation 2.10 through;

WritingX = {xJ~:t and A = {Aj}~=" the incidence matrix of the RBIBD is given by

the b x (v + p) matrix M = (N I :N2) where;

1. NI is b x v matrix with elements

{
I ifX;EAJ

nij = 0 otherwise

2. N2 is b x p matrix of 1's i.e. Jbp

Belowis an example of a tabular incidence matrix for RBIBD design with v + p

treatmentsand b blocks of size k + P .

28



Table 5: An example of tabular incidence Matrix for a RBIB design

Treatments ( i ) Block
Size (

Block(j) 2 v v+1 v+ P noj)

1 k+ p
2 0 k+p

0 k+p

0 k+p

b 1 k+p
Replication ( n, ) r r r b b

Puttingequation 2.10 in our scenario where we have v + p treatments, we get

2.16
l1'¢i

Thiscan be split into two equations

CJ +I cj, = Q (i = 1,2, , v) 2.17

Cllln/III +I c.: = QIII (m = v + 1, ... , v + p)
m,*n

2.18

2

Evaluating c, = nj - ~ :~ in equation 2.16 then c, = r - k: p

b

Sincefrom Table 5 n; = r, I nij = rand nj = k + p \j j
l=t

Evaluating C
j17

= - I nljnni still in equation 2.16 we break it into two parts
j n.,

r 0

i) Newly introduced treatments not eq~al to i which becomes Cj17 = --- and,
k+p
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ii) Original treatments not"equal I and concurs with i III A blocks which becomes

AC =---
In k+p

Forequation 2.15 the same procedure can be applied.

Theequation 2.15 can also be written as

b b V+P . r v
bt; ---tm --- I till'---It; =Q",

k + p k + p m'v m k + P ;=1 2.19

But

b b V+P b V+P

+=:'; +-- I till'=-- Itlll
k + P k + P III'~III k + P 11I=1'+1

Thus

b v+» r v

bt; --- It", ---It; =QI1I

k + P m=v+1 k + P ;=1

1 (v+P V Jbt; --- b I 111I+rI/; =QIII
k + P 11I=,,+1 ;=1

2.20

Taking the restriction that bIt", + r It; = 0, the equation 2.20 becomes

bllll=QI1I 2.21

That is,

I = Q",
m b d It ,-_IQm'(m=v+l,v+2,···,v+p) an

,III b
m

Since

v v

It; = It;, +t;
1=1 ,.~;

Thenequation 2.14 can be written as
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WritingI t, = - '2 I t/l1 and It", = I Qm ,these become
r b

(r __ r +_A )t =Q + IQm (r- bA)
k + p k + P I I b(k + p) r

Thatis,

tj=( )1 {(k+p)Qj+IQm(r_bA)}U=I,2,."V)k + p r - r + A b r . 2.23

Thus, the estimates of all the treatments effects have been obtained. The adjusted

treatmentsum of squares can now be obtained from

(

2 J '_ Bj •

ErrorS.S. - Total S.S. - I---C.F - Adjusted tr. S.S.
k+p

where Bj is the /h block total.

The estimate of the treatment differences can be obtained from equations 2.18, 2.20

and2.22 and are given below:

1) t - t , = Q", - Qm'
• /11 III b

k+ p ( )2). tj - i, = () Qi - Q;,
k+pr-r+A,

1 {(k + p)Q + IQm (r _ bA)}
(k+ p)r-r+A' I b r
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11 .u Ii'

conn

tl"l.' 111 'j

1 ()fj 1

trc.i' 'I

;)1" t

rENTED BLOCK DESIGN

2 - I

S -.;c

a\ I

0' (,

(i

p: " I i:

ti' '
, tl

(,(",! ! ,

C' 11

\' ,,

T l'

I 'I

c

d bock designs a randomized complete block design is selected for the

irnents and then the blocks are enlarged to accommodate the new

Augmented Block Designs (ABDs) were introducedby Federer (1956,

, b) as an alternative to the systematically arranged check and new

ABDs have several advantages over the systematic arrangement. They

r screening new treatments such as genotypes, insecticides, herbicides,

,c:, others.

/~cneral Theory

, 1V test varieties are to be tested and that sufficient seeds or plants are

)lant only single replicates of each variety. Furthermore, suppose that u

'S, called check or control varieties are available in such quantities that r

if each variety may be planted. The v = w + u varieties included in a

periment are laid out in appropriate experimental design for controlling

neity effects in the experimental area. Sufficient replications of the

ties are included to have sufficient degrees of freedom for estimating the

t error variance and for estimating effects of the blocking used to control

icity.

tl analysis for experimental designs in which u control varieties have

cd r times and where w test varieties have been replicated once, may be

, 1 (he following two ways:
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,
:1 ile trial on v varieties may be analyzed usmg standard methods for

( is] -oportionate numbers in the subclasses; then, contrasts among the control

\ an ,ties, among the test varieties, and among the control and the new

\ 11' lies may be made

, : atistical analysis is performed on the control variety yield only, and

I 1ocking effects, and the control variety effects are estimated; an estimate of

I C 'xperimental error variance is obtained, Then, the estimated test variety

i ie, IS and effects are obtained and the varietal contrasts are made as in (a).

TI ()' '11 hods (a) and (b) might appear to result in different estimators for the

eI':~'( ,d 'xperimental error variance, it can be shown that this is not the case. Let

J' 'j, I; I> 1 observational vector with

E(Y)=X11P}
V(y) = 0'2 In 2.24

\\'", f,'I) and V(.) denote the expected value and the dispersion matrix,

Ie'.:-, 1 cl- _ of the quantity inside the parentheses; In is an identity matrix of order

n.! :';1 'J x I column vector of unknown parameters, 0'2 is unknown scalar, and

"X a n x p matrix with unknown coefficients. Let Z be another m x 1

ol .,: : I 01 It vector with

E(Z)=X2IP+X221'}
V (z) = 0' 2l;

2.25

\\ (' - J a r; X 1 column vector of another set of parameters and X 21 and X 22 are

III ' ,'hi m x 'I matrices respectively, of known coefficients. We assume that

/I' lei 'hat the rank of X 22 is equal to q.
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Tfien 'Y can be estimateaeitlier by estimating p form equation T24 anaSu1Jstltutmg

in equation 2.25, which is method (b), or by using the combined set of equations in

2.24and 2.25 to estimate the varietal effects, which is method (a). By the method of

leastsquares, the estimated vector p(l) of p from equation 2.24 is:

2.26

I I

Where (XI I XI Irl denotes a generalized inverse of XI I XI I . Substituting the value

p(J) for p in (4.2), we obtain the estimate 9(1) of I' as follows:

2.27

Alternatively, from the combined set of equations 2.24 and 2.25 that is,

E[Y] = [XI I c.. ][P],
Z X21 X22 )'

2.28

Where 0n,p is the n x q null matrix, the estimate (JJ(2)'i(2)') of (ply')' is obtained by

the method of least squares described below. Now,

2.29

Since the rank of X 22 is q , there exists a q x p matrix L such that

2.30

After substituting this value in equation 2.29 and eliminating p(2), we obtain

",(2) __ ,,(1). Further, P~(2) -_ P~(I). Thus, method () d h d (b) d 'b d{ / a an met 0 ,as escn e
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P \ t i cad to the same estimates of the varietal effects for both control and test

\': I, l

1 'an sum squares for both methods can also be easily verified to be the

s: 1\ nferences drawn from both methods are thus identical whenever the test

tr ,Ie replicated exactly once. It is recommended that method (b) be used for

II I analyses as it minimizes the algebra and the computations. Use of

C' designs with known statistical analysis further minimizes the algebraic

a t I computation.

2 - \ 11 C II ted Randomized Complete Block Design

.idcr the experimental situation where w test treatments are to be

Ir I' ,t

ih 11 control treatments using n experimental units arranged in b blocks

)lock is of size k j (» u) . For an augmented randomized complete block

'!lwe will call augmented block design (ABD), each of the control

replicated r times and occurs once in every block and test treatments

'1 one of the blocks. Therefore, it can easily be seen that in the fh block

c

d

Ii - u = nj test treatments. The randomization procedure IS given as

omly allot u controls to u of the kj experimental units in each block.

omly allot the w test treatments to the remaining experimental units.

-cvv treatment appears more than once, assign the different entries of the

ncnt to a complete block at random with the provision that no treatment
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,
appears more than once in a complete block until that treatment occurs once in

each of the complete blocks.

For augmented randomized complete block design standard errors for comparing

meandifferences are generated from the mean square error of the original RCBD

calculatedas in chapter 2.

StandardErrors

I. Between two control treatment means

SE(1) = ~2~SE

2. Between two test treatments in the same block

SE(2) = .j2MSE

3. Between two test treatments not in the same block

SE(3) = ~2MSE(1 + Yt)

4. Between a test treatment and a control treatment

SE(3) = ~2MSE(1 + )1; + Yu - Yub)

The analysis of variance of the data generated from an augmented block design with

v =U + w treatments comprising of w tests and u controls arranged in b blocks

having k, plots in block 1, k2 plots in .block 2, and so on, and kb plots in block b,

such that k, + k2 + ... + kb = n, the total number of plots in the design, is shown in

Table6
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Table 6: Analysis of Variance (ANOV A) table for augmented' block design

Sourceof Variation Degrees of Sum of Mean Sum

Blocks (eliminating treatments)

qua res 0 squares

b -1 MSSB

Tests vs Controls

Error n-v-b+l

SSTC

SSE

MSSTC

MSE

Total n -1 TSS
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3 CHAPTER THREE - METHODOLOGY

3.1 PROBLEM FORMULATION

We have w treatments divided into two disjoint sets, Hand q of cardinality

respectively v and p, v + P = w, G () H = ¢. The set H has v test treatments labelled

as 1,2,···,v while the set G has p control treatments labeled as v + 1,v + 2,···, v + p .

Theproblem here is to design an experiment to compare test treatments belonging to

the set H with control treatments belonging to the set G with as high a precision as

possible. Suppose that n experimental units are available for experimentation and

these n experimental units can be arranged in b blocks of sizes k j, k 2'" .,kb ,

respectively, k, + k2 + ... + kb = n .

As described above, the contrasts of interest III the experiment are Ig - I" ,

g E G,h E H. Comparisons of treatments within G and within H are of secondary

importance, though in many practical situations, the comparisons among treatments

within the groups are also important, though not as important as the between group

compansons. The contrasts of interest then are also ts - tg" g =1= g' E G and

As such we are interested in a design that permits the estimation of all the v - 1

linearly independent treatment contrasts called a connected design with Rank (C) = v

- 1. Further, it would also be desirable that the comparisons of interest are estimated

through the design with the same variance. The precision of other comparisons is of
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noconsequence to us although these are also estimable through a connected design.

A design is said to be variance balanced for the estimation of test treatments versus

controltreatments comparisons if it permits the estimation of these comparisons with

the same variance and the covariance between any two estimated -test treatments

versuscontrol treatments comparisons is also the same.

3.2 MODEL AND ANALYSIS OF VARIANCE

A statistical model is actually a linear relation of the effects of different levels of a

number of factors involved in an experiment along with one or more terms

representing error effects. The effects of any factor can be either fixed or random but

the error effects are always random and may belong either to a finite or infinite

population. A model in which each of the factors has fixed effects and only the error

effects are random is called a fixed model. Models in which some factors have fixed

effects and some random effects are called mixed models. In the same context,

models where all the factors have random effects are called random models.

In fixed effects models, the main objectives are to estimate the effects, find a measure

of variability among the effects of each of the factors and finally find the variability

among the error effects. In this study we shall restrict ourselves to fixed effects

model since it is enough to achieve our objectives.
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If the treatment t is assigned to the if" plot of the /11 block (1::;; t ::;;v; 1~ i ~ nlj;

l s] -:;,b), we shall have Ylij denote the corresponding random variable: we assume

the usual fixed effects, additive, and heteroscedastic linear model without interaction.

Where

J1 is the grand mean

t; is the effect of treatment i w.r.t. grand mean

bj is the effect ofblockj W.r.t. grand mean .

Cijk is error and is assumed to be N(O, 0-
2 kj)

Here a ~0 is a scalar constant, generally unknown. This model is in fact a

generalization of Fairfield Smith's Variance Law. The value of a may be estimated

from the uniformity trial data. Lee and Jacroux (1987), Gupta, Das and Dey (1991),

Das, Gupta and Das (1992), Parsad and Gupta (1994a, 1994b), Parsad, Gupta and

Singh (1996) and Srivastava, Gupta and Parsad (2000) have earlier studied this

model. For a = 0 we get the usual homoscedastic model.

The assumptions on the behavior of cljk are necessary for drawing inference by

adopting known statistical methodology. The methodology that is adopted is the

analysis of variance technique where inference is drawn by using F test. For the F

test it is necessary that the observations, that is, the error components should be
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normally and independently distributed with a common variance. Further assumption

that has to be made in the model is that the effects are additive.

3.3 MONTE-CARLO SIMULATION

Monte Carlo Methods are a class of computational algorithms that rely on repeated

random sampling to compute their results, Fishman (1995). Monte Carlo methods are

often used when simulating physical and mathematical systems. Because of their

reliance on repeated computation and random or pseudo-random numbers, Monte

Carlo methods are most suited to calculation by a computer. Monte Carlo methods

tend to be used when it is infeasible or impossible to compute an exact result with a

deterministic algorithm.

To compare the efficiencies of ABD and RBIBD we needed to simulate data from the

standard normal distribution and uniform distribution. We used Genstat's Release 12

GRANDOM procedure to generate pseudo-random numbers from the Normal and

uniform distributions. The RESTRICT directive was used to restrict the value of yield

to greater than zero and less that 200tch since we don't expect to have negative yield

or yield greater than 200 tonnes of cane per hectare.

3.4 TREATMENTS DISTRIBUTION CHARACTERISTICS

We used five hypothetical families and two controls whose desired characteristic yield,

follows a normal distribution with distinct means and standard deviations as shown:

Family 1 ~ N(80, 102)

Family 2 ~ N(60, 52)
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Family 3 ~ N(SO, 42)

Family 4 ~ N(1 00,42)

Family S ~ N(30, 22)

Control 1 ~ N(60,l.S2)

Control 1 ~ N(62,22)

Where Control 1 and Control 2 are the standard commercial sugarcane

varieties

Since we know all the parameters of the distribution for each treatment, we will

generate normal random numbers using Genstat Release 12 GRANDOM procedure to

fit the two experimental designs. Each block will be given a distinct environmental

effect that either suppresses or enhances the treatment mean. From the generated

figures we will carry out analysis of variance to test for the difference of treatment

effects. The results of the ANOV A will be compared to the expected results through a

paired sample t-test.

3.5 REINFORCED BALANCED INCOMPLETE BLOCK DESIGN

A Balanced Incomplete Block design with parameters v = S, b = Sand k = 4 was

generated using IASRI design resource server in accordance to Rathore et al (2006)

and the output is given below.
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"OUTPUT GENERATED BY IASRI DESIGN RtSOURCE SERVER"

V=5 B=5 K=4 A-Efficiency= 1.0 D-Efficiency=1.0
..1,=4
r\=4 r2=4 r3=4 r4=4 r5=4

BLOCK DIAGRAM
Block 1 ( 1 2 3 5 ) "-
Block 2 ( 2 3 4 5 )
Block 3 ( 1 2 3 4 )
Block 4 ( 1 3 4 5 )
Block 5 ( 1 2 4 5 )

CONCURRENCE MATRIX
T2 T3 T4 T5

Tl 3 3 3 3
T2 3 3 3
T3 3 3
T4 3

The generated design was reinforced by adding two control varieties (i.e. Control 1

and Control 2) in each of the 5 blocks making the design a Reinforced Balanced

Incomplete Block Design (RBIBD). The treatments were randomized in each block.

2

Plot I
Family I

Plot I2
Family 2

Plot 17
Family I

Plot 24
Family I

Plot 28
Family I

Plot 2 Plot 3 Plot 4 Plot 5 Plot 6
Family 2 Family 3 Family 5 Control Control

I 2

Plot II Plot IO Plot 9 Plot 8 Plot 7
Family3 Family4 Family 5 Control Control

I 2

Plot 18 Plot 16 Plot 13 Plot 15 I'lot 14
Family2 Family 3 Family 4 Control Control

I 2

Plot 23 Plot 22 Plot 20 Plot 19 Plot 21
Family 3 Family 4 Family 5 Control Control

I 2

Plot 26 Plot 27 Plot 30 Plot 29 Plot 25
Family 2 Family 4 Family 5 Control Control

I 2

3

4

5

Figure 3: Plots layout for Reinforced Incomplete Block Design (RBIBD)
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Table 7: Frequencies for different treatments in the blocks·ofRBlBD

Family Family Family Family Family Control Control Block
Block 1 2 3 4 5 1 2 Size

1 1 0 6

2 0 c... 6

" 0 6
j

4 0 6

5 1 1 0 1 1 6

Replication 4 4 4 4 4 5 5

Data was simulated using Monte Carlo simulation as described in Chapter 1. Each

treatment had unique properties as shown in Figure 5. Family 1 had the largest

dispersion due to large variance while Control 1 had the least dispersion due to small

vanance
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Family5 Control I

Control 2 40 60 80 100 120

25
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C 15s
0

10
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Figure 4: Histogram of data generated for various treatments (Sample size 100)

80 100 120

The data generated was inserted in the design and adjusted for block effects. For ease

of computation, block effects were assumed to be uniformly distributed in the range [-

5, 5]. The block effects were again generated through Monte Carlo simulation as
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,
described in chapter 1. From the generated data, the reinforced balanced incomplete

block design had the following block effects.

The blocks were assumed to have the following properties: '--'
Block Random No Block Effect

1 3 Enhance the mean by 3 units
2 -3 Depress the mean by 3 units
3 1 Enhance the mean by I units
4 4 Enhance the mean by 4 units
5 -5 Depress the mean by 5 units

Since in this analysis we assume additive and homoscedastic linear model

where,

f1 is the grand mean

ti is the effect of treatment i

Bj is the effect of block j

Cij is error and is assumed to be N(O,02
)

We included an error term in the generated data. This error term was distributed as

N(O,25) and was added to each data point (plot).

3.6 AUGMENTED BLOCK DESIGN

An Augmented Block Design with parameters v = 7 , w = 5, u = 2, and b = 3 was

generated using IASRI design resource server. The two control treatments were laid

in a randomized complete block design with three replicates. In each block the
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,
treatments were augmented with inclusion of two test families randomly allotted to

block 1 and 2 and one test family randomly allottee to block 3. This was done in

conformity to the optimum replication number r of each check varieties in every

block of the augmented block design that was given by Gupta and-Parsad (2001) as

shown below:

r ~ (c + b _I)f, •C~b)f, ,for I> (c + b -I) & c > I

Else r ~(~t
c = no. of check varieties
b = no. of blocks
t = no. of test varieties

Plot 2 Plot 7 Plot 10
Family 2 Control 1 Control 1

••,
Plot 11 Plot 6 Plot 12

Family 3 Family 5 Family 1

Where:

1

Plot 1
Control 1

BLOCKS
2

Plot 4
Contral2

Plot 8
Family 4

Plot 5
Control 2

Figure 5: Augmented Block Design (ABD)

3

Plot 9
Control 2
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For uniformity and so as to have a basis for comparison of RBIBD and ABD, data

which was simulated using Monte Carlo simulation in chapter 2 was used for each

treatment.

The data generated was inserted in the design and adjusted for block effects. For ease

of computation, block effects were assumed to be uniformly distributed in the range [-

5, 5]. The block effects were again generated through Monte Carlo simulation as

described in chapter 1. From the generated data, the augmented block design had the

following block effects.

Block Block EffectRandom No
1
2
3

Enhance the mean by 3 units
Depress the mean by 3 units
Enhance the mean by 1 units

3
-3
1

From the experiment it was observed that the results of the augmented block designs

are dependent on the experiment error term. Thus to explore different scenarios we

added three different random errors terms to the simulated data, namely;

A. cu-N(O,l)

B. cij-N(O,5)

C. cu-N(O,25)

Data were analyzed for each level of error term

The generated data were analyzed using SAS PROC GLM as shown below

TITLE 'SIMULATED DATA ON AUGMENTED BLOCK DESIGN - N (0,1);
OPTIONS LS=75;
DATA YIELDABD;
INPUT Block Trtment$ Yield;
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CARDS;

proc glm;
class Block Trtment;
model yield = Block Trtment/ss2;
lsmeans Trtment/stderr pdiff ;
contrast 'controls' Trtment 0 0 0 0 0 -1 1;
contrast 'tests' Trtment 1 -1 0 0 0 0 0 ,

Trtment 1 1 -2 0 0 0 0 ,
Trtment 1 1 1 -3 0 0 0 ,
Trtment 1 1 1 1 -4 0 0 ,

contrast 'tests vs controls' Trtment 2 2 2 2 2 -5 -5;
means Trtment/ duncan;
run;
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4 CHAPTER FOUR - RESULTS AND DISCUSSION

4.1 REINFORCED BALANCED INCOMPLETE BLOCK DESIGN

The means generated from RBIBD are shows in Error! Not a valid bookmark self-

reference .. We note how unhelpful it is to compare treatment means from the table

below. Treatments that fell on blocks that depress yield will have less mean as

compared to those treatments that fell on blocks that enhance yield due to the effect

of treatment-block interaction. The only exception are the controls (Control 1 and

Control 2), this is because they appeared in all blocks thus comparing them will give

the true performance. The treatment means have to be adjusted to remove the block

effects.

Table 8: RBIBD treatments performance per block and their related means

Treatments
Family Family Family Family Family Control Control Block Block

Block 1 2 3 4 5 1 2 Total Means

85.99 55.80 51.07 37.76 59.59 65.77 355.98 59.33

2 58.60 49.87 91.08 34.91 63.11 65.65 363.22 60.54

3 85.89 63.43 48.88 104.52 61.15 53.48 417.35 69.56

4 90.85 54.46 100.84 27.02 68.08 60.62 401.87 66.98

5 80.96 48.73 93.73 23.95 51.46 52.27 351.10 58.52

Total 343.69 226.56 204.28 390.17 123.64 303.39 297.79

Means 85.92 56.64 51.07 97.54 30.91 60.68 59.56

Computing

Taking i = (1,2, ... 5) to represent familyl to family 5 and m = (1 and 2) to represent

Control 1 and Control 2 respectively.
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G = Grand total of observations

f.1 = Grand mean = Gin, where n=total number of observations

T; = Sum of observations for treatment i, (i = 1, 2, ... , 7)

B j = Sum of observations in block}, (j = 1, 2, ... , 5)

CF = G2/n

Q; = adjusted ith treatment total

Thus

G = 1889.52, n=30, f.1 =63.19 and CF= 1889.522/30 = 119009.53

Since k =4, P =2, r =4, A=3 and b =5 we have.

(k + p )r - r + A = 23

(r - b:) =0.25

Table 9: Calculation of treatment effects, adjusted treatment total and adjusted treatment sum of
squares

Block Total of
No.'s in Blocks ~BfBlock Treat

T; Bj which in which Q; t, t;Q;no no treatment treatment
ioccurs i occurs

343.69 355.98 1,3,4,5 1526.30 254.38 89.31 23.24 2075.05

2 2 226.56 363.22 1,2,3,5 1487.65 247.94 -21.38 -5.64 120.60

3 3 204.28 417.35 1,2,3,4 1538.42 256.40 -52.12 -13.66 711.99

4 4 390.17 401.87 2,3,4,5 1533.54 2)5.59 134.58 35.05 4716.43

5 5 123.64 351.10 1,2,4,5 1472.17 245.36 -121.72 -31.82 3872.67

Ill/.
j(m) b Qm till lmQm

Till

6 303.39 1,2,3,4,5 1889.52 314.92 -11.53 -2.31 26.59

7 297.79 1,2,3,4,5 1889.52 314.92 -17.13 -3.43 58.69
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Total SS (TSS) = 'Ly~-'C.F=12,547.04
ij

(

5 T2 I 7 T_~IJTreatment SS unadjusted (SSTu) = ~ ;Ir + ~ /b - C.F = 11,810.86

Block 55 unadjusted (55B,) ~ (tBJ{+ pJ - C.F ~ 590.85

5 7

Treatment SS adjusted (SSTA) = 'Li;Q; + 'LtmQm = 11,582
;=1 11I=6

Error SS (ESS) = TSS-SSBu-SSTA = 374.19

Block SS adjusted (SSBA) = SSTA+SSBu-SSTu = 361.99

Plugging in the figures we get the analysis of variance table below

Table 10: AnalysisofYarianceTablefor SimulatedRBIBD

Source of DF Sum of Mean Sum
F Value Pr>F

Variation Squares of Squares

Blocks 4 361.99 90.50 4.6 0.0092

Treatments 6 11582.00 1930.33 98.02 <.0001

Among Tests 4 11455.66 2863.91 145.42 <.0001

Among Controls 3.14 3.14 0.16 0.6943 ,
Tests vs Controls 123.21 132.21 6.26 0.0217

Error 19 374.19 19.69

Corrected Total 29 12547.04

From Table 10 it can be seen that difference among test families is statistically

significant (p-value < 0.0001) but difference among controls is not (p-value 0.6943).

The difference between control and tests families is also significant (p-value 0.0217).

This is as we expected and we can conclude that in this case RBIBD is able to bring

out the differences.
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Table 11 gives the adjusted treatment means for all treatments. These are the

observed treatment means adjusted for block effect using the formula:

Adjusted treatment means for treatment i ifl! treatment effect + grand mean

Table 11: Adjusted treatments means for RBlBD

Treatment
Grand

Mean (f-l)
Treatment
effect (tJ

Adjusted treatment
mean (T;)

Familyl
Family2
Family3
Family4
Family5
Control 1
Control 2

63.19
63.19
63.19
63.19
63.19
63.19
63.19

23.24
-5.64

-13.66
35.05

-31.82
-2.31
-3.43

86.43
57.55
49.53
98.24
31.37
60.88
59.76

4.1.1 Relative Efficiency

To get the relative efficiency of the reinforced BIBD we used the same simulated data

to construct a randomized complete block design (RCBD) with 4 replications. The

replications have properties similar to the blocks of the RBIBD with 28 experimental

units as opposed to 30 experimental units in RBIBD.

The analysis of the data produced the following results:

RCBD Analysis of variance

Table 12: The ANOV A table for simulated ReBD

Source DI{ Sum of Mean Sum IL
Pr>FSquares of Squares Statistic

Block 3 721.28 240.43 6.47 0.0037
Treatments 6 11077.53 1846.25 49.67 <.0001

Error 18 669.09 37.17

Total 27 12467.90
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Table 11 shows that the treatments are statistically different at p-value <0.0001 while

blocking was also significant (p-value 0.0037).

Multiple Comparisons
<..-

Duncan's Multiple Range Test for Yield: RCBD

Duncan
Grouping Mean N Treatment

A 98.388 4 Family4

B 83.773 4 Family 1

C 63.930 4 Control 2

C 60.163 4 Control 1

D C 58.183 4 Family2

D 50.480 4 Family3

E 32.943 4 Family5

Means with the same letter are not significantly different i.e. family4, Familyl and

Family5 are each different from all the other treatments. Family2, Control 2 and C 1

are not statistically different while Family2 and Family3 are not statistically different.

Table 13: Comparison of the treatments means

RBIBD RCBD Means Simulated Assumed
Treatment Means (Tons (Tons Ha-I) Means Means

Ha-1) (Tons Ha-I) (Tons Ha-1)

Familyl 86.43 83.77 81.19 80.00
Family2 57.55 58.18 59.86 60.00
Family3 49.53 50.48 49.65 50.00
Family4 98.24 98.38 100.20 100.00
Family5 31.37 32.94 29.84 30.00
Control 1 60.88 60.16 59.96 60.00
Control 2 59.76 63.93 61.91 62.00

To compare the efficiencies of the two designs we use the Fishers approach by

calculating the 'amount of information' which the estimated difference between two
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treatments means supplies about the true difference. Thus the relative efficiency of

the RBIBD design to the RCBD design is estimated as:

(n, +lXn2 +3)si
(n2 +lXn, +3)s;

Where

n, are the RBIBD error degrees of freedom

n2 are the RCBD error degrees of freedom

s; is the RBIBD error mean sum of squares

si is the RCBD error mean sum of squares'

The required parameters are found in the ANOV A tables. For our scenario, n, = 19 ,

n2 = 18, s, = 19.69 and S2 = 37.17 . Thus RBIBD was about 3 times more efficient

than RCBD. We note that this efficiency is dependent on the random numbers

generated and as such will tend to vary.
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Figure 6: Comparison ofRBIBD and RCBD generated means

Treatments

From Figure 6 above it can be noted that the means generated by the two designs are

not significantly different. The error bars also show that the precision of the RBIBD

is higher than that of RCBD. There is also a marked difference from generated mean

of Control 1 though the difference is still within the margin of error.
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Figure 7: Comparison of mean deviations

Treatment

From Figure 1 above we note that there is considerable difference across treatments

for deviations of RBIBD means from RCBD means, RBIBD means from simulated

means, and RCBD means from simulated means. The small difference across

treatments for deviations of the simulated means from the assumed means can be

attributed to the fact that the simulated means are an average of 100 simulations. This

difference would have been minimized if the observation were averaged over many

simulations.
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4.1.2 Paired Sample T -Test

To test whether the treatment means generated by RBIBD are significantly different

from those generated by RCBD we used one-sample paired t-test. The test showed

that we cannot reject the null hypothesis (p=0.358). See results below,

Variate: Plot Yield

Sample Size Mean Variance Standard Standard error

deviation of mean

RBIBD-RCBD 7 -0.7886 4.387 2.095 0.7917

95% confidence interval for mean: (-2.726, 1.149)

Test of null hypothesis that mean ofRBIBD -RCBD is equal to 0

Test statistic t = -1.00 on 6 d.f.

Probability = 0.358

4.2 AUGMENTED BLOCK DESIGN

4.2.1 Scenario One: Bij -N(O,1)

When the error term is distributed as N(0,1)

Table 14: ANOV A table for augmented block design when B ij - N(O, 1)

Source of

Variation

DF Sum of Mean Sum
F Value Pr>F

Squares of Squares

33.84 16.92 46.96 0.0209

2889.52 481.59 l336.44 0.0007

2681.47 670.37 1860.32 0.0005

3.11 3.11 8.63 0.9900

52.75 52.75 156.37 0.0068

0.7207 0.3604

2924.09
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Among Tests 4
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Error 2
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From Table 14 it can be seen that difference among test families is significant (p-

value = 0.0005) but difference among control is not (p-value 0.9900). The controls

were also statistically different from the test families (p-value 0.0068). This is as

expected and we can conclude that in this case ABD is able to.-bring out the

differences.

Table 15: The Least squares mean yield for ABD Yield: When cu-N(O,I)

Treatment Lsmean Standard Pr--It]yield Error
Familyl 80.32 0.69316 >.0001
Family2 62.77 0.69316 0.0001
Family3 51.82 0.69316 0.0002
Family4 99.77 0.69316 >.0001
Family5 30.37 0.69316 0.0005
Control 1 59.81 0.34658 >.0001
Control 2 61.25 0.34658 >.0001

The same treatments and data scheme when applied to a randomized complete block

design with three blocks gives the following results: '

Table 16: ANOYA table for randomized complete block design when Cu -N(O,l)

Source DF

Treatments 6

Blocks 2

Error 12

Sum of
Squares

Mean Sum
of Squares

F-
Statistic Pr>F

9086.94

163.71

17.82

1514.49

81.85
1.49

1019.63
55.11

<.0001

<.0001

Total 20 9268.4 7
Table 16 shows that the treatments were statistically different at p-value <0.001
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Table 17: The Least squares mean yield for RCBD Yield: when Cij - N(O, 1)

Treatment Lsmean Standard
yield Error Pr>ltl

Family 1 81.59 0.70364 >.0001
Family2 60.30 0.70364 >.0001
Family3 49.70 0.70364 >.0001
Family4 100.59 0.70364 >.0001
Family5 30.20 0.70364 >.0001
Control 1 59.94 0.70364 >.0001
Control 2 61.52 0.70364 >.0001

When we use the RCBD the p-values for treatment and block are highly significant (p

< 0.001, Table 10).

4.2.2 Scenario Two: cij-N(O,S)

When the error term is distributed as N(0,5)

Table 18: ANOV A table for augmented block design when cij - N(0,5)

Source of DF Sum of Mean Sum
F Value Pr>F

Variation Squares of Squares

Blocks 2 33.23 16.61 6.59 0.1318

Treatments 6 2883.43 480.57 190.62 0.0052

Among Tests 4 2679.53 669.88 265.72 0.0038

Among Controls 8.28 8.28 3.29 0.2116

Tests vs Controls 8.83 8.83 3.50 0.2021

Error 2 5.04 2.52

Corrected Total 10 2921.70
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Table 19: The Least squares mean yield for ABD Yield: When &ij - N(O,5)

Treatment Lsmean Standard
Pr>ltlyield Error

Family 1 80.71 1.83341 0.0005
Family2 59.56 1.83341 0.0009
Family3 49.74 1.83341 0.0014 G

Family4 97.63 1.83341 0.0004
Family5 28.96 1.83341 0.0040
Control 1 60.31 0.91671 0.0002
Control 2 62.66 0.91671 0.0002

When the variance of the error term increases from 1 to 5, the differences among test

families remain significant while the difference for test vs control treatments

increases move from being significant. The p-valuefor blocking effect increases from

0.02 to 0.13 implying that blocking becomes ineffective at a higher error variance.

The structure of the Duncan's multiple range test remains unchanged though the

treatments means are different from scenario one especially among the test families.

The control treatments are stable. This can be attributed to lack of replication in the

test families and thus the errors are not averaged out.

When we used the same treatments and data scheme as used in scenario 2 of the ABD

and applied to a randomized complete block design with three blocks, the following

results were observed:
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Table 20: ANOV A table for randomized complete block design when cij - N(O,5)

Source DF Sum of Mean Sum F- Pr>FSquares of Squares Statistic
Treatments 6 8793.05 1465.51 334.94 <.0001

Blocks 2 174.12 87.06 19.90 , 0.0002
G

Error 12 52.50 4.37

Total 20 9019.67

In the RCBD the difference between treatments remains highly significant but as

shown in Table 21 below the treatments standard error increases to 1.2.

Table 21: The Least squares mean yield for ReBD Yield: When cij - N(O,5)

Treatment Lsmean Standard Pr>ltlyield Error
Family 1 80.45 1.20767 >.0001
Family2 62.60 1.20767 >.0001
Family3 50.72 1.20767 >.0001
Family4 100.66 1.20767 >.0001
Family5 30.56 1.20767 >.0001
Control 1 60.17 1.20767 >.0001
Control 2 61.68 1.20767 >.0001

It can be noted the results are very similar to scenario one RCBD results. This is

because even though the errors have different variances, when averaged they give the

nearly the same figure in the neighborhood of zero.
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4.2.3 Scenario Three: e ij - N(0,25)

When the error term is distributed as N(0,25)

Table 22: ANOV A table foraugmentedblockdesignwhen &ij - N(O,25)

Source of DF Sum of Mean Sum "--
F Value Pr>F

Variation Squares of Squares

Blocks 2 56.61 28.30 0.89 0.5285

Treatments 6 3315.80 552.63 17.42 0.0553

Among Tests 4 3113.29 778.32 24.53 0.0396

Among Controls 1 37.35 37.35 1.18 0.3913

Tests vs Controls 14.71 14.71 0.46 0.5662 .

Error 2 63.45 31.73

Corrected Total 10 3435.87

In this scenario the augmented block design is unable to bring out the difference

among the test vs control treatments (p-value 0.56). The difference among test

treatments is significance but blocking becomes more ineffective (p-value > 0.5).

Table 23: TheLeastsquaresmeanyieldforABD Yield: When &ij - N(O,25)

Treatment Lsmean Standard
Pr>ltlyield Error

Family 1 80.45 6.50407 0.0065
Family2 62.46 6.50407 0.0107
Family3 51.46 6.50407 0.0156
Family4 100.81 6.50407 0.0041
Family5 25.63 6.50407 0.0588 ,
Control 1 59.3 3.25203 0.0030
Control 2 64.29 3.25203 0.0025

When we used the same treatments and data scheme as used in scenario 3 of the ABD

and applied to a randomized complete block design with three blocks, the following

results were observed:
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Table 24: ANOV A table for randomized complete block design when £ij -N(O,25)

Source DF Sum of Mean Sum F- Pr>FSquares of Squares Statistic
Treatments 6 7986.96 1331.16 59.93 0.0008
Blocks 2 600.30 300.15 13.51, <.0001

G

Error 12 266.55 22.21

Total 20 8853.80

Table 25: The Least squares mean yield for RCBD Yield: When s ij - N(O,25)

Treatment Lsmean yield Standard Error Pr>ltl
Family 1 83.22 2.72104 >.0001
Family2 62.02 2.72104 >.0001
Family3 52.14 2.72104 >.0001
Family4 100.42 2.72104 >.0001
Family5 35.39 2.72104 >.0001
Control 1 59.99 2.72104 >.0001
Control 2 64.14 2.72104 >.0001

For the RCBD, Table 24 shows that the difference in treatments effects remains

significant for both N(O,I) and N(0,5). The least squares means results show that the

RCBD is still robust in bringing out difference among treatments

. 4.2.4 Relative Efficiency

To compare relative efficiencies of RBIBD design to RCBD design we again use

Fishers method given earlier as:

(n, +IXn2 +3)s~
(n2 +IXn, +3)s~

,

Where

n, are the ABD error degrees of freedom

n2 are the RCBD error degrees of freedom
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S1
2 is the square of ABD error mean square

S~ is the square of RCBD error mean square

The required parameters are found in the ANOV A table. Calculating the relative

efficiency for our three scenarios we find that the ABD has the following efficiencies

(Table 26)

Table 26: Relative efficiency of ABD against RCBD

SCENARIO DESIGN ERROR OF ERRORMS EFFICIENCY OF ABO
AGAINST RCBD

N(O,I) ABD 2 0.36 11.86

RCBD 12 1.49

N(0,5) ABO 2 2.52 2.08

RCBD 12 4.37

N(0,25) ABO 2 13.73 1.81

RCBD 12 22.21

From Table 26 it is evident that the relative efficiency of ABD against RCBD

depended on the variance of the error term. ABD's are relatively more efficient than

. RCBD for standard normal error but this efficiency deteriorates rapidly as the

variance of the error term increases. From the error variance of 5 to 25 the relative

efficiency drops remains stable. We would expect the relative efficiency of ABD to

be the same as the efficiency if RCBD as the variance of the error (]"2 --» CI). As such

it would be wise to use augmented block design even when variance of experimental

error is unknown as is the case with agricultural experiments.
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Table 27: Comparison of ABD and RCBD means and paired sample t-test result

Gij - N(O,5) Gij - N(O,25)

ABD RCBD
80.32 81.59
62.77 60.30
51.82 49.70
99.77 100.59
30.37 30.20
59.81 59.94
61.25 61.52

ABD RCBD
80.71 80.45
59.56 62.60
49.74 50.72
97.63 100.66
28.96 30.56
60.31 60.17
62.66 61.68

ABD RCBD
80.45 83.22
62.46 62.02
51.46 52.14

100.81 100.42
25.63 35.39
59.30 59.99

64.29 64.14
T-test: p=0.57 T-test: p=0.23T -test: p=O .14

From Table 26 above it can be seen that there is no significant difference between

means generated by augmented block design and those generated by randomized

complete block design. We can conclude that augmented block design and

randomized complete block design are equally effective.

4.3 RBIBD and ABD

Reinforced incomplete block design (RBIBD) and augmented block design CABD)

are similar in construction given that in reinforced incomplete block design the

control treatments are added to a design containing the test treatments whereas in the

augmented block design the test treatments are added to a design containing the

control treatments. The results produced by the two methods were not significantly

different. See Table 28 below.
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Table 28: Comparison of treatment means generated by both RBIBD and ABD

Treatment RBIBD ABD-N(O,l)
Augmented Block Design Scenario

ABD-N(0,25)ABD-N(0,5)
Familyl
Family2
Family3
Family4
Family5
Control I
Control 2

86.22
57.34

49.32
98.03
31.17

60.68
59.56

80.32

62.77
51.82
99.77
30.37

59.81
61.25

80.71
59.56
49.74
97.63
28.96
60.31

62.66

80.45
62.46
,5-1.46

100.81
25.63
59.30

64.29

The paired sample t-test generated the following results:

Sample Size
RBIBD- ABD_N(O,I) 7

Mean
-0.5414

95% confidence interval for mean: (-3.828,2.745)
H,: RBIBD - ABD_N(O,I) = 0
Test statistic t = -0.40 on 6 d.f.
Probability = 0.701

Sample Size
RBIBD- ABD _N(0,5) 7

Mean
0.3929

95% confidence interval for mean: (-2.255, 3.041)
Ho: RBIBD - ABD _N(0,5) = 0
Test statistic t = 0.36 on 6 d.f
Probability = 0.729

Sample Size
RBIBD- ABD _N(0,25) 7

Mean
-0.2971

95% confidence interval for mean: (-4.538, 3.944)
H,: RBIBD - ABD _N(0,25) = 0
Test statistic t = -0.17 on 6 d.f.

-Probability = 0.870

Variance
12.63

Standard
deviation

3.554

Std error
of mean

1.343

Variance
8.196

Standard
deviation

2.863

Std error
of mean

1.082

Variance
21.03

Standard
deviation

4.586

Standard error
of mean

1.733

Thus from the T-test results above, RBIBD and ABD are not significantly different

and can be used interchangeably.
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Figure 8: Deviations of various ABD means from RBIBD means

Figure 9 above shows that deviations were equally likely to occur in the both positive

and negative side. RBIBD produced higher figures for family 1 though it is still

within the family standard deviation.
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5 CONCLUSION AND RECOMMENDATIONS

From the results we determined that reinforced incomplete block designs seems to be

more efficient than randomized complete block designs assuming block homogeneity
"-'

i.e. nil intra-block variation. In agricultural experiments setting a block will always

have some degree of intra-block variation. The major factor affecting this variation is

the number of plots (units) per block. The more the number of plots in a block: the

higher the degree of intra-block variation and vice versa. Reinforced balanced

incomplete block designs have the capability of having few plots per block as

opposed to randomized complete block design whose plots per block is dictated by

the number of treatments being evaluated. As such when evaluating large number of

treatments (families), reinforced balanced incomplete block designs (RBIBD) will

always be preferred to randomized complete block designs (RCBD).

We also determined that augmented block design seems to more efficient than

randomized complete block design when error variance is small. In most cases under

agricultural experiments the error variances are assumed small especially with

blocking. The augmented block designs also have an advantage in that they require

only one replication of the test treatments. When test materials are scarce or

experimental units are limited the augmented block design can be used instead of

randomized complete block design.
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We recommend cautious use of the results given the difficulty of companng

experimental designs using simulated data. Concrete result in this study area will be

very useful to plant breeders for efficient evaluation of genetic materials.
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