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ABSTRACT

The field of financial mathematics has drawn a lot of interest from both practitioners and

academicians since the derivation of Black- Scholes model of 1970s. :Ihe celebrated

option pricing formula, the so-called Black- Scholes -Merton option pricing model was

developed by the use of geometric Brownian motion. But the model has a shortcoming

because it assumes that the volatility is constant, when in reality it is not. To overcome

this, Hull and White developed a stochastic volatility model in 1987. Recently in 2003,

Onyango relaxed the geometric Brownian motion assumptions by applying the Walrasian

price adjustment mechanisms, taking the supply and demand functions to respond to

random fluctuation in asset trading. From the available literature, the work so far done on

logistic Brownian motion does not include those assets that pay continuous dividends

during the life of the option. This justified the need to develop a model that will take care

of continuous dividend payments. In this study we have developed mathematical model

for non-linear stock price adjustment that will be used to fit the prices of assets that pay

continuous dividends and follow a non-linear trend. To achieve this, we have applied the

knowledge of logistic Brownian motion and analysed the geometric Brownian motion

model analytically. To verify this model, secondary data from London Stock Exchange

has been used. Since dividend payments in financial markets are critical in securing

investors, the result obtained from this study will help decision-makers in determining the

prices of assets that pay continuous dividends that would attract more investors. We

believe that this study has also contributed more knowledge to the field of mathematics of

finance.
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CHAPTER 1

1.1. Introduction

The uncertain movements of the values of assets over a period of time ~resent the

dynamics of asset prices. This movement in asset price is fully described by a special

Markov process -a particular type of stochastic process where only the present value of

the asset price is relevant for predicting the future. The past history of the asset price and

the way the present has emerged from the past are irrelevant, [8]. The fluctuation in asset

price is explained using the It a process;

dS(t) = p (S ,t)df + CJ"(S,f)dZ ,dZ = eJdt .e=N (0,1) (1.1.1)

where S(t) is the price of asset, p(S ,f) is the trend, CJ"(S,t) is the volatility of the

underlying asset and Z(t) is the standard random variable. Different assumptions about

the trend and volatility give different solution for S(t) in (1.1.1). For example, some

benchmark models such as Bachelier model assumed that p(S ,f) = u , CJ"(S,f) =0' to

give arithmetic Brownian motion model dS(t) = p dt + CJ" dZ and in Black-Scholes-

Merton option-pricing model, it is assumed thatp(S ,1)=pS(l) and cr{S' ,I) = CJ"s(t),

([12], [5]), to give the so-called linear geometric Brownian motion model:

dS(t) = pS(t)dt + as(t)dZ (L1.2)

The stability of general price equilibrium has been studied as early as 1960s by

employing Walrasian tatonnement (sometimes translated as 'groping', or 'tentative

proceedings'). The main question in market stability is that "if markets are off the market

equilibrium, will they tentatively proceed (grope) to market equilibrium? To answer this,

Walras relaxed one of the assumptions in equation (1.1.2), which is that the asset price
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changes are associated with excess demand, [17]. If the excess demand function is given

by ED (S(t)) = QDS(t) - Qs S(t): where QDS(t) is demand function, Qs S(t) is the

supply function, then the change in price is given by

d Set) = kED(t)
dt

(1.1.3)

where k is referred to as the speed of market adjustment.

To accommodate stock prices that follow logistic trend, Onyango [13], further relaxed the

assumptions in equation (1.1.2). In the formulation of stock price model, the Walrasian

excess demand function is used and the prices of assets are driven by this excess demand

function. In this model the dividend paying assets were not considered. In this study we

develop a logistic Brownian motion model that is used to fit the prices of assets that pay

continuous dividends, thereby confirming that the assumptions behind geometric

Brownian motion used in derivation of Black- Scholes- Merton model can still be

relaxed.

1.2. Literature review

The field of financial mathematics has drawn a lot of interest from both practitioners and

academicians since the derivation of Black- Scholes model of 1970s. These researchers

have been using the knowledge of Brownian motion that was first brought up by Scottish

.botanist Robert Brown in 1827 and was further studied in 1905 by Albert Einstein, [6]. -

The application of the knowledge of Brownian motion to the field of finance was

discussed by Bachelier in (1900) in his thesis, [3].

In 1923, Norbert Weiner [18] made further rigorous mathematical development to

Brownian mot~on hence Weiner- Bachelier process. Although Bachelier [3] introduced
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Brownian motion to model stock price in his thesis, its modem applications to financial

markets began in the late 1960s and 1970s.

Samuelson [15] developed a geometric Brownian motion also known as economic

exponential model that is an alternative to Bachelier's arithmetic Brownian motion

model. One advantage of the geometric Brownian motion is that the asset price at time t,

S (t) is the value of an exponential function and non-negative at all times.

In early 1970s Fischer Black, Myron Scholes [5] and Robert Merton [12] made a major

breakthrough in pricing of stock options by developing the so-called Black -Scholes-

Merton model. To derive this celebrated option pricing formula, they applied geometric

Brownian motion. This model has had a huge influence in the way traders set prices and

hedge their options and has been fundamental to the growth of financial engineering from

the 1980s to date. It has also become very popular among both researchers and traders to

date. This is because of the fact that in many cases the normal distribution allows explicit

computation of derivative prices if the exclusion of arbitrage through the risk neutral

valuation formula is applied.

One of the shortcomings of this model is that it assumes that the volatility is constant but

in reality, the volatility is not constant. Models with non-constant volatility have been

developed by among others, [9]. Onyango [13] developed a time varying volatility model

by considering a moving-window method, based on parameter estimate for an assumed

geometric Brownian motion. The geometric Brownian motion assumption has also been

relaxed by applying the Walrasian excess demand function of Walrasian Price adjustment

mechanisms, taking the supply and demand functions to respond to random fluctuation in
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asset trading, [13]. This culminated into the development of logistic Brownian motion

model for asset prices.

The work so far done on the logistic Brownian motion does not include those, assets that

pay continuous dividend during the life of the option. There is, therefore a need to

develop a model that will take care of continuous dividend payments. Thus we develop a

model that contains continuous dividend payments.

1.3. Statement of the problem

Dividend payments on stock in the financial market are critical in securing investors.

Most investments do pay dividends yearly, half yearly, quarterly or continuously through

out the year or period of investment. None payments of dividends and fluctuations of

market prices make the investors to consider alternative avenues of investing their

capital. Thus the inclusion of dividends is critical for the analysis of option pricing. In the

linear Brownian motion, the Black - Scholes model has been modified to include

payments of continuous dividends, [8]. In this study we have attempted to develop a

logistic Brownian motion model as opposed to the linear geometric Brownian motion

model to be used to fit the prices of shares with continuous dividend payments.

1.4. Objective of the study

The aim of this study was to develop a mathematical model that can be used to fit stock

prices that follow logistic trends and pay continuous dividends.
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1.5. Significance of the study

The result obtained will help decision-makers in predicting or determining the future

prices of their stock depending on how dividend payments move.

It will also contribute to knowledge in the field of mathematics of finance.

1.6. Methodology

To develop this model, we have used the following:

i) application of logistic Brownian motion

ii) analysis of geometric Brownian motion model

Airways Historical stock price data.

iii) analysis of secondary data from London stock exchange, that is the British

In the next chapter, we are going to look at some of the basic mathematical concepts that

will be applied to develop this model.
I

~
I
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~
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CHAPTER 2

Stochastic processes.

Any variable whose value changes over time is said to follow a stochastic process.

Stochastic processes are classified as discrete time or continuous time. Discrete time

stochastic process is one where the value of the variable can change only at a certain

fixed points in time, where as a continuous time stochastic process is one where changes

in the value can take place at any time. Stochastic processes can also be classified as

continuous variable or discrete variable. In a continuousvariable process, the value ofthe

underlying variable can take any value within a certain range, where as in a discrete

variable process, only certain discrete values are possible.

2.1. Markov property

This is a particular type of stochastic process where only the present value of a variable is

relevant for predicting the future. The past history of the variable and the way that the

present has emerged are irrelevant. The Markov property implies that the probability

distribution of the price at any particular future time is not dependent on the particular

path followed by the price in the past. The future price only depends on the present

information.
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2.2. Weiner process
\

A Weiner process is a particular type of a Markov stochastic process with a"-'meanchange

of zero and a variance rate of 1.0. It has been used in physics to describe the motion of

particles that are subjected to a large number of small molecular shocks and is sometimes

referred to as Brownian motion.

Expressed formally, a variable Z follows a Wiener process if it has the following two

properties:

(i) the change in I).Z during a small period of time I). tis, I).Z = &.[i;i ,

where e is a random variable drawn from a standard normal

distribution with mean ° and standard deviation 1, i.e. e - N (0, 1).

(ii) the values of I).Z for any two different' short intervals of time Mare

independent.

From property (i), I).Z itself has a normal distribution with mean ° and standard

deviation .[i;i. The second property implies that Z follows a Markov process.

Consider an increase in the value of Z during a relatively long period of time, T. This can

be denoted by Z (T) - Z (0), and let zz be the sum of the increases in Z on small intervals

T
of length M where, ,u = - , then

M

N ,f)
Z(T) - Z(O) =I e, .[i;i ,M =T - To

;=1
(2.2.1)

where the s, (i =1,2,3 ...,N) are random variables drawn from N(O,I). From property

(ii) of Weiner process, the e, s are independent of each other. It follows from equation
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(2.2.1) that Z (T) - Z (0) is normally distributed with mean 0, and standard deviation

.fT, i.e. Z(T) -Z(O) ~ N(O,~T-To)

2.3. Brownian motion

This is perhaps the most interesting class of stochastic process used in financial

economics. At first it was used to describe the random movements of an erratic jiggling

particle. As time passes the particle slowly drifts through space, gradually wandering

away from its starting point.

Brownian motion can be defined III l-dimension, 2-dimension, or III any higher

dimension depending for example in finance, on the number of traded assets taken to

represent a given sector of the market. Examples include prices followed by prices of

derivatives whose pay offs depends on the future values of several, possibly correlated,

underlying assets. Some of the examples are interest rate derivatives, spread, and external

barrier options, relative price and sector index, relative price and relative price index, and

market index, [4]. We have different types of Brownian motion and some of them are

given below:

2.3.1. A standard one-dimension Br~ian motion

A standard one-dimensional Brownian motion Z(t), t e [o,T] IS a continuous-time

process with the following properties:

• Z(O) =0 (with probability one)

• Z (t) is continuous

8
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• Z (t) is memory-less in the sense, if sampled at times O:s; to < t1 < ... <tn and

n ;? 0, then the changes of values 11Z (r.) = Z (t1) - Z (to), ... I1Z, then

(tn) = Z(tn) - Z(tn-1) are statistically independent.

• The increments I1Z (t;) for i = 1, 2, ... n are normally distributed with mean 0

and standard deviation fit, .

More particularly, if Z(t) satisfies the first three properties above for any tE[O,T],

then the change dZ(t) , over small interval dt, is a Weiner process and can be expressed

as dZ(t) = &;Jdi where &j are independent and identically normally distributed, i.e.

e, ~ N(O,I) , with mean given by Exp< dZ(t) >=0, and variance given by

var(dZ(t)) = var(&;Jdi) =dtvar(&j)=dt, since var(&J = 1.

• For any O:s; s:S; t, the increment Z(t) - Z(s) has a normal distribution with

mean zero and variance (t - s), i.e. Z(t) - Z(s)~ N(O ,~).

2.3.2. One- dimensional generalised Weiner process

A 1- dimensional generalised Weiner process has X(t) determined by a stochastic

differential equation of the form (J

dX(t) = u dt + (YdZ(t), X(O) = Xo (2.3.1)

where /1 (drift rate) and (Y (standard deviation) are constants, and Z(t) is a standard

Weiner process. The mean of dX (t) is given by /1 dt and its variance is given by (Y2dt .
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t

Over a very short interval of [t;t+~t] the expected change is approximately Jlb.t and the

variance of the change is approximately 0'2 ss . More precisely, the increase over any

interval [t;_I,t;] is given in the integral form

t, t,

X;(t) - X;_I (t) = Jl f ds +0' fdZ(s) (2.3.2)

In particular, for interval [O,t), equation (2.3.2) becomes

I I

XU) =Xo + Jl fds + fdZ(s)
o 0

(2.3.3)

The solution of equation (2.3.2) is given as

(2.3.3) is given as:

(2.3.4)

with Z(O) = Zo =0 and X(O) = XO'

The variable X(t) is normally distributed with mean and variance given as Xo + ut

and 0'2 dt respectively, that is X(t) ~ N(Xo + ut, O'Ji).

r
2.4. ue processes

In the study of stochastic calculus, Ito processes generalise Brownian motion by taking

parameters Jl and 0' to be the functions of the underlying variable X(t) and time t,

therefore, from equation (2.3.1) Jl = Jlo(X(t),t) and 0' = O'o(X(t),t) The process X(t) is

then generated by the stochastic differential equation of the form:

dX(t) = Jlo(X(t),t)dt +O'o(X(t),t)dZ(t) (2.4.1)
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Here the process parameters are the instantaneous drift rate llo(X(t),t) , which measures

the expected rate of change of X(t) and the instantaneous variance 0"0 (X(t),t) , which

measures the amount of random diffusion. Both are liable to change over time, to a first
\

order approximation, this means that for small increments,

Exp c Xtt + /1t) -X(t) >= llo(X(t),t)/1t and

var<X(t + !1t) -X(t) >= 0"2 (X(t),t)/1t

i.e. X(t + !1t) - X(t) ~ N(llo(X(t),t)!1t, 0"0 (X(t),t).J!;i)

To be more precise, the change over any interval [tj-J ,t;], is given in the integral form as;

I; I,

X(t;) = X(t;_l) + Ilo f (X(s),s)ds +0"0 f(X(s),s)dZ(s) (2.4.2)

More exactly over the interval [0, t], X(t) in the integral form is:

I I

X;(t) =Xo(t)+ 110f(X(s),s)ds +0"0 f(X(s),s)dZ(s)
o 0

(2.4.3)

In equation (2.4.1), the expected drift llo(X(t),t)dt and standard deviation

O"o(X(t),(Q.Jdt are functions of the level X(t) itself and time t.

2.5. Geometric Brownian motion (gBm)

This is a particular class of Ito process commonly used to model stock returns. It is

always referred to as "log-normal diffusions", geometric Weiner process or " economic

exponential models", [15]. In the derivation of the so-called Black- Scholes- Merton

option pricing model, Black and Scholes [5], and Merton [12] assume that the stock
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· ,
returns Set) follows a geometric Brownian motion. The general expression of geometric

Brownian motion is given by

dX(t) = JLX(t)dt + CYX(t)dZ(t), JL > 0, CY> ° (2.5.1)

where JL represents the annual mean of returns d?C(t)/ X(t) and CYrepresents the annual

volatility of returns.

Over a short interval [t,t + M], the expected change is approximately cy2X2 M. More

precisely, the change over any interval [ti_1 ,ti] is given in the integral form as:

I; I;

X(tJ - X(ti_l) = JL f X(s)ds +CY fX(s)dZ(s) (2.5.2)

In particular for interval [0, t) equation (2.5.1) is expressed as an integral equation using

integral of the type of equation (2.4.2):

I I

Xi(t) =Xo + JL fX(s)ds +CY fX(s)dZ(s)
o 0

(2.5.3)

C
where Y, > 0. Equation (2.5.1) can also be expressed as a law of returns give

dX(t)/ X(t) = udt + CYdZ(t) , X(O) = Xo (2.5.4)

which is the relative (percentage) change of the process over the infinitesimally short

interval [t,t+~t]. If X(t) is the price of a traded asset, then dX(t)/ X(t) is the rate of

return on the asset over the next instant and the solution is given by

I I

log(X(t)/ Xo) = fJL ds + fCYdZ(s)
o 0

(2.5.5)

Equation (2.5.4) cannot be solved directly since it is not linear in X(t) and contains parts

that involves Weiner process, Z(t). This can be solved by an analogy of chain rule of

ordinary calculus. The integral form of equation (2.5.5) indicates that the logarithmic

12



stock return executes the relatively simple generalised Weiner process now called

"geometric Brownian motion" that was first introduced in finance by Samuelson in 1965.

It has an advantage over the generalised Weiner process introduced by Bacheller in that

X(t) = exp (S(t)) can never assume negative values. In the next sub-topic we state the

so-called It6' s lemma.

2.6. Ito's lemma

Consider a random variable X(t) that follows a diffusion process (2.4.1), with a

predictable rate of return fL(X(t),t)dt and instantaneous rate of variance a2(X(t),t)dt

that is

dX(t) = fL(X(t),t)dt+a(X(t),t)dZ (2.6.1)

Ifa = °,then we have a deterministic case
c-

dX(t) = fL(X(t),t)dt (2.6.2)

But when a :;t:O, X(t) has sample paths that are differentiable nowhere. We thus use

equation (2.4.1), which does not require us to divide by dt. In the integrals, use of

ordinary calculus to integrate for values ofX(t) cannot be applied in equations (2.5.2) and

(2;5.4), since these integrals contain parts which involve Weiner process , Z(t).

Therefore, there is a need for some set rules that will enable us to solve such differential

equations, hence the use of It6' s multiplication table.

The It6 multiplication rule only considers quantities of order dt and ignores quantities of

order dt", n > 0, and are taken to be zero. Therefore, we have the It6 multiplication rule:

3

dZ(t)dt = dtdZ(t) = dts.Jdi = s(dt)? sincedZ(t) = s.Jdi.
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3

Taking the limit as dt ~ 0, dt' ~ 0, dt 2"~ 0, and any other higher order of dt will tend

to zero. Hence, we have the multiplication table:

x dt dZ

dt ° °
dZ ° dt

Table. 3.6.1 Ita multiplication

When dt is small then,

since Exp < &2 >= 1 and dX2(t) = o+dt. For further information, see [8], (Chapter 10).

If a random variable X(t) follows a diffusion process in equation (2.4.1), then by use of

It~lemma we compute the stochastic differential equation of smooth function G(x(t),t),

which depends on X(t) and t.

As earlier discussed, if the diffusivity coefficient a(X(t),t) = 0, then

dX(t) = f.1(X(t),t)dt and ordinary calculus gives us the answer: thus the change m

G(X(t),t) over an infinitesimal time interval is the total derivative G(X(t),t) given as:

aG aG
dG(X(t),t) = -dX(t)+-f.1(X(t),t)dt

ax ax
(2.6.3)

IfG(X(t), t) is not linear, however, then the solution can be found by use of Ito's lemma.

Let X(t) be an Ito process with drift f.1(X(t),t) and diffusion a(X(t),t). Let G(X(t),t) be

twice continuously differentiable function in X and once in t, then by Taylor series

14



,
expansion and ignoring terms of higher orders, the stochastic differential of G(X(t),t) is

given by:

eo ea 1 a2G
dG(X(t),t) = -dt+-dX(t)+--2 dX2(t)at ax 2 ax (2.6.4)

Equation (2.6.4) means that the change in G(X(t),t) is a function of change in X(t).

If dX(t) = JI(X(t),t)dt +(J'(X(t),t)dZ(t) ,and putting zz=JI(X(t),t), (J' =(J'(X(t),t) then

by Ito's multiplication rules, dX2(t) =(J'2dt and substituting for dX(t) and dX2(t) in

(2.6.4), we get

eo ec 1 a2G
dG(X(t),t) = -dt+-[,udt +(J'dZ(t)]+--2 ai dtat ax 2 ax (2.6.5)

which simplifies to :

oo ea 1 2 a2G eodG(X(t),t)=(-+ ,u- + -(J' -2 )dt + (J'-dZ(t)at ax 2 ax ,ax (2.6.6)

aG
Thus G(X(t),t) IS an Ito process with diffusion coefficient (J'- and drift rateax

The integral form of (2.6.6) is given as

I

R
'oc eo (J'2 a2G) Ii eo

G(X ,t) =G(X,O) + -+ JI- +---2 ds +J(J'~Z(s)
o as ax 2 ax 0 ax (2.6.7)

If G is a function of X only, then equation (2.6.6) becomes

(
eo 1 a2G) eaG(X(t) t) = JI- + _(J'2 -2 dt +(J'-dZ(t), ax 2 ax ax (2.6.8)

and the corresponding integral form is;

15
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I~. eo (Y2 a2GJ I; ec
G(X) =G(Xo) + JI- +---2 ds + f(Y~Z(s)

o ax 2 ax 0 ax (2.6.9)

The above result is summarized below as Ita's lemma.

Lemma 1: Ito's lemma

Let X(t) be an Ita process given by

dX(t) = JI(X(t),t)dt + (Y(X(t), t) dZ(t)

and let G(X(t), t) be a function that is twice differentiable with respect to X and once

with respect to t and of the random process X(t), then if we let yet) = G(X (t),t) , then

Y(t) = G(X(t),t) is again an Ita' process given by:

C) . oc ec 1 a2G
dY(t) = dG(X(t),t)= -dt+-dX(t)+_(y2_2 dX2(t)at ax 2 ax (2.6.10)

or , after substituting for dX(t) and dX2(t) on the right hand side of equation (2.6.10), we

get

. oo eo 1 a2G eo
dG(X,t) =[(JI(X(t),t)- +- +_(y2((X(t),t)-2 )]dt+ (Y(X(t),t )-dZ (t)ax at 2 ax ax

(2.6.11)

Here the change in G is a function of X and t. Thus as X and t change, they induce

change in G. Note that the values of dX(t) and dX2(t) ha~e been defined on page 15.

It is convenient to express equation (2.6.11) in the integral form as:

I~. eo oo (Y2 a2GJ I; eo
G(X(t),t) =G(X(O),O) + JI(X(s),s)- +- +-(X(S),S)-2 ds + f(Y(X(s),s)~Z(s)

o ax as. 2 ax 0 ax
(2.6.12)
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Ito's lemma can be extended to more than one market to get a multi-dimensional Ito's

lemma.

2.6.1.Multi dimensional Hi)'s lemma

Let Xt,X2, ... , Xn, be random variables with drifts /1P/12, ... ,/1n and variances

Let G(X],X2, ... , Xn) be continuously differentiable function, twice in X and once in t,

then G(X],X2, ... , Xn, t) IS an Ito process governed by the stochastic process:

where dZi = &i..Jdi, e, ~ iidN(O,I) and p ij is the coefficient of correlation between Z,

and Zj, and p ij= P ji and P ii= 1. Here the multi dimensional Ito rule is given as:

dtdZi = dZidt = dt.dt =0 and dZidZj = P ij, dZidZi = dt and if Zi are independent

Weiner proceses then dZidZj =0, [13].

3.6.2.Two-dimensional Ito's lemma

Suppose Xt(t) and X2(t) are Ito processes governed by:

We assume that Weiner processes Z, and Z2 are independent (or dependent). If

G(Xt,X2,t) is a twice differentiable function oft, then by equation (2.6.11) G(Xt,X2,t) is

an Ito process driven by:

17



If X\(t) and X2(t) are independent then dZldZ2 = 0 if not correlated, otherwise, if they are

correlated, then dZ
l
dZ2 = pdt, where p is the coefficient of correlation.

IfX\ and X2 are dependent variables, then by Ito multiplication table (2.6.1), we have:

gives

(2.6.15)

IfX\ and X2 are independent, p =0, then,

(2.6.16)

IfX\ and X2 are both Ito's processes as is the case in most financial markets, that is, Z\ =

Z2=Z and p =1, then equation (2.6.14) becomes:

( ec aG)+ ()l- + ()2-- dZ
aXl aX2

(2.6.17)
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2.7. Applications of Ito's lemma

In this section, we apply Ito's lemma in some areas of interest in financial sector.

2.7.1. Application to Geometric Brownian motion

This type of stochastic process is used to model stock markets and is one of the

assumptions used by Black and Scholes [5] to derive the celebrated Black- Scholes

option-pricing model. Here X(t) is replaced by the price of the underlying, Set) so that

f.1 = }1S(t) and a = uS(t), from equation (2.5.1), we have

d £ft) = Jl S{t )dt +uS(t) dZ (2.7.1)

Here the drift rate and standard deviation change proportionally to Set) . Dividing both

sides of (3.7.1) by S(t), we get,

dS(t)-- = u dt + a d'Z
Set)

(2.7.2)

From which the drift and diffusion change of percentage change of Set) dS(t)/ Set) still

have time homogeneous parameters.

It can be said that S(t) follows geometric Brownian motion if the percentage change in

S(t), (i.e. dS(t) J follows a generalised geometric Brownian motion.
. S(t)

In order to get a solution to (2.7.2), we let G(S, t) be a function that is twice differentiable

with respect to S and once with respect to t. SupposeG(S,t) =log Set), then

differentiating G(S, t) twice with respect to S' and once with respect to t then

aG
---
as s'

a3G
--2 - = 0, and putting Jl = }1S(t), a = uS(t) , and replacingas at=

XCt)by Set) in equation (2.6.10), and simplifying, we get,
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dG(S,t) ~ d(logS(t» ~ (1'- ~2}t +adZ ,dZ ~ ddi, (2.7.3)

From (2.7.3), d(lnS(t») follows a generalised Weiner process in which drift rate

is(l'- ~' J, and a as the diffusion coefficient. Both drift rate and diffusi:n coefficient

areconstants.

Overan interval ~i-ptJ, a generalised solution to equation (2.7.3) is given as:

logS(t,) ~ logS(t,_,) + (1'-~2]v,- 1,_,) +a ,",J(t, - t,_.l

9
A strong solution is given as,

(2.7.4)

(2.7.5)

For the interval [0, f], equation (2.7.4) is written as:

(2.7.6)

where S(O) =So > 0, Thus log S(t) is normally distributed for any time t, with mean

given by:

log So +(1' - a;} and variance given by a'l"That is,

(2.7.7)
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The change in logarithm of the stock price during time [0, T] is given by the following

equation:

(2.7.8)

The corresponding distribution of equation (2.7.8) is given by:

and the distribution of logarithm of percentage change in price is:

(2.7.9)

From equation (2.7.8), we have a strong solution given by:

(2.7.10)

From (2.7.10), it can be shown that S (7) is log-normally distributed with expected mean

value and variance given by Soexp(,uT) and S2 exp(2,uT)[exp((j'2T )-1] respectively.

The distribution of S (t) is then given as

(2.7.11)

It should be noted that if a = 0, then equation (2.7.10) becomes Set) = So exp(,uT),

thus set) grows exponentially with expectation Soexp(,uT), and variance zero, [19].
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Suppose SJand S2 are two Ito's processes with stochastic differential equations:

(2.7.12)

(2.7.13)

Then the following lemma follows:

2.7.2. Itd's lemma for sum of Ito's processes

We letG(SpS2,t) = SJ + S2 ,

2en fJG = 0 fJG = fJG = 1 a'G = a'G = a'G = a'G = 0
'at 'oSJ oS2 'oSJ2 S22 oS2oSJ oSJoS2

(2.7.14)

Hence by Ito's lemma, equation (2.6.14), becomes

(2.7.15)

(2.7.16)

If SI,S2 are both affected by the same Weiner process, Z, then (2.7.16) becomes:

(2.7.17)

Thus G is an Ito's process with drift (Jl J+ Jl2)dt and variance (O"J + O"if dt
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2.7.3. Ito's lemma for a logarithm of product of Ito's process

Suppose the sum logarithm of two Ito's processes is given by:

(2.7.18)

Then the-fartial derivatives of G with respect to S), S2 and tare:

aG =0
at '

1= S'I

using these partial derivatives and applying Ito's lemma in two dimension, equation

(2.6.15), then the change in G becomes:

[
1
[

2 2 J]f.11 f.12 (J' (J'2 (J'I (J'2
dG(S S t)= -+- +- ---- dt+-dZ +-dZ

I' 2' S S 2 S 2 S 2 S I S 2
I 2 I 2 I 2

(2.7.19)

It can be concluded that if S) and S2 are Itc's processes then G(SI'S2,t) is also an Itos

process as shown in equation (2.7.19).

2.7.4. Ito's lemma for the reciprocal of an Itf process

. 1 eo ec 1 a2G 2
Suppose S in Ito's process, then If G(S,t)=-, then - =0, - = --2' --2 = -3 'S at as S as S·

hence by Ito's lemma we have:

(

f.1 (J'2J (J'dG(S r) = =--+- dt--dZ, S2 S3 S2
(2.7.20)
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which is simplified to:

(2.7.21)

that is,
)

(2.7.22)

Thus, the inverse of Ito process is also an Ito process.

2.7.5. Iti)'s lemma for a ratio of two Ito processes

(2.7.23)

Then aG =0 aG aG -S]
= - =at ' as] s' aS2 S2

2 2

a2G a2G 2S] a2G a2G -1
--2 =0, = = =as 2 3 ' as]as2 as2as] S2as] 2 S2 2

Hence by Ito' s lemma we have,

(2.7.24)

If the processes are affected by the same Weiner process, Z, (p =1), then equation (2.7.5)

becomes:

(2.7.25)
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Thus the ratio of two Ito processes is also an Ito process as shown in equations (2.7.23),

(2.7.24), and (2.7.25).

2.7.6.Application of Itos lemma in financial market

Here, we make use of Itos lemma to derive the dynamics of a derivative whose dynamics

depend on the dynamics of the underlying assets. Suppose a stock price, Set) evolves

according to the Ito process

(2.7.26)

where V (t) is itself the price of an asset that evolves according to:

(2.7.27)

Here Zl(t) and Z2(t) are standard Weiner processes and dZj (t)dZ2(t) = pdt for some

constant p .

Let the price of the derivative whose pay-off depends on stock price levels of S and V be

denoted by

G (S, V, t) and by Ito multiplication table we have:

Substituting in multi-dimensional Itc's lemma, equation (2.6.12), we get:

dG(S, v: t) =

[
aG eo ea 1 [ 2 2 2 a

2
G 2 2 a

2
G 2 a

2
G ]]d-+ /1S-+ /12V-+- O'jSV -2 +0'2 V --2 +PO'j0'2VS-- t

at I as av 2 as av asav

aG aG
+ O'jVS-dZj +0'2V- dZ2

as av

( 2.7.28)

This is also an Itc's process.
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CHAPTER 3

In this chapter we look at different types of financial markets, different types and styles

of options, time value of an asset and finally the Black-Scholes model.

3.1. Financial markets

The security market is an economic market in which buyers and sellers of corporate and

government securities are brought together. The securities (receipts for individual's

savings available to the users) fall into two categories:

• Certificate of indebt ness (these are known as bonds or notes)

• Certificate of ownership (these are stocks or equity).

Some of the security exchanges are stock markets, capital and money markets and future

markets.

3.1.1. Stocks Markets

Stock markets are interested in securities with nationwide. market. The market decides on

the security to list or trade. Incases where the securities are not listed or traded in an

organized exchange, dealers will buy and sell them in what is called over- the- counter

market.
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3.1.2. Capital and Money Markets

Capital market is a market where money is loaned and borrowed for more than one year.

Corporate and government bonds are examples. A market where money is loaned for a

period of less than one year is money market. <:....

3.1.3. Future markets

Futures are contracts to buy or sell a commodity at some point in the future at rates

decided on at the present. The markets where futures are. traded is known as future

markets.

3.1.4. Stock Price

Common stocks are ownership shares in corporations. When business is low, corporate

earnings fall. If business is bad enough, the companies may go bankrupt. People do not

want to own stock in companies that might go bankrupt, and so they sell their shares

pushing the stock price down. However, no one can sell the stock unless someone is

buying. The effort to sell pushes the stock price down until someone is willing to buy.

Thus the stock price logically goes down during recession when the business turns bad. If

the sellers anticipate recession in the future they may push the stock down. If they

anticipate a revival of the business they push the stock price up. The stock price

movements are random and adjust to the new information as it comes available. During

this adjustment period, the price moves up and down around some trend line that reflects

current market equilibrium.
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3.2. An option

An option gives its holder the right, but not the obligation to buy or sell a certain amount

of an asset by a certain date and for a specific price. The price in the contract is known as
"--'

the exercise or strike price and the date in the contract is the maturity or expiry date.

3.2.1. Types of options

There are two types of options:

a) Call options: this gives the holder the right, but not the obligation; to buy the

underlying asset by a certain date for a certain price.

b) Put option: this gives the holder the right, but not the obligation, to sell the

underlying asset by a certain date for a certain price.

3.2.2. Styles of options

The style of option refers to when an option is exercisable. Two of the most common

styles of options are:

a) European styles of options; these are contracts to be exercised only at maturity

b) American styles of options; these are contracts to be exercised at any time prior to

maturity. In this study we are going to look at the European styles of options.

3.3. Volatility

The volatility of the stock price is denoted by cr. It determines how uncertain we are about

the future movement of stock price.
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3.4. Time value of an asset.

Let us consider the price, S(, of an asset whose value appreciates at the rate

r, with change in time dt. Then we have

ds, =S/rdt

Equation (3.4.1) is solved by first separating the variables to give

InS/ = rt+C

where C is any arbitrary constant.

Considering time t = 0 , and take S/ = So, this is called the initial asset price. Therefore at

(3.4.1)

(3.4.2)

time, t = 0 , C = In So . Substituting this value of C in equation (3.4.2), we get

In S/ = rt + lnSo

Solving for S(, we have

(3.4.3)

Equation (3.4.3) is referred to as the economic exponential model. From this equation, we

see that when r> 0, the price, St, increases. When r = 0, the price, S/ = So, that is there

no change from the initial price. When r < 0, the price, St, decreases but it will never be

equal to zero.
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Figure (3.1) depicts the three graphs for S,

Price

,,,,,,,,,,,,,,

,,-'r > 0

~~~--~ ~-- .•. _--

r < 0

Time
Fig. 3.1. Exponential model.

3.5. Black- Scholes model

Fischer Black, Myron Scholes and Robert Merton are the three economists, who in 1973

made a major breakthrough in the pricing of stock options by developing the Black-

Scholes model. This model has had a major influence in the way traders price and hedge

options and also contributed heavily to growth and success of financial engineering in

1980s and 1990s. In this sub-section we will look at how the black-Scholes equation is

derived, solved and used for valuing both European call and put options
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3.5.1. Derivation of the Black- Scholes equation

The Black- Scholes- Merton differential equation is an equation that has to be satisfied by

the price Set) of any derivative dependent on non-dividend paying stock. To derive the

Black- Scholes equation the following assumptions were made: <...-

• No dividends are paid out on the underlying stock during the life of the

option.

• The price of the underlying asset follow a geometric Brownian motion

• The option can only be exercised at the expiry (European option)

• Efficient market (market movements are predictable)

• Commissions and other fees are non- existent" (no transaction cost)

• Interest rate do not change over life of the option (constant and are known)

• Stock returns have lognormal property. .

3.5.2. Lognormal Property of the stock

A variable whose natural logarithm is normally distributed is said to have a lognormal

distribution. In equation (2.7.3), we showed that if the stock price Set), follows a

geometric Brownian motion

dS(t) = JiS(t)dt + cyS(t)dZ

Then by applying Ita's lemma we get

d(lnS(t)) = (I' - ~2 )dt + o-dZ (3.S.l)
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From equation (3.5.1), the variable InS(t) follows a generalized Weiner process with

mean (fl- ~' )d/ and standard deviation (Y-Jdj. The change in InS(t) between time 0

and T is normally distributed, that is

or

(3.5.2).

and also

(3.5.3)

where ST is the stock price at future time T, So is the stock price at time O.

To derive the Black- Scholes equation, we let the value of a European call option to be

C{(S"t) that is a function of asset price, S, and time, t and is twice differentiable with

respect to S and once with respect to t. This assumption allows us to apply Ito's lemma,

(3.5.4)

32

-



Substituting the values of dS and dS2 into equation (3.5.4), we get

If we consider a portfolio consisting of a European call option and has a stocks, ~'-'

(3.5.6)

ifwe let a to be - ac ,and substituting in equation (3.5.6), we getas

(
ac 1 2 2 a2c JdC(Sl't) = - +-(J S, -2 +aJ-lS, dtat 2 as

The choice of a means that we are carrying out a Delta- hedging; (that is eliminating

(3.5.7)

risks completely) giving us a portfolio that is deterministic; that is, it. has no random

component. Since a risk- free portfolio must grow at a risk- free rate, we conclude that

(3.5.9)

thedrift of (C +as) must be equal to r (C +as). Therefore we have

(3.5.8)

. acSIncea =--.
as

Rearranging equation (3.5.8), we get

Equation (3.5.9) is the so-called Black- Scholes equation. A unique solution can be found

whenthe following boundary conditions are applied:
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• The value of the option must be at expiry' i.e. t=T, then we have C(S,T)

= max (S - K,O) for European call option and C(S,T) = max (K - S,O)

for a European put option.
\

• C(S,T) = f(S), this is applied on the European contingent claim i.e.

derivative that pays off a function f, of S at time T.

For the solution of Black-Scholes equation, see [19].

3.1.3. Black- Scholes -Merton formula for European call and put options

The value of a European call option is given by

with N(x) denoting cumulative normal distribution, ~ Ie _Sh dS , and
-V21r -co

Also the value of a Put option on a non- dividend paying stock is given

as P(S,t) = s« "N(-d2)-SoN( -d1), where d, and d2 are as in the call option above,

[19].

34



CHAPTER 4

Deterministic Walrasian price -adjustment model

In this chapter, we are going to look at how the forces of supply and demand determines

the prices of shares, that is the effect of Walrasian excess demand on market prices.

4.1. The laws of supply and demand

35

The supply and demand analysis explains how prices are established in the market

through competition among buyers and sellers. Prices are the tools by which the invisible

hand- the market- coordinates individual's desires and limits how much-the consumers

are willing to purchase (demand) and how much the producers are willing to offer

(supply). Through the theory of demand and supply, a free market can successfully move

toward the market clearing or equilibrium.

An equilibrium point is where the forces of demand are equal to the forces of supply. At

this point .the market is said to be ' stable' that is there is neither deficit nor surplus.

Market demand refers to a schedule of quantities of goods that will be bought per unit of

time at various prices: and the specific amount that will be demanded per unit of time is

the quantity demanded. Likewise, various quantities offered for sale at various prices is

the market supply: and the specific quantities offered for sale at specific prices is the

quantity supplied



4.1.1. The law of demand

The law of demand states that the quantity demanded of a good or service is negatively

related to its price, ceteris paribus, [2], in other words, holding all else constant,
\

consumers will purchase more of a good or service at a lower cost than at a higher price.

As the price rises, ceteris paribus, consumers will demand a smaller quantity of a good or

service.

4.1.2. The law of supply

The law of supply states that, in general other factors being constant, the higher the price

of a good, the greater the quantity of that good the sellers are willing and able to make

available over a given period of time. It is based on the assumption that the sellers seek to

maximize net gains from their activities.

4.2. Market equilibrium- equilibrium price

An equilibrium prevails when economic forces balance so that the economic variables

neither increase nor decrease. Market equilibrium is attained when the price of a good

adjusts so that the quantity buyers will buy at that price is equal to quantity the sellers

will sell, that is, QD(S(t» = Qs(S(t». At this point, forces of supply and demand are

balanced, thus there is no tendency for the market price or quantity to change over a

given period of time. The equilibrium price acts to ration the goods so that everyone who

wants to buy or sell will do so successfully, the market is then said to be clear.

A shortage exists in the market when the quantity demanded of a good exceeds quantity

supplied over a given period of time. Similarly, a surplus exists when the quantity
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supplied exceeds the quantity demanded over a given period. In a free market, when the

prices are raised, the quantity demanded decrease but the quantity supplied increase (Fig.

4.2). A point where both demand curve and supply curve cross is the equilibrium point.

The price at this point is the equilibrium price, denoted by S* and the quantity is the

equilibrium quantity, denoted by Q*. At the equilibrium point, (S* ,Q*), there is neither

shortage nor surplus. But below this point there is shortage and above the equilibrium

point there is surplus. These are depicted in (Fig. 4.2).

S* -----------------------------

Excess supply

•
Qs(S(t))

Pric

(Q*, S*)
Market equilibrium

QD(S(t))

Excess ldemand

Q*
Quantity

Fig 4.2. Demand and supply curves
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4.3. Price Adjustment Mechanism

A positive shift in demand with constant supply will move both the equilibrium price, S*

and equilibrium quantity, Q* upwards. A negative shift in demand with constant supply

will decrease both the equilibrium price S* and equilibrium quantity Q* downwards.

Similarly, a decrease in supply with constant demand will increase the equilibrium price,

S* and decrease equilibrium quantity Q*. Fig. 4.3.1 and 4.3.2 depict shifts in demand and

supply respectively.

Price

/
S .

S*

So* .

Qs(S(t))

i//i QoS(t)+~QoS(t)

QoS(t)

QoS(t)- ~ QoS(t)

Qo* Q*
Fig. 4.3.1. Shift in demand curve
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Q;* Q* Qo*
Fig. 4.3.2. Shift in supply curve

Price

S*

So*

QsS(t)+ ~ QsS(t)
QsS(t)

QsS(t)- ~ QsS(t)

QD(S(t))

4.4. Excess demand and excess supply functions

Excess demand occurs when there is more demand than supply. At this point, the price of

the security is below the equilibrium price. When the price of the security is above the

equilibrium price, there is excess supply: the quantity supplied exceeds the quantity

demanded. Market traders do control both the excess demand and supply by adjusting the

market prices to a new level that clears them off. This is called the clearing price or the

equilibrium price. We denote supply function by QsS(t) and the demand function by

QDS(t). Then the excess demand function given by:

(4.4.1)
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We note that when EDS(t) > 0, when demand is greater than supply and when

EDS(t) < 0 , when supply is greater than demand. The market equilibrium also referred

toas Walrasian equilibrium is attained when EDS(t) =0 or QDS(t))= QsS(t) .

4.5. The Walrasian Price Adjustment

An early model of equilibrium price adjustment was proposed by [17]. In this scheme,

equilibrium prices are a goal toward which the market tends to settle. Changes in price

aremotivated by information from the market about the degree of excess demand at any

particular price. Mathematically, Walrasian price adjustment specifies that the change in

price over time is given by:

(4.5.1)

EDS(t) represents excess demand at price Set) and k >0 is the speed of

adjustment. Price will increase if there is positive excess demand (shortage) and decrease

if there is negative excess demand (surplus). Such a mechanism is known as

"tatonnement" (groping) process. For any price above the equilibrium price (S*), the

tatonnement process lowers the price. Similarly, for prices less than the equilibrium price

(S*), the process raises the price. The actual rate of change is proportional to level of

excess demand and the factor of proportionality is k. In the next sub-section we are going

to look at different systems of financial dynamisms.
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4.5.1 Discrete financial dynamical system

For this we consider a sequence of prices SJ, S2, ... ,Sn' In the discrete dynamic system,

the Walrasian adjustment process, price changes (Sj+l - SJ are proportional to excess
<.-

demand:

(4.5.2)

where k; is a positive constant for the ith price and ED(S(tJ) is the excess demand. When

ED(S(tJ) > 0 , prices will go up and when ED(S(tj)) < 0 , the prices will go down.

This model is used to compute each price based on demand and supply functions and the

price at each preceding period. From equation (4.5.2), we can note that the value of k and

the absolute value of the excess demand determine whether the price will fall or rise. The

behavior of buyers and sellers will determine the value of k

4.5.2 Continuous financial dynamical system

Iri this system, trading assumed to take place continuously and the adjustment of prices is

f(S(t)) = QD(S(t)) - Qs(S(t)) = ED(S(t)) [13]. (4.5.3)

continually done as per the unit time of period. The prices of assets are represented by a

continuous functionfiS(t)), where excess demand (4.4.1) is expressed as

In this case, we consider excess demand with the following properties:

i) Continuous:j(S(t)) is continuous

ii) Walras' law: for any price vector, Set), S(t)f(S(t)) = 0 for all Set), that is, value

of each individual excess demand is zero.

iii) Homogeneity of degree zero: f(AS(t)) = f(S(t» for all A> 0 and all Set)

The Walrasian -Samuelson adjustment mechanism ofthe jth asset is given by
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dS(t) {hJf~(S(t))]' j = 1,2, ..,n

~t = 0 if Sj(t) = 0 and f/S(t)) = 0
(4.5.4)

where Sj is the price of the jth asset, fj(S(t)) is the total excess demand function for the jth

asset and hj is any (fixed) monotonic increasing differentiable real-valued function.

Equations (4.5.4) were first suggested by Paul Samuelson, [15] for prices that move at the

same time in response to the excess demand in them. From [13], for an economy in which

assets are isolated from substitution, the Walrasian price adjustment is expressed as

(4.5.5)

where kj is a positive adjustment coefficient and is interpreted. as the "speed of

adjustment" of the market to changes in supply and demand, [1]. It should also be noted

• if QD(S(t)) > Qs (S(t)) then dS(t)/dt > 0 and so Set) mcreases so that the balance

between supply and demand can be achieved,

• if QD(S(t)) = Qs (S(t)) then dS(t)/dt = 0, so Set) is held constant at the equilibrium

level,

• if QD(S(t)) < Qs (S(t)) the dS(t)/dt < 0, so Set) decreases in order to achieve the balance

between supply and demand.
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4.6. Deterministic Walrasian price-adjustment model

From equation (4.5.5) it can be shown that the fractional rate of increase of asset price,

1 dS(t)
--- is proportional to the excess demand function, [13], hence we have
S(t) dt

_1_ dS(t) «: (Q Set) - Q Set»~
Set) dt D s (4.6.1)

If Set) is the price of asset at time t and S* be the price at equilibrium. The general

expression of a linear demand function is given as

QD(S(t» = -as(t) + b, (4.6.2)

for some appropriate parameters a and b. Similarly, a linear supply function is expressed

as

Qs(S(t» = cS(t) - d , (4.6.3)

As depicted in Fig.4.6.1, we linearise the demand and supply curves about the

for some appropriate parameters c and d, [11].

equilibrium, equations (4.6.2) and (4.6.3), respectively, become:

QD(S(t» = a(S * -Set»~ and Qs(S(t» = -[J(S * -S(t» (4.6.4)

where a is the demand elasticity and B is the supply elasticity. Monotonicity, equation

(2.7.4), requires that QD(S(t» is a decreasing linear function of Set), a> 0 and Qs(S(t» is

an increasing linear function of Set), B < O. The excess demand, function is given as:

ED(S(t» = QD(S(t» - Qs(S(t» = (a + [J)(S * -S(t». (4.6.5)
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s(S(t))
monotonic

...............supply curve

..........~ linearised approximati-
on to supply curve

p*

linear approximation to
demand curve

monotonic demand
QD(S(t))

curve

Q*

Fig. 4.6.1 Linearising the demand and supply curves

From the proportional rate of increase (4.6.1) and the excess demand function (4.6.5) we

_1_. dS(t) = h(a + {J)(S * -S(t)),
S(t) dt

(4.6.6)

have:

where h is the constant of proportionality, or

dS(t) = kS(t)(S * -S(t)), k= h(a + ~)
dt .

(4.6.7)

or dS(t) = kS(t)(S * -S(t))dt , (4.6.8)

where k is the constant of growth rate. If S* = Set) in equation (4.6.7), the term in

parenthesis becomes zero, so the asset price growth becomes zero when the asset price

prices Set) with a limiting constant S* , and is also referred to in the literature as the

. hits S* regardless of the initial asset price, say, So. The asset price growth rate is also

equal to zero when Set) = O. Equation (4.6.8) is a deterministic logistic equation in stock

Verhulst logistic equation or Verhulst-Pearl logistic equation, [13].
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CHAPTERS

Stochastic logistic stock price adjustment model with continuous

dividend payment.

5.0. This chapter discusses both deterministic and stochastic price models. We start by

looking at the deterministic price models shares prices that do not pay dividend then

extend to those that pay dividend. Then finally we look at the effect of 'noise', that is

stochastic model with continuous dividend payments.

5.1. Deterministic Logistic Model with no dividend

As stated in Chapter 4, equation (4.6.7), if we take an asset whose price is St, invested at

the risk-free rate of interest, fl and earns no dividend during its life. If S* is the market

equilibrium price of the asset then the change in price with time will be given as

(5.1.1)

In S, =fltS*+ln So
S*-~ S*-~

(5.1.2)

Separating variables in equation (5.1.1) and solving, we get

This can be written as

S,(S*-So)
So(S*-S,)

n s·,=e"
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solvingfor Set) we get

(5.1.3)

rom equation (5.1.3), we see that whent ~ 0, S, ~So, and whent ~oo, S, ~S* .

en we consider any infinitesimal change in time i.e. ti+1 - ti• then, the general

xpressionfor the asset price at I i+ I is given by

ATypical curve for equation (5.1.3) is given by Fig .5.1 below

deterministic logistic CUI'.e with no diwnd
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Fig. (5.1) shows a'Iypical logistic curve without dividend,
with ,u=0.015,S* =50, So=5.
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5.2. Deterministic logistic model with continuous dividend payments

In this section, we are going to consider two cases:

5.2.1. Case 1,

In this case we look at the situation where the dividend to be paid to an investor depends

on the price of the asset, S, and is not restricted to a given value. If an asset whose price

is S, is invested at the free interest rate f.1. and pays dividend at the rate q, then the total

dividend to be paid after time period, dt , is given by qSldt . Thus the total change in price

of the asset following a logistic trend over a given period of time, dt, is given by

(5.2.1)

Separating the variables in equation (5.2.1), we get

(5.2.2)

Using partial fractions in equation (5.2.2) and solving for A and B, we have

(5.2.3)

then

A= 1 B= f.1.
f.1.S * -q , f.1.S * -q

. Substituting the values of A and B into equation (5.2.3) and integrating both sides we get

SIn 1 = (f.1.S * -q)t+ C
f.1. (S*-SI)-q

(5.2.4)
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r

SC = In 0
j.1.(S*-So)-q

enceequation (5.2.4) becomes

(5.2.5)

Takingthe exponential of (5.2.5) and then solving for the value of St, we get

S = So(J1S* -q)
I j.1.So+[j.1.(S*-So)-q]e-Ci1S*-Q)1

(5.2.6)

5.2.2.Case 2.

Herewe consider a situation where the company has decided to pay dividend on an asset

whoseprice does not exceed its equilibrium price, S*. If the conditions for investment

remainas in case 1 above, then the change in price is given as

(5.2.8)

Tosolve this equation, we separate the variables

(5.2.9)

Integrating both sides of equation (5.2.9), by method of partial fractions we have

which results to

(5.2.10)

S
At the initial time, t=O, S(t) = So the value of C = In 0

S*-S o

Substituting the value of C into equation (5.2.1 0), we get

48



(5.2.11)

ingfor S, from equation (5.2.11), we get

(5.2.12)

m equation (5.2.12), we see that when f.1= q, St= So, this shows that if the interest

eis the same as the dividend rate paid, then at the end of investment period, t, the

ue of asset remains constant.

typicalcurve for equation (5.2.12) is by the figure below

Determiristic logistic CUM v.ith dlidend

5

oL-~~--~~--~~--~~~~
o 2 4 6 8 10 12 14 16 18 20

1ime

Fig. (5.2) typical deterministic curve with continuous dividend,
with f.1=0.025,q =0.009,S * = 50, So = 5,for continuous line

and f.1= 0.04,q =0.005,S * = 50, So = 5,for dotted line.

Thebroken line increases faster than the continuous line since the free rate of interest has

goneup and rate of dividend payment has been reduced.

Sinceinvestment is subjected to stochastic effect, 'noise', we therefore incorporate the

effectof this 'noise' into our deterministic models, equations (5.2.1) and (5.2.8, to come

up with stochastic logistic models.
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·Stochastic logistic model without dividend payments

's model has been developed by considering an asset, St, invested at the interest rate of

butearns no dividend, taking a dZ , to be the element of 'noise', that is, the interfering

es,[13], then the change in price of the asset is given by

(5.3-.1)

welet G to be a function that is twice differentiable in S, and once in t, then applying

"slemma, equation (2.6.10) into equation (5.3.l), we get

(5.3.2)

Tosimplify equation (5.3.2), we let

G = In SI aG = 0 aG = S * a2G = 2SIS * -S *2
S * -s' at 'as S (S * -S )' as2

, S 2(S * -S )2, I I' , ,

Substitutingthese values into equation (5.3.2), we get

«u»; t) ~ [I' + ~ cr' (2S,S· -S .' l]dt +a dZ (5.3.3)

Equation(5.3.3) gives the distribution of dG(S, ,t) as

Tosolve equation (5.3.1), we re-write it as

dS----=-,-- = I-l dt +a dZ
'S, (S*-S,)

(5.3.4)

Ifwe let
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8G
then S* hi= ,t IS gives

s, (S*-SJ
S

G(t) = In t

S*-St

dS = St(S*-St)dG(t)
t S*

'ngthe value of dSt into equation (5.3.4), we get

dG(t) = f-l S * dt +CYS * dZ, (5.3.5)

, isa generalised Weiner process of type (2.3.1). Integrating equation (5.3.5), we get

G(t) =f-lS*t+CYS*Z(t)+C

plicitsolution of (5.3.6) is given as

G(t) = G(O) + f-l S * (t - to) + CYS * Z(t), Z(O)=O

uation(5.3.7) is a generalized Brownian motion and its distribution is given as

G(t) ~ N[G(O) + f-lS * (t - to)' cyS* Z(t)]

inceG(t)= In St and G(O) = In So , equation (5.3.7) simplifies to
. S*-~ S*-~

Takingthe exponential and solving for St. we get

S S*,S - '-"-0 _

t - So + (S * _So)[e-(,us'(t-tO)+CTS'Z(t))]

Thisis the so-called Verhulst - logistic stochastic equation for asset prices, [l3].
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From equation (5.3.4), when 0" = 0, i.e. no noise, we get the deterministic equation

(5.1.2). In equation (5.3.9), when t ~ O,S, ~ So, and when t ~ «s.S, ~ S*, and this is

the so-called market clearing price.

5.4. Stochastic logistic model with continuous dividend payments

In this case our asset, S(, is invested at the rate of Jl and earns a continuous dividend rate

of q. The amount of assets for which the dividend is paid must be less than S*. The effect

of 'noise' is then given by 0" dZ . Then the change in the price of our asset will be given

as

(5.4.1)

where Jl is called the drift rate of the stock and it expresses the trend of the stock

movement. 0" is called the volatility of the underlying asset and it expresses how much

the stock wobbles up and down or how risky it is to invest.

If we let G(S,t) be a function that is twice differentiable in S, and once in t, then applying

Ito's lemma, equation (2.6.10) into equation (5.4.1), we get

(5.4.2)
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To simplify equation (S.4.2), we let

G= In S, aG = 0 ea = S* _a_
2
G_=2S,S*-S*2

s*-s,' at 'as, S,(S*-S,)' as2, S,2(S*_S,)2

Substituting these values into equation (S.3.2), we get

dG(S, ,t)=[(fl-q)+~o-' (2S,S* -S*' l]dl +0- dZ (S.4.3)

The distribution of equation (S.4.3) is

(S.4.4)

Equation (S.4.1), can be re-written as

G(S,t)=ln S, ,then aG(S,t)= S* ,this gives
S * -S, as, SICS * -S,)

Putting

dS = S,(S*-S,)dG(S,t)
, S*

Putting the value of dS, into equation (S.4.4), we get

dG(S,t) = (f.l- q)S * dt+a S *dZ, (S.4.S)

this is a generalised Weiner process of type (2.3.1). Integrating equation (S.4.S), we get

(S.4.6)

Explicit solution of (S.S.6) is given as

(S.4.7)
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InSt(S*-So) = (fl-q)S*(t-to)+CYS*Z(t)
So(S* -St)

(S.4.8)

The distribution of (S.4.7) is given as

SinceG(Spt) = In St , G(So,O) = In So ,then equation (S.4.7) becomes
S*-St S*-So

Taking the exponential of (S.4.8) and then solving for solving for St, we get

(S.4.9)

In equation (S.4.9), when t ~ 0, S, ~ So,and when t ~ 00, S, ~ S *, and this is the

market clearing price.

5.5. Model verification

To verify the model we have developed, equation (S.4.9), we analyse British Airways

daily share price quotes traded in the U.K stock markets between 4/10/04 and 7/3/0S data

in question is given in appendix 1.

Using the values from appendix 2, we calculate the value of fl by .applying the

S4

formula fl = _1_ I 10g( Si~1), where N is the total number of observations, as:
N -1 Sl

1 . 2S2fl = _(O.l417S224)x-=0.00333472.
103 104

The value of CYis given by

CY=~_I_(Ri - flY ,
N -1



Substituting the values from appendix 2, we get

1 252
(J= -(0.006314)x-=0.0189715,

103 104

q, which is the rate of dividend payment has been declared as 0.0012316.

Substituting the values ofrr , f.1 and q into our model equation (5.4.9)and plotting the

trend curve using Mat lab we get the stochastic logistic curve with continuous dividend,

(fig 5.3)below:

Stochastic L..o9stic ane v.;th coiiruJl5 diloiderd payrrerts fix British PJfWJjS price q..datio
200'~--~----~----~--~----~--~
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Fig (5.3).Stochastic logistic trend curve for British Airways price
quotations with continuous dividend payments,
(J= 0.02, f.1 =0.003,q=O.001,S*=286.5, So~199.5

55



fig. (5.3), the continuous line shows the trend of British Airways price quotes while

otted line shows the trend that fits the stochastic logistic model with continuous

ents we have developed.
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Chapter 6

Conclusion

In this section we highlight the result we have obtained as per our objective. The main

objective of this study was to develop a mathematical model that can be used to fit stock

prices which follow logistic trend and pay continuous dividend.

This objective has been attained by first looking at the logistic models both with and

without dividend payments and simulating them to get their trends (Figures 5.1 and 5.2).

We have also developed stochastic logistic model without dividend payments (equation

5.3.9). We then finally developed stochastic logistic model with dividend payments

equation (5.4.9). We have verified this model by analysing real market data '(appendix 1)

to find variables such as volatility of the underlying assets, risk free rate of interest and

the rate of dividends yield. Application of these variables on the model shows the trend

that fits the prices that follow stochastic logistic trends and pay continuous dividends as

shown in fig. (5.3).

To develop this model, we restricted the price at which dividend was supposed to be paid

and was not to exceed the market equilibrium price, equation (5.4.1). We therefore

suggest to the future researchers to see if the same can be developed if this price is not

restricted.
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