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ABSTRACT
In recent times, there has been a lot of interest in the study of quivers,
both by mathematicians and theoretical physicists. We introduce a new
concept of polar quivers and their mutation. The idea of polar quivers
arises from the concept of anomaly free R-charges in theoretical physics.
Mutation of polar quivers is build on mutation quivers with potential,
which was defined by Derksen, Weyman and Zelevinsky. An R-charge as-
signs angles to the arrows of a quiver. In a polar quiver we assign angles
and positive non-zero integers to vertices and impose conditions equiv-
alent to the anomaly conditions for R-charges. We then establish that
mutation of a polar quiver will give a polar quiver if and only if a simple
additional condition is satisfied. We use families of quivers linked by mu-

tation, from the work of Stern, as our source of examples. The results of

this study have applications in geometry and theoretical physics.




Chapter 1

Introduction

Quiver algebras are an example of non-commutative algebras. A quiver
Q consists of a set of vertices @y, a set of arrows @, and two maps
s and ¢, assigning to each arrow the starting and terminating vertices
respectively. The path algebra K@) = A of the quiver () over the field K
has a basis the paths of the quiver, where a path is just a composition of
arrows. Chapter 2 of this thesis provides the mathematical background
for the study. Basic definitions and some important examples of quivers

are given in this chapter.

Our study is built on quivers with potential. A quiver with potential
(QP for short) is a quiver @ together with the potential S, which is a
sum of cycles in the path algebra of the quiver. Cyclic derivatives are
partial derivatives of the potentials with respect to arrows of the quiver,
which are in the cycles. For every potential S its Jacobian ideal J(S)
is the closure of the ideal in A generated by all elements of the cyclic
derivative. These are relations of the quiver that define the quotient
path algebra. In Chapter 3, we study quivers with potential and their

mutation. Mutation of quivers with potential was first studied and defined




by Derksen, Weyman and Zelevinsky [8]. In their work, they proved that
there exist a non-degenerate potential which does not break as a result of
mutation. They also stated and proved splitting theorem whitc—Tl is used in
the reduction of the mutated quiver. We give some examples of quivers

with potential and their mutations.

In chapter 4, we introduce a new idea of polar quivers which is inspired
by the concept of R-charge from theoretical physics. An R-charge assigns
angles to the arrows of a quiver, and this quiver has to satisfy the anomaly
free conditions. In a polar quiver, which will be denoted as (Q,S, N, ), |
we assign angles and positive non-zero integers to vertices. These then
induces angles for the arrows. A polar quiver has to satisfy an equivalent
of the anomaly conditions we refer to as polar conditions. From the
examples of polar quivers given in the last section of chapter 4, we can

observe that polar co-ordinates are not unique.

The process of mutation of a polar quiver is defined in chapter 5. We
give an illustration by mutating examples of polar quivers. In general we
would expect mutation of a polar quiver to give rise to a polar quiver. As

we will observe from example 5.3, this is not always the case.

In chapter 6, we state the main theorem of the study. The theorem
gives the conditions a polar quiver must satisfy for its mutation to give
a polar quiver. We follow up the examples from the previous chapter to

illustrate the significance of the theorem.

Chapter 7 gives a summary of the study. We highlight some questions
arising from this study and give recommendations on how this work can

be extended.




Chapter 2

Mathematical background

2.1 Introduction

This chapter introduces the basic mathematics concepts that are funda-
mental to the understanding of the entire thesis. Such concepts as Vector
spaces and algebras are covered in Se(;tion 2.2. Our main source for this
section was the book by Connell [7], although many other sources were

used.

Section 2.3 introduces the basic objects of our study which are quivers.
Some important examples of quivers are given in this section. This section
also introduces the path algebra and gives exé,mples. The main sources

of literature for this section include lecture notes by Crawley Boevey [6]

and papers by Kearnes [15] and Savage [17].

Section 2.4 gives some of the sources used for the study. In section 2.5,
we state the problem areas that our study has attempted to solve while
section 2.6 gives the main objectives of the study. The main approach

used in this study is stated in section 2.7. While the significance of the




study is covered in section 2.8.

2.2 Vector space and Algebra

This is a section of basic algebraic definitions that might be helpful to the
understanding of the path algebra which we introduce in the next section.

Definition 2.1. A vector space over the field K is a set V on which
two operations are defined, called vector addition (+) and scalar multi- -

plication (.). These operations must satisfy the following conditions;

i. Closure; For all a € K and all u,v € V, u 4+ v and the scalar product

a - v are uniquely defined and belong to V.

ii. Associativity: For all a,b € K and all u,v,w € V, u+ (v +w) =
(u+v)+wanda-(b-v)=(a-b)-v. .

iii. Commutativity of addition: For all u,v € V,u+v=v+u.

iv. Distributive laws: For all a,b € K and all u,v € V, a-(u+v) =
(a-u)+(a-v)and (a+b)-v=(a-v)+ (b-v).
v. Eristence of an additive identity: 30 € V for whichv+0=v=0+v

forallv e V;

vi. Ezistence of additive inverses: For each v € V 3z € V such that
v+2z = 0= z+v, z = —v is the additive inverse of v (the equations

z+v =0 and v + z = 0 have a solution z € V denoted by —v)

vii Unitary low: Forallve V;1-v=w.
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Definition 2.2. Given a vector space V over a field K, a subset W of
V is called a vector subspace if W is a vector space over K under the

operations already defined on V.

<

An algebra is just a vector space in which multiplication of vectors is
defined. In an algebra, we can multiply elements of the algebra to get

another element which belbngs to the same algebra.

Definition 2.3. An algebra is a pair (K, A), where K is a field and A
is a vector space over K, equipped with multiplication such that; .
i. Closure: For all z,y € A, zy € A.

ii. Distributivity: a(zy) = (az)y = z(ay) and a(z + y) = az + ay for
a € K and z,y € A.

iii. A is commutative if xy = yx Vz,y € A.
iv. A is associative if (zy)z = z(yz) Vz,y,z € A.
v. A has a multiplicative identity 1,4 such that 1,0 =z =z1, Vz € A.

vi. A is finite dimensional if the underlying vector space of A is finite

dimensional.

Definition 2.4. A vector subspace I of A is called a left ideal if zy €
I Vre€A yel, and aright idealifyr €I Vz € A, ye I.

Definition 2.5. I is an ideal of A if it is both a right and left ideal.
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2.3 Quivers and path algebras

In this section, we introduce quivers which are our objects of study. We

also describe algebras related to some examples of quivers.

2.3.1 Quivers

Definition 2.6. A Quiver @ is an oriented graph. To be more precise,
we allow multiple arrows between any two vertices. Formally, a quiver is"

a quadruple Q = (Q07 Qh S, t) Where;
e (o is the set of vertices {v} which will be finite,
e (J; is the set of arrows which will be finite,
e s and t are two maps s,t : Q1 — @, assigning to each arrow the

starting vertexr and the terminating verter respectively.

An arrow a starts at the vertex s(a) and terminates at the vertex t(a)
indicated as s(a) — t(a).

Definition 2.7. The quiver is finite if both sets Qo and @), are finite. For
arrows a € @ with s(a) = v; and ¢(a) = v;, we usually write. a : v; — v;

where v;,v; € Qo.

Example 2.8. The quiver Q with @, = {v;,vs,v3,v4} and Q; = {a,b,d}
is represented by the diagram,

v —2>Us g U3 -2 Vs
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Example 2.9. A quiver @ consisting of one vertex and one arrow (also"

called the Jordan quiver or a loop).

v )a

Example 2.10. A quiver Q consisting of Qo = {v;,v;} and @, = {a, b},
this is called a 2-cycle. |

A
v (%]
g Tome g
b

Examples (2.9) and (2.10) are very important to our study, and we

will refer to them later.

2.3.2 Path algebras

In this section we discuss an algebra A over the field K, which has a basis

that consist of paths of a quiver Q.

Definition 2.11. A non trivial path z of length n in Q is a composition

a1090s5.......... a, of n arrows such that ¢(a;;) = s(a;) for 1 <i <n—1. ie

Qn Gn—-1 a2 ai

t(z) = t(a;) and s(z) = s(a,) denotes the initial and final vertices
of the path z. A path is cyclic if its starting and terminating vertices

coincide.

For each vertex v; € Qp we will denote by e,, the trivial path which

starts and terminates at the vertex v;.

&



Definition 2.12. Let K be a fixed field. The path algebra KQ as-

sociated to a quiver @) is the K-algebra whose underlying vector space
has basis the set of paths in @, and with the product of patﬁs given by

concatenation. Thus, if z = a;...a, and y = b;...b,, are two pathsf, then;

ay...apby..by, if t(y) =s(z), (i.e. t(b1) = s(ay))

0 if otherwise

Ty =

This multiplication is associative since concatenation of paths is associa-

tive. We also have for z € KQ, v;,v; € Qo

ey, if vi=v;

evgevj =
0 Zf v; 7£' Vj
24 f Hry=wu;
Gy =
0 if iz)#v
z if s(z)=v;
Ty, =

0 if s(z)#v;

Example 2.13. Let Q be the quiver v1 —2>v; 2> v3 <% v,  then
K@ has a basis consisting of ’the paths ey, €y,, €y, €y, a1 ag, az and
a2a;. The product as - a; of the paths a; a.qd as is the path asa;. On the
other hand the path a;a; = 0. Some other products in the algebra, are

A2€4,Q1 = Q201, A28y, = A2, €y 01 = A1, €y, 02 = O, a3 = 0, etc.

Example 2.14. Let Q be the following quiver consisting of one vertex
and one arrow (the Jordan quiver or loop), then KQ 2 K|x] the algebra

8
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of polynomials in one variable.

xCo

Paths of this quiver include e, z, z2, 22, ..., z" where n is a nonnega-
tive integer. An element of the path algebra will be of the form ) o kiz*
where z° = e and k; € K i =0,...,n. These are polynomials of degree n
over the field K.

Example 2.15. Let Q be the following quiver,

(41 U2 ce Un-1 > Un

then for every v; < v; < v; < v, there is a unique path from v; to v;. Let
f: KQ — M,(K) be the linear map from the path algebra to the n x n
matrices with entries in the field K that sends the unique path from v;
to v,, to the matrix E,,, with (v;,v;) entry 1 and all other entries zero.

Then f is an isomorphism onto the algebra of lower triangular matrices.

2.4 Literature review

A basic understanding of Ring theory, Field theory, Vector spaces and
Algebras was important to our study. Althéugh there are many sources of
information in these areas, the papers [7, 15] were suitable for our study.
A good understanding of category theory was necessary to this study. In
my perspective, the book [12] was a rich source, and the paper [14] was



quite illustrative with examples.

Quivers appear in many areas of mathematics and theoretical physics.
A good understanding of quivers was fundamental to our study. It was
important to have an understanding of path algebras and modules over
path algebras which are part of the basic knowledge necessary to the
study. Our study required concepts on the category of representation of
quivers. For a reference in this area, I found the lecture notes in the paper
[2] to be detailed and easy to study, other sources of literature on quivers

that we studied include the papers [6, 11, 17].

Cluster algebra is a new and active area of study introduced and stud-
ied by Fomin and Zelevinsky in the papers [9] and [10]. Quivers have
been studied in cluster algebras where mutation of quivers is defined as
evidenced in [3]. Our study takes a slightly different direction in which we
study mutation of quivers with potentia.l and R-charge. Mutation of quiv-
ers with potential was first studied by Derksen, Weyman and Zelevinsky
in the paper [8] in which they define the process of mutation of quivers
with potential. Their work ignited a growth of interest as evidenced in pa-
pers such as [4, 19]. We also studied polar quivers. A source of literature

in this area is the paper [1].

At the heart of this study are quivers with potential and R-charge.
This study heavily relies on examples of quivers with potential and R-
charge. The main source of these examples was the Phd thesis [18], Stern
studied tilting mutation of geometric helixes. Another source of literature
on R-charges was the paper [1]. We will provide additional information

in the introduction of each chapter on the key references used.

10
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2.5 Statement of the problem

Angles and positive non-zero integers can be assigned to the‘gertices of a
quiver such that the quiver satisfies polar conditions. In general we expect
mutation of polar quivers to give a polar quivers. This is not always the
case. Mutation of these quivers can give mutant quivers which do not

satisfy the polar conditions.

2.6 Objective of the study

The main aim of this study is to establish conditions under which

mutation of a polar quiver gives a polar quiver.

2.7 Research methodology

The main method taken by our study is calculations involving examples
that come from Stern’s thesis [18]. We establish conditions a polar quiver
must meet for its mutants to satisfy polar conditions. These are examples

of del Pezzo quivers which are related to del Pezzo geometric surfaces.

2.8 Significance of the study

Given that polar quivers are based on anomaly free R-charges, we are
hopeful that the results of our work will have an impact on the study of

R-charges in theoretical physicé.

11



Polar quivers are built on the concepts in mutation of quivers with
potential. It is possible that the added information can be integrated in

<

the study of non-degenerate quivers with potential.

12
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Chapter 3

Mutation of quivers with

potential

3.1 Introduction

Quivers with potential are the main objects of the study in this chapter.
In section 3.2, we give a definition of potential as well as their algebraic
importance. The key reference for this section is the paper by Derksen,
Weyman and Zelevinsky [8]. In the same paper we find the formal defi-
nition of mutation of quivers with potential, which is covered in section
3.3. In section 3.4, we give worked examples of mutation of quivers with
potential. The examples we used in this section are del Pezzo quivers
which come from geometry, and were found in the Phd thesis of Stern

[18].

13




3.2 Quivers with potential

Let A = KQ be the path algebra and A = KQ, be the arfow span of
the quiver Q, A¢ = A®A®... ®A consists of paths of length d and

d times

A’ =3 o, Ke., are paths of length zero. We can also define the path
algebra A of Q as a graded algebra

A=Pa“ (321)
= A
and
AS.= D AL, (32:2)
v;€Qo

is the cyclic part of A% which is the span of all paths a;....a; with s(aqg) =
t(a;) ford > 1.
Definition 3.1. We define the closed vector subspace A C A by set-
ting _
A =[] AL, (3.2.3)
d=1

and call the elements of A, potentials, denoted as S (the potential is
non-zero if the path algebra A has oriented cycles, otherwise the potential

is zero).

Definition 3.2. Suppose @ is a quiver 'with an arrow span A, and
S € Agy is a potential. The pair (Q,S) (or (A,S)) is a quiver with
potential (QP for short) if it satisfies the following conditions:

1. The quiver @ has no loops i.e. A, =0 for all v; € Qo,

14




2. No two cyclically equivalent paths appear in the decomposition of
S.

Definition 3.3. For every £ € A* we define the cyclic derivative §; as

the continuous K-linear map A, — A acting on cyclic paths by

d
0¢(ay....aq) = Z{(a.k)a,kﬂ....ada.l....ak_l (3.2.4)
k=1

Example 3.4. Consider the quiver

ay
e,

e

e
8

T
W

FUETI
as

<

S = a1a2a3a4 and let £ = a3 € A*, then

4
55(8) = Z{(ak)akﬂ....a4a,1....a.k_1

k=1
0a3(a1020304) = a3(a1)azasas + a3(az)asasan + aj(as)asasan + al(as)arazas

= 040+ a3(as)asaiaz +0

= 040102

Definition 3.5. For every potential S we define the Jacobian ideal
J(S) as the closure of the (two-sided) ideal in A generated by d¢(S) for
all £ € A*. Jacobian ideals are just relations on the quiver Q generated

by cyclic derivatives on the potential 0¢(S).

15




Definition 3.6. We call the quotient A/J(S) the Jacobian Algebra of
S and denote it by P(Q,S) or P(A,S).

Remark 3.7. The cyclic derivative & : Ay — A does not depend on
the choice of the path basis. Cyclic derivatives do not distinguish between

the potentials that are equivalent as shown below.

Definition 3.8. Two potentials S and S are cyclically equivalent if
S — & lies in the closure of the span of all elements of the form a;....a; —

G3....a401 wWhere a;....a4 is a cyclic path.

Proposition 3.9. If two potentials S and S are cyclically equivalent,
then 0¢(S) = 6¢(S) for every £ € A* hence J(S) = J(S) and P(Q,S) =
P(A,S)

Proof. Let S and S be two cyclically equivalent potentials, then S —
S lies in the closure of the span of all elements of the form ai....0q —
k....0q03 ....ax_1 With 1 < k < d, where q;....a4 is a cyclic path.

For any £ € A*,

0¢(ay....aq — ak....adal....ak_l) = 0¢(a1....00) — 0¢(ak....aqa;....a5_1)
= 0
0=0(5—8) = 8(5)—b(S)
= (S) = &(S)

Since 0¢(S) = 6¢(S) for all £ € A*, the closure of the ideal in A
generated by d:(S) and 6¢(S) for all £ € A* is the same. Hence J S =
J(S).

Finally A/J(S) = A/J(S) which implies P(Q,S) = P(A,S). O

16



Definition 3.10. For any arbitrary QP (Q,S), we denote by S@ € A?
the degree 2 homogeneous component of S. We call (Q, S) reduced if
S® = 0. We define the trivial and reduced arrow spans ;f (@,S) as
the finite dimensional K-bimodule given respectively by; ’

Ay = Aif'riv(’s) = 6(8(2))7 Areg = Ared(S) = A/ 6(8(2))

Definition 3.11. Let (Q,S) and (Q,S) be two QPs on the same vertex-
in Q. By a right equivalence between (Q,S) and (Q, S) we mean
an algebra isomorphism ¢ : A — A such that g|x = id and ¢(S) is
cyclically equivalent to S

Theorem 3.12. (Splitting theorem) For every QP (Q,S) with the trivial
arrow span A;.;, and the reduced arrow span A,.q, there exists a trivial
QP (Atriv, Striv) and a reduced QP (Ared, Srea) such that (Q,S) is right-
equivalent to the direct sum (A¢riy, Siriv) D (A,,ed, Sred)- Furthermore, the
right equivalence class of each of the QPs (A¢riy, Striv) and (Aved, Sreq) S
determined by the right-equivalence class of (Q,S).

Proof is provided in [8]. This theorem is essential especially in the

reduction of the mutated quivers.

Condition 3.13. Mutation of a QP (Q,S) can be defined if at any vertex
Ur € Qo the quiver satisfies the following conditions:

1. @ has no loops, i.e. A,,,, =0 for each v; € Qo,

kVi

2. @ has no oriented 2-cycles. For every vertex v;, either A,,,, or

1s zero.

17
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3.3 Mutation of a quiver with potential

Let (@,S) have no loops or oriented 2-cycles, we associa,teiizo it a QP
v, (@Q,S) = (Q',S') on the same set of vertices Qo. (Q',S') is the unre-
duced mutated quiver. We define the homogeneous components A, , as

follows:

AL, = { o e = (3.3.1)

Ayo, © Ay Ay, if otherwise

Here the product A, A,,,, is understood as a subspace of AZ C A.
Thus, the K-bimodule A’ is given by

A= ey Ae, @ Ae, A @ (eva)* @ (Aevk )*, (3'3'2)

where we use the notation

tn=l—ep= Y e (3.3.3)
v;€Qo—{vr }

We associate to (); the set of arrows @ in the following way:
i) The vertices of the quiver remain unchanged.
ii) Replace each arrow a : v; — v} in Q by a new arrow a* : v — v;.

iii) Replace each arrow b : vy — v; in Q by a new arrow b* : v; — .

iv) All the arrows ¢ € Q; not incident to v; remain unchanged.

18
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) Add a new arrow [ba] : v; — v; for each pair of arrows a : v; — v
and b: vy — v; in Q.

We denote by [ba] € Q} N Ay, A,,,, the arrow in @} associated with

the product ba (to avoid confusion since it is a single arrow). We associate

to S the potential u,, (S) =S’ € A given by

S’ = [S]+ Ay, (3.3.4)4

where

Ay =Ry, (A) = > [ba]a*b* (3.3.5)

a,b€Q1:5(b)=t(a)=vy
and [S] is obtained by substituting [a,a,.1] for each factor aya,.; with
s(ap) = t(ap4+1) = vy in any cyclic path a;....az occurring in the expansion
of S. Note that none of the cyclic paths start nor terminate at v;. Both
[8] and A,, do not depend on the choice of a basis @ of A. The following
proposition follows from the definitions.

Proposition 3.14. Suppose that a QP (Q,S) has no loops or oriented
2-cycles, and a QP (Q, S) is such that ey A = Ae,, = {0}. Then we have
by theorem (3.12), : '

1y (Q®Q,S+8) =1, (Q,5) & (Q,9) (3.3.6)

Theorem 3.15. The equivalence class of the QP (@' ,S’) = ' (Q,S) is
determined by the right-equivalence class of (Q,S)

Proofs for (3.14) and (3.15) are provided in [8].

19




Note that even if a QP (@, S) is assumed to be reduced, the mutated
quiver (Q',S") = /(Q,S) is not necessarily reduced because the com-
ponent [S]® € A may be non-zero. Combining Theorems (3.12) and

(3.15) we obtain the following corollary.

Corollary 3.16. Suppose a QP (A,S) has no loops or oriented 2-cycles,
and let (A',8') = /(Q,S) . Let (A,S) be a reduced QP such that

(A',8) = (A}..,SP) & (A,S) (3.3.7)

Then the right-equivalence class of (A, 5) s determined by the right-
equivalence class of (A, S)

Definition 3.17. In the situation of corollary (3.16) we use the notation

1 (@, S) = (@, 8) (3.3.8)

and call the correspondence

(@) = 110, (Q,8) = (@,9) (3.3.9)

the mutation at vertex v. See [8] for more details.

20



3.4 Examples on mutation of quivers with

potential | e
Example 3.18. Consider the quiver with potential Q given below,

Pt
2 2

WV

the quiver has no loops or 2-cycles. The potential of the quiver is given

by;

D@ 0.0, O @ 0. 2. 0 @ .1Q. 2 @ @ (@
S = ap oy abyagr+afyalyaihali+afly ol o) el +afy ol ol a)

(3.4.1)

We will mutate the quiver at V. The mu;cated quiver ¢ will be given
by;
T—2>U
2T /2
W—2>v
1 (1) 1, [a(l) (2) (2 (1) (2 (2 ].

The four new arrows are [ayyayy], [awyayyl, [awyvayy] and [ayyavy;

While the unreduced potential of the mutated quiver will be given by;

21




1 2) ()12 2 1) 1
S = iy lalyalllal) + afl el el lal) + By lalyy avhlagy +

2 2 2 2 1 1 1)* (1)* 1 2 2)x (1)*
oo lo o1 + oo + ool +

2 1 D* (2)* 2 2 2)x (2)*
[y a¥laly algy + laigyabylavy iy (34.2)

We can rename the arrows of the quiver. First the four new arrows

n Q) (1) [a(2) () ] (3)

lawvavy] = awy wvaevyl = Awu
1) (2 2 2) (2 4
o) = ol o) = ol
On reduction, the potential then takes the form;
& @ @ . 1) () @ 2) (2
S = ool + ool + ool +
2) (1) (2 1) Q) 2) (2 .Q
afwagyaly + apyagyayly + agyalyaiy +
3) (1) (2 1) (2 (2
alyyagyaly + apyaiyayy (34.3)

From the potential, we can see that the mutated quiver has no loops

or 2-cycles.

Example 3.19. Consider the quiver with pbtentia.l in the diagram below,

1
Pl
>1<2
8 W
3
92

w |4



T

&

The quiver has no loops or 2-cycles and its potential is given by,

1 3 2 2 3 1 2 | il ‘
S = ayralyalihall + ayrai el el + aywallall +

2) (2 1) (@2 2) (1
ayw iy ayy + Ty ey, + ayraryay,

We mutate the quiver at W to get an unreduced quiver @’ given by the
diagram below, '

T—U
H
w 3 \%4
The new arrows created by the proceés of mutation are;
From V to T, From V to U,
el -
[agv’va%] . [auwagl)v] _
[ aipy] levwaigy
e
[arwaivy]
e

23




and the potential for the unreduced quiver is given by;

1) (3 ) 2) (3 1 1 (
S = aUT[“%’éV“WV]“&/I)J + a’UT[a’g'gVagV)V]agf()J + [aUWagiV)V]aglLl)} +

2 2 1 2 2 1
[aywalpylaly + @VT[“&*&V“%V)V] +ayrlafaly] +

1 1 x (1)= 1 2 2)x (1) 1 3 3)x (1)=
oo + Py + o ooyl +

2 1 1)x (2)= 2 2 2)x (2)* 2 3 3)x (2)=
02,0 1607 q@> 4 [0 @) 10@e (@ | 1@ (@) 1 @ @

1 1)* 5 2 2)* % 3 3)*x %
[aUWa'glV)V]a‘gV)Va‘UW + [aUWa'gv)V]a'glV)VaUW e [auwagv)v]agv)vavw

There are two cycles in the quiver, and this is evident in the unreduced .
potential S’. We must undertake the reduction process to identify and
elimina.te equivalent paths that are creating the 2-cycles. This is done by
taking cyclic derivatives with respect to the arrows in the 2-cycles. Taking
cyclic derivative with respect to ayr gives, [agv)va%)v] = [a%)‘,a%,)v] and,

taking cyclic derivative with respect to [ayyal] and [ayyal,] gives

aSZ, = ag‘l);a*UW and ag,)] = ag)‘*,a*UW respectively. Substituting this
result into the potential &', we get pairs of equivalent 2-cycles which
are eliminated in the reduction process. The number of new arrows are

reduced through this process. We rename the remaining arrows as,
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From V to T, From V to U,

labwaiy] € @ =ap) € Q lawaly] €@ =0 € §

awaPl € @ =af €@ lagwa,] €@ =0€ 0
1 3 3 ~ =

laSaly] € @ =af) € @ laywe] € @ = a5y €O

[afyaly] € @ =af) € @
a5 a@) € @ =af) € @

aBhaihl €@ =af) € §
This is shown in the reduced quiver below,

1

T~ I

X1,

Ws—V

3

with a potential given by;

i~ 3 2 5 1 1 1 1
S = aUTa'Em)/a%VaWU + aUTagw)/agf%VaWU + af(l")/agli)/VagV)T +

2) (2) @ 3) 3) Q@ 2) (1) (2
aryaywar + aSyallyaly + el ey +

) @ (@ 5 (3) (2 3
“g't)/agn)zvaév)fr + a%&d&%va%)r + aUVagn)/VaWU

Mutation of quivers, and of quivers with potential is a reversible pro-
cess. We can get back to our original quiver from the mutated quiver by
carrying out mutation at the very vertex that was mutated. The theorem

below gives a detailed account for this.
Theorem 3.20. (Every mutation is an involution) The correspondence
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e

we : (@,8) — (A,S) acts as an involution on the right-equivalence
classes of the reduced QPs that are without loops or oriented 2-cycles,
that is 112(Q, S) is right equivalent to (Q,S)

<

Proof of the theorem is provided in [8].



Chapter 4

Polar quivers with potential

4.1 Introduction

In this Chapterl we introduce polar quivers. Angles and positive non-
zero integers can be assigned to the vertices of a quiver with potential in
such a way that the quiver satisfy tﬁe polar conditions. In section 4.2,
we state the three polar conditions. In section 4.3, we give examples of
polar quivers with potential. This section gives an illustration of the polar

conditions.

4.2 Polar quivers

Definition 4.1. A quadruple (@, S, N, 8), where Q is a finite quiver with
potential S, N : Qo — Z>°, 0 : Qp — [0,27) where § can be extended to

1Unless stated otherwise, the work covered from this chapter onwards is original
and therefore has no references.
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L

e,

a function Q; — [0,27) by 0(a) := (0(t(a)) — 0(s(a))) moa 2x 15 called a

polar quiver if all the following conditions hold:

B
<

1. For any v € Qp a total N7 (v) can be defined such that

N@)= Y Ne@)= Y Ne@) (@21

alt(a)=v a|s(a)=v

2. For any v € @y totals

0"(w) = ) 6(a)N(s(a)),

0%(v) = a:%zvﬂ(a)N(t(a)),
can be defined such that
6" (v) + 6%(v) = 2n(N” (v) — N(v))- (4.2.2)
where
NT(v) > N(v) (4.2.3)

3. For any cyclic element a; ...a, €S, n > 2 and
D 6(a;) =2r (4.2.4)

The next section gives examples of polar quivers which offer illustra-

tions for each polar conditions;
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4.3 Examples of polar quivers

In this section, we give some examples of polar quivers. TT]rough cal-
culations, we verify that they satisfy all polar conditions. The last two
examples are of pa.ﬂ;iculz/i.r interest for they concern the same quiver with
potential, but with different polar co-ordinates. From these examples we
conclude that polar co-ordinates for a particular quiver with potential are

not unique.

Example 4.2. Consider the diagram of P! x P! quiver with potential

below. We show that it is a polar quiver,

]

i ®

4 4
S5 37
4 N

Figure 4.3.1: Diagram of P! x P!. Vertices are given names T, U, V
and W, while the number in the vertices indicates the number of grouped

vertices.
The potential for the quiver is given by;
1) @ @ @ 1) @ Q) @ 2 2 :
8 = apyaiyapyafr-raryaiy eyl aiy-raty el aly el +al e aflal)

®



We show that this is a polar quiver,

©
<

1. : _
NT(v):= ) N(s(a)) = D N(ia)
' alt(a)=v a|s(a)=v
NT'(T) = 2x1=2x1 N(T)=1
NT(U) = 2x1=2x1 NU)=1
NT(V) = 2x1=2x1 NV)=1
NT(W) = 2x1=2x1 NW)=1

It is clear that NT(v) > N(v) for any vertex.

2. For any v € Q) totals

@) = Y. 6a)N(s(a),

a|t(a)=v

0%(w) = Y 6(a)N(t(a)),

a|s(a)=v

can be defined such that

0" (v) + 0% (v) = 2x(N T(v) — N(v)).




where

NT(v) > N(v)

0 (T) = 2xgx1

=

0"(U)

715
—x1
2><2

oL (V) =2x%x1

= T

or (W) = 2x%x1

=7
and their sums are;

0 (T) + 0R(T) =

31

OR(T) = 2x =x1

o'U) = 2x5x1

R(V) = 2x7—2r><1

OR(W) = 2x=x1

T+

o

om(2 — 1)
2n(NT(T) — N(T))




6X(T)+6%(T) = m+m
= 2
= 2n(2-1)
= 2x(NT(U) - N(U))

X (T)+6%(T) = m+m
= 27
— 2m(2—1)
— (NT(WV) - N(V))

L (T) +60%(T) = n+w
= 2r
= 2r(2-1)
= 2a(N"(W)—N(W))

3. For any cyclic element a; ...a, €S, n > 2 and
Z 0(a;) =27
the quiver has a potential given by

D O .00, 0 @ O, O @ 0, @ (2@
5 = ayaly o)+l ol alhali+af el alyanr+ati el alyesy
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In any cyclic component a; . .. a, of the potential, n > 2 and

3 60(a;) = 2n -

=1

as shown below

2 & 1,2 1.2 1,2 1,2 1,2 1.2
B(aby oty abPaly) = 0(aly) +0(ayy) +0(al?) + 0(ayy)
. i + ™ + i + v
T 922" 9
= 27,
where a%) implies A 2

G OF Gy, and so on.

The next two examples of the same quiver with potential but with
different polar co-ordinates. These examples are a good illustration that

for a given quiver with potential, the polar co-ordinates are not unique.

1) (3) (2 2) (3 @
S = aUTaTW( ) agv)va§n)1 + aUTa’I'W( . a’§V)Va$/I)J +
(1) (1)

2 2
Aywawyayy + Gywawyayy +

1 2 2 1
GVT”%V agv)v + a'VTaf(I‘aVagv)V

T

<<—<

w

Example 4.3. In this example, we assign to the quiver with potential a

set of polar co-ordinates that makes the quiver polar. This will be verified
in the calculations that follow.

We show that it is a polar quiver.
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Figure 4.3.2: Diagram of P2? quiver blown up at one point. Vertices are
given names 7', U, V and W, while the number in the vertices indicates
number of grouped vertices. Angles are assigned such that the quiver

satisfies all polar conditions but none of its mutants does.

1.
N'(w):= Y N(s(@)= ), N(t@)
a|t(a)=v - al|s(a)=v
NT(T) = 2x1=(1x1)+(1x1) N(T) =1
= 9
NT(U) = Ix1)+(1x1)=2x1 NU)=1
= 2




‘;
NT(V) = (2x1)+(1x1)=3x1 NV)=1
= 3 )
NT(W) = 3x1=(2x1)+(1x1) NW)=1
= 3

It is clear that NT(v) > N(v) for any vertex.

2. For any v € Q) totals

0'(v) = ) 6(a)N(s(a)),

al|t(a)=v

0%(v) = ) 6(a)N(t(a)),

a|s(a)=v

can be defined such that

0" (v) + 6%(v) = 20(NT(v) — N(v)).

where
NT(v) > N(v)
™ ™ 5
_ 2_'” 47 '
= = — =



- 2 o #8F
3 3
L o7 R b
oL (V) (2x-x1)+ 1x X x1 0°(V) = 3x % x1
3 - _5.7_[
= 7 T B
LY s om
L . — . -
"(W) = 3x?x1 0R(W) (2x3x1)+(1x6x1)
— _EE 3
= 3 - =

and their sums are;

0L(T) + 0%(T) = ??,E Iy 4?”

= 27

= 2r(2—1)
= 2a(N"(T) - N(T))

OU)+6V) = T+ o

= 2

= 2m(2-1)
— (V) - N(©))

3




3 5% e

2 2
= A4x

0" (V) + 6%(V)

= 2r(3-1)
= 2n(N"(V) = N(V))

oW)+07W) = T+

= 4r
= 27(3—-1)
= 2n(NT(W) - N(W))

. For any cyclic element a; ...a, €S, n > 2 and

Z 0(&,’) = éﬁ

The quiver has a potential given by;

1 3 2 2 3 1 1 1
S = agrafyalhall + agratwalyall + agw vy +

2) (2 1) (2 2)
aywalpyaly + aVTag'avaEV)y +ayralyay

In any cyclic component a; . . . a, of the potential, n > 2 and
D f(e) =21

37



as shown below

1 3 2 2 3 1
o(aUTa’g‘eVa'g&’)Vag//gf = 9(“UTG§'3VG§V)VG§/21

= O(ayr) +0(ay) +6(aly) +6(all

. PR

T 236 3

= 27

o(aUWa’g’)Va'Sl)J == 0(“@“%“&2}

= O(agw) +0(alpy) +0(aly
_ 5 + o
T 6 6 3
= 2

bayramyaiy) = O(ayrapwawy

= O(ayy) +0(aly) +0(aly

6 3 6
= 27

All conditions are satisfied, hence a polar quiver.

Example 4.4. In this example, we have the same quiver as in the previous

example but with a different set of polar co-ordinates. Just like in example
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4.3, we will show that this is a polar quiver.

Figure 4.3.3: Diagram of P? quiver blown up at one point. Vertices are
given names T, U, V and W, while the number in the vertices indicates
the number of grouped vertices. Angles are assigned such that the quiver

and all its mutants satisfy polar conditions.

We show that this is indeed a polar quiver,

8
NT(w):= Y N(s@)= Y. N(t(a))
a|t(a)=v a|s(a)=v
N(T) = 2x1=(1x1)+(1x1) N(T)=1
= 2
NTU) = A1x1)+(1x1)=2x1 N{U)=1
= 2
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NT(WV) = @2x1)+(1x1)=3x1 NWV)=1
= 3

NT(W) = 3x1=(@2x1)+(1x1) NW)=1
= 3

From the calculations above, NT(v) > N(v) for any vertex.

. For any v € ) totals

6“(v) == ) 8(a)N(s(a),

a|t(e)=v

0%(v) = Y 6(a)N(t(a)),

a|s(a)=v

can be defined such that

0 (v) + 6% (v) = 2x(NT (v) — N(v)).

where
NT(v) > N(v)
L _ X R _ (ol 3r
0-(T) = 2x2x1 0(T). = (1x4x1)+(1x 7 xl)
= T = 9F

L - r 55 - i
oL(U) = (1x4xl)+(1x4xl) 6°(U) = 2x7x1

= 9 =
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W) = 3x—x1

and their sums are;

6~(T) + 6%(T)

0-(U) + 0~ (V)

_ 9
T4
T 3T
oR(W) = (2x§x1)+(1x—:1—x1)
_ I
T4
T+7
27
2r(2-1)

41

2n(N™(T) — N(T))

T+

o

21(2 — 1)
2n(N(U) - N(U))



WA“’"

(V) +0%(V) = T+

= 4

T 27(_ b
4

= 27(3-1)
= 2r(NT(V) - N(V))

OW) +0FW) = T+

= Am
= 2r(3-1)
= 2n(NT(W)— N(W))

3. For any cyclic element a; ...a,€S, n > 2 and
D 6(a;) =2

The quiver has a potential given by;

) @) @ 2) (3 1) @
S = ayraiyalyall + ayraf e, all + aywaly ayy +

2) (@2 ) @ 2) (1
aUWa’gV)Vagfgl + av:ra§~3va$v)y + aVTag'zvagl)V

In any cyclic component a; . .. a, of the potential, n > 2 and
Y0 =2
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as shown below

3) (2 2) (3) @
0(0’UTaf(1}3Va'§V)Va§/()]) T 0(“UT""EI'3V“%()V“$/2]

= O(ayr) + 0(aly) + 6(alpy,) +0(aly
T ®™ 3w 7

13t T
= 2m

1 1 E 2 2
0 (aUWa’gv)Va'gfl)J =90 (aUWa'gV)Vaé/l)]

= O(apw) +0(aipy) + 0(al)

412
= 27
2 2
0(aVTa’(1}3Va'€V)V) = o(aVTag'eva&’)V

= O(ayy) +0(afy) +0(al,
3 w™ 3w

Tttty
= 27

All conditions are satisfied, hence a polar quiver.

Lemma 4.5. For any two distinct paths x and y of the quiver with a

common starting and target vertices, we have 0(T) =mod 2 0(y)-
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Proof. Let x = a; ... a, be a path of the quiver Q,

(0(z))mod 2x = Z 0(a;) o

= (0(t(an)) — 0(5(@n))mod2x + - - + (0(t(a1)) — O(5(a1))) 1m0 2x
Zodzr ((0(t(an)) — 0(s(an))) + -+ + (6(t(a1)) — 6(5(1))))mod 2
Zmoazr  (0(t(a1)) — 0(5(an))) mod 2r
Emodzn  (0(t(z)) — 0(5(Z)))mod 2x

Let y be any another path with s(z) = s(y) and ¢(z) = (y), then

0(z) Zmoaze (0(H(z)) = 0(5(2)))mod 2n
Zmod2r (0(tH(Yy)) — 0(s(¥))) mod 2r

r=vmod 2w 0(y)

d

This lemma will become particularly important in the proof of the

major theorem in Chapter 6.




Dol

Chapter 5

Mutation of Polar quivers

5.1 Introduction

This chaf)ter introduces mutation of Polar quivers. Mutation of quivers
with potential was covered in Chapter 2, chapter 4 introduced polar quiv-
ers, with some interesting examples. Section 5.2 of this chapter gives a
continuation with mutation of polar quivers. It is in this section that we
state the process of mutation for polar quivers. Worked examples that

illustrate the process of mutation of polar quivers are given in section 5.3.

5.2 Mutation of polar quivers

Definition 5.1. Let (Q,S, N, 0) be a polar quiver, at any vertex v € Qg
define the mutation of (Q,S, N, 0) at v to be (Q, S,N ,‘5) where;

e Q and S are obtained by mutation of (Q,S) at v.
e For a vertex u # v, N(u) = N(u) and 6(u) = 6(u).
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N(v) = NT(v) = N(v) > 1 ‘ (5.2.1)

e The position of v after mutation is given by,

0= (00-53) .~ (0+F5) ., 522)

Mutation of the quiver at any vertex say v alters the position of the

vertex, and hence the orientation of vertices and arrows in the quiver.

The angles 21;(%) and 0;—-%—:)) determines the new position of v. If the
0L (v oR < ~ L (4

sum of fﬁ-(%)l and —ﬁ-(%l is 27, we have 0(v) = (0(11) - Qﬁ%;)l) .

(0(11) + Qﬂl’l) , i.e. the new position for v is unique. If the sum is
N®) /] mod 2 .

not 27, mutation at v will give rise to two different positions for v, hence
the second condition ensures that the new position for the mutated vertex

is unique.

We can visualize the third condition as implying that elements of the
potential define a convex polygon. The polar quiver has a cyclic order
to the vertices imposed by the angles. The third condition ensures that
this ordering is consistent with each element of the potential. From the
examples below, we will observe that mutation preserves this condition
although there are some cases in which it fails. In chapter 6, we will state
and prove the conditions that if a polar quiver satisfies, this problem will

be resolved.
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5.3 Examples on mutation of polar quivers

In this section, we illustrate the process of mutating pola:rbquivers by
examples. The polar co-ordinates for the mutated vertex are chailged. In
Example 5.2, the mutated vertex W has the same polar co-ordinate as U
which was unaffected by mutation. Example 5.3 highlights another effect
of mutation on polar quiw}ers. Although we started with a polar quiver,
the resulting quiver after mutation breaks some of the polar conditions.
There are cases where everything goes right, as in eExample 5.4, where’

mutation of a polar quiver gave a polar quiver.

Example 5.2. In this example, we mutate the polar quiver in Example

4.2 shown below,

Vi :
< -
Sw 3z
4 3

Figure 5.3.1: Diagram of P! x P!. Vertices are given names T, U, V
and W, while the number in the vertices indicates the number of grouped

vertices.

We mutate the quiver at W (the yellow vertex). By the definition of
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mutation for a polar quivers, any other vertices not same as W will keep

their position after mutation. The new position for W is given by;

<

W) = (o(W)—%Jg;) o (( H?j((vv:f,))) od e

_orw) )
N (W) mod 27

- ("”‘ i)
4 mod 2n
T .
4

ow) =

This is the same position occupied by U the blue vertex.

T
T — uw
2

w3
=] =

oA

o5

Figure 5.3.2: P! x P! quiver mutated at W. The number 2 at the blue

vertex implies that two vertices U and W are sharing the same position.

The next task is to check if this quiver satisfies all polar conditions.
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e 2

N@) = Y Nes@)= > Na)

a|t(a)=v a|s(a)=v =

NT(T) = 4x1=2x2 N(T)=1
= 4
NT(UW) = 2x1=2x1 NUW)=1
= 2 |
NT(V) = 2x2=4x1 NWV)=1
= 4

It is clear that N7 (v) > N(v) for all vertices.

2. For any v € @)y totals

0w =Y 0@ (s(a),

a|t(a)=v

0"(v) = > 0(a)N(Ha)),

a|s(a)=v

can be defined such that
6 (v) + 6%(v) = 2r(NT (v) — N(v)).

where

"NT(v) > N(v)
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X (T) = 4xmxl o™(T) . = 2x-72£x2

= 4n = 27

oL (U, W) = 2x%x1 oR(U,W) = 2xgx1
= qr = T

oE(V) = 2x%x2 GR(V) = 4dxmx1
= 27 8 = 4r

and their sums are;

6L(T) + 0%(T) = 4m+2m
= 6
= 2n(4-1)
= 2x(NT(T) - N(T))

OL(U,WY)+0R(U,W) = 4T
= 2m
- (2-1)
= 2x(NT(U,W)— N(U,W))
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W

F“(V)+0%(V) = 2r+4r
' = 6m
= 2r(4—1)
= 2n(NT(V) - N(V))

3. For any cyclic element @, ...a, €S, n > 2 and

D> 0(a:) =2r

The quiver has a potential given by

§ M 0 0

1 3 2 2 2 1 2 4 2
= a@raal), + e a?, +aPra®al, + ool a® +
1 1 1 1 3 2) 2 2 ] 2 4 2
agraryayy +agrafyal +agrafal) + afjalal)

In any cyclic component a; .. . a, of the potential, n > 2 and

> 0(a) =2n

as shown below

1,2) (1,2,34) (1,2 1,2‘ 1,2,34) (1,2
Oawrary™aliy)) = 0afp ey al)

= 0agy) +0(a>) +6(al})

= Z4mt+o
T2 2
= 27
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Where ag,’g? implies ag,)T or ag,)T and so on.

All Properties are satisfied, hence it is a polar quiver.

In the next two examples, we have the same quiver with potential but
with different polar co-ordinates. We mutate these quivers at the same
vertex to illustrate the process of mutation, and to check if the resulting

quivers satisfy the polar conditions.

Example 5.3. In this example, we have a polar quiver in Example 4.3

shown below.

Figure 5.3.3: Diagram of P? quiver blown up at one point. It is a polar

quiver, but not any of its mutants.

We mutate this quiver at W. In the mutated quiver, any vertex not
W will have the same position as in the old quiver. W will have a new

position in the mutated quiver given by,

W) = (o(W) - (Z((x,,)) ) T (G(W) N %) med e

52




ow) = (O(W)-—GL(W))
mod 27

N(W)
_ (m_F
12 2 mod 2w .
_ 1Tm 57
4 (512 A
a3
6

The diagram below best illustrates this.

o | =

/In
1

Figure 5.3.4: Diagram of a mutation of P? quiver blown up at one point.
This quiver does not satisfy the second and third polar conditions.

We check if this quiver satisfies all polar conditions.

NT():= ) N(s(a)= ) N(ta)

a|t(a)=v a|s(a)=v
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NT(T) = 5x1=(2x2)+(1x1) N(T)=1
= 5 ‘
NTWU) = (I1x1)+(1x1)=1x2 NU)=1
=2
NT(V) = 3x2)=(Bx1)+(1x1)  NV)=1
= B
NTW) = (2x1)+(1x1)=3x1 NW) =2
= 3

It is clear that N7 (v) > N(v) for all vertices. The first condition is
satisfied.

2. For any v € @ totals

0“(v) == ) 6(a)N(s(a)),

a|t(a)=v

6%w) = D 0(@N(ta),

a|s(a)=v

can be defined such that

0 (v) + 6%(v) = 2n(NT (v) — N(v)).




=

where

NT(v) > N(v)

oL(T) = 5xzé7£x1 0*(T) = (1x%x1)+(2x%x2)
_ 3w 13w
= = =
HL(U) = (1x%x1)+(1x5§x1) 0R(U) :'1XzT327EX2
137 _ 23m
T 6 6

L (V) = 3x%x2 0R(WV) = (Sx%rxl)—k(lx%le)

_ 5_7r _ 1om
B . =3
o5 231 51
= = Yy o = —
(W) = (2x12x1)+(1x 12xl) 0~ (W) 3x12x1
1 _ 57
4 4

and their sums are;

' _ ®r B
0-(T) +6%(T) = 5 z
= 8m
= 2n(5—1)

— 20(N(T) - N(T))
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137 g§7_r

OL(U)+0R<U), = ——-é‘+ 5
= 6m o
#+ om(2—1)

_ 2n(NT(@U) - N))

gL V) + OR(V) = g

= 107

- on(6—1)

_ an(VT(V) - NV

1

oL (W) + OF(W) = lz’—’+5—;‘—
= 'Amw

#+ om(3 —2)

_ ox(NT(W)—NW))

This condition is broken at U and W.

3. For any cyclic element a1 - - - On €S, n>2 and

Zﬂ(ai) =2m

The quiver has a potential given by;
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o 3 2 5 1 1 1) (1
8 = ayraallyowy +agrafhallayy + agf‘)/a%ﬂigv)q" +

2 2 1 3 3 1 2 1 2
oyl + ol + Rl +

4 2 2 5 3 2 3
oo+ ooy + e

In any cyclic component a; ... a,, of the potential, n > 2. The arrow
awy is not compatible with the polar ordering for the quiver. Any

cyclic component a; ...a, of the potential with this arrow in the '

composition will have

ZO(a,—) =47

as shown below

3) (2 5) (1
o(aUTag‘l)/a’Sn)/VaWU) = H(GUTG'EI")/‘I%V“WU)

= 0(ayr) +0(ay) +0(ally) +O(awy)
T 1w  5Sm 237w
2ttt

= Arx

(1,2,3,4,5

6(aiy 6(ai>*) +0(ai”) + (aly7)

_ Tn, 5m 5w
T 6 12 12

=

) 1,2,3) (1,2)
Ayw a§VT)
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Olagvaywawy) = Olagy)+0(ally) + Oawy)
br o, B

3 12 12
= 4mw

The second and third polar condition are broken, hence this is not

a polar quiver.
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Y

Example 5.4. In this example, we have the same polar quiver as in

Example 4.4 shown below;

Figure 5.3.5: P? quiver blown up at one point. This is a polar quiver, so

are its mutants.

We mutate this quiver at W. In the new quiver, W will have a new

position given by;

(11_7’ _ f)
8 2 mod 27

11t 9«

8 8
T

4

The position of other vertices is not changed in the mutated quiver.

NT@w)= 30 Ni@)= 3 NH@)

a|t(a)=v a|s(a)=v
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Figure 5.3.6: Diagram of a mutatio
ﬂm@w%@@ﬂﬁM&@@m
NT(T) = 5x1’(2x2)+(1x ) NT) =1
=5
NTU) = (1x1)+(1><1)s1>< N@OU)=1
= 5 |
NT(V) = (3x2)s(5x1)+(1x1) Nv)=1
= 6
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NT(W) = (2x1)+(1x1)=3x1
=

It is clear that N7 (v) > N(v) for all vertices.

2. For any v € Q) totals

0°(v) = ) 6(a)N(s(a)),

a|t(a)=v

0%(w) = Y 6(a)N(t(a)),

a|s(a)=v
can be defined such that
0L('u) + HR(U) == 27r(NT(v) — N(v)).
where

NT(v) > N(v)

3
0 (1) = 5x%—7£x1 6*(T) = (2X-—zx2
25m T

0L(U) = (1x%x1)+(1x3—2753<1) o*(U)
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oLWV) = 3x37rx2 o7 (V) = (SX%X1>+(

) 2
o ?1 )
T4 T4
oE(W) = (2x§§£xl)+(1x%xl) OR(W) =3x-3§x1
T - .gi
and their sums are; .
6"(T) + 0%(T) = 2%“ + F%r
= 8«
= 27n(5-1)
= 2n(N"(T) - N(T))
0"V +0%U) = 47
= 27
= 2m(2-1)
= 2n(N"(U) - N(U))
OE(V)+0R(V) = % A 3}T7r
= 107
= 27n(6—1)
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6" (W) +6%(W) = 383 + -981
' = 27 _
= 271(3-2)

= 2m(NT(W) - N(W))

The second polar condition is fulfilled.

3. For any cyclic element a; ...a, €S, n > 2 and
D 6(a;) =2r

The quiver has a potential given by;

o 3 2 . 5 1 1 1 1
S = ayrafya@yawy + ayrafallany + o el el +

2 2 1 3 3 1 (2 1 2
ooyl + ooyl + ool alPy +

4 2 2 5 3 2 3
oo+ ooy + ey

Any cyclic element of the potential is of length > 2 and the sum of

angles is calculated below;

B(G’UTag‘)’agt)/VaWU) = a(aUT"'Ers"‘)/a%vawu)
= O(ayy) +0(a%y) +0(all) + O(ayy)




( (1,2,3,4,5) (123) (1 2)) 1 o(a:(;‘,/z,3,4,5))+0( (123)) +ﬂ(a(12))

s
1l 2] 8 8
= 27

OayyaSwawy) = O(ayy) +0(abw) +0(ayy)
37 3w 9w

PR
= 2

This quiver meets the third polar condition, which implies that all
arrows are compatible with the polar ordering and hence consistent

with the potential.

From the last two examples, we mutated a quiver with potential but
having two different sets of polar co-ordinates. In Example 5.3 the mu-
tated quiver failed to satisfy the second and third polar conditions, whﬂe
in Example 5.4, the mutated quiver satisfied all the polar conditions. The
polar quiver in Example 5.4 must be having some special properties that
enables its mutants to meet all polar conditions. These are the conditions

that will be investigated in the next chapter.




Chapter 6

Main theorem on mutation of

polar quivers

6.1 Introduction

From the previous chapter, we had two cases, Examples 5.3 and 5.4, of a
quiver with potential but with two different R-charges. On mutation, the
quiver in Example 5.3 fails to satisfy the second and third polar condi-
tions, while the quiver in Example 5.4 does. In this chapter we state and
prove the preconditions a polar quiver must satisfy for its mutants to sat-
isfy all polar conditions. In the last section, we highlight the importance

of the theorem by revisiting these two examples.

6.2 Main theorem

Given a polar quiver, its mutation can either give a polar quiver or a quiver

that breaks some of the polar conditions. There are certain conditions
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that if a polar quiver satisfies, the resulting quiver after mutation will be

a polar quiver. These conditions are stated in the following theorem.

Theorem 6.1. Let (Q,S, N, 0) be a polar quiver. The mutated quadruple
(Q,S’, N, 6) is a polar quiver if and only if for any vertex v € Q, % >

0(a) for all a|t(a) = v and 2-;% > 0(b) for allb|s(b) =v.

Proof. We prove the theorem for each of the three polar conditions.

Let (Q,S, N, 6) be a polar quiver, we consider four different cases for

the proof of the theorem for the first polar condition;

Case 1. Consider v, the mutated vertex. By definition,

NT(v):= Y N(s@)= Y N(ta)

a|t(a)=v a|s(a)=v

mutation of Q gives the quiver Q with arrows reversed at v.

N = Y N(s()
beQ | t(b)=v

= ) N(ta)
aeQ|s(a)=v
= N'(v)

N@we = Y, N(®)
beQ | s(b)=v

= ) N(s(@)
a€eQ |t(a)=v
= N(v)




At the mutated vertex v we have,
N'(@) =N (@) =N"(0)r=N"(v)  ©
Case 2. Consider a vertex u € @ with no arrows joining it with v,

N = ) N(s(b)

beQ | ¢(b)=u

= Y Ns()
a€Q | t(a)=u

= N'(u)

Me = Y N@®)

beQ | s(b)=u

= > N(ta)

a€Q |s(a)=u

= N'(u)

which illustrates equality as well as no change to N (u), i.e. for a vertex
u with no arrows joining it to v, we have after mutation of the quiver at

v

NT(u) = NT(u), = NT(u)r = N7 (u) (6.2.1)

Case 3. Consider a vertex u € Q with arrows a € @ such that a|s(a) =

u, t(a) =v. We rewrite N”(u) to take to consideration this case. Thus

N@= Y Ne@)= Y No+ Y Na)

acQ|ta)=u i s(a)=u

s(a)=u acQ =«

t(a)=v

(6.2.2)
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Arrows incident to v from u are reversed in the unreduced mutated

quiver @', while any paths asa; € Q with s(a;) = u, t(a;) = v = s(as)
give arrows [asa;] € . Define a non-empty subset W C Q{,_Vas the set

of target vertices for the arrows [a;a,]. Elements of this set are vertices

w;, © € N, hence t(a3) = w; for some 3.

N/T (U)L

> N(s(b)
beQ’ | t(b)=u ’ '

>, N+ > Ns@)+ >, N(s(b)
b b | orew b e

> N@+ > N(s@)+ Y, N(s(a)
2 R aeq| e 2| (ew

Y. No+ ) N(s(a)
- :Ezgzz aeQlt(a)=u

> N(@)+NT(w) ' (6.2.3)
acQf5) =
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NTwgr = Y N(b) | e
beQ’ | s(b)=u
= Y N@E)+ b Nistaz)
el foa011€Q |y ) o)
= Z N(t(a)) + Z Z N(t(az)
el :E:;-;: a1€Q :223:_3 az|s(az)=v

= NT(w)- > N+ > > N(ta2))eworn

*q :8;:: a1€Q :8: gz: az|s(az)=v
= NTw)- Y N@+ Y N
%€Q ey areq[ii)=
= Nt Y (6 -Ne)
<Qfie)=s
= @t > A
°€Qiarms

From (6.2.3) and (6.2.4), N'" (u);, = N'" (u)g for the unreduced quiver
)'. We show that equality holds after reduction of @’ to a reduced quiver

0.

NPy = Y. N(s(b))
beQ’ | t(b)=u
= Y Nw+ Y. Ns®)+ Y, N(s®)
b |y beQ | e b\ ew

(6.2.5)
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N’T(U)R e Z N(t(b))

beQ’ | s(b)=u
= X N+ Y @)
b)= 2 PR e
<ol o],

(6.2.6)

From the last summations in (6.2.5) and (6.2.6), s(b) € W and t(az) €
W. If s(b) = w; and t(az) = w; for some w; € W, then we have a 2-cycle
in Q'. Reduction of ¢ eliminates these trivial elements to give a quiver -
Q. Let w; € W, we define x,,, as

Xiw = > Nw)- > Nw) (627
[a2a1]€Q’|, (af)(:;):;zaz) | beQ’Ist((b';)::,,‘,.

The elements Xw; < 0 consists of arrows b while Xw; > 0 consists of
the composite arrows [aa,] that were left after reduction of the quiver.
Xw; = 0 implies that all new arrows cancel out with old ones. We now

state NT(u);, and NT (u)g for the reduced quiver as;

Ny = 3 N+ Y N(s(3)) = Xu, (for xu, <0)

o B
(6.2.8)
Nwr = Y NE®)) + xun(for Xu, > 0)
~{s(b)=u
beQ tgb;;év

70




where i # j. N'"(u);, and NfT(u)R are reduced by an equal amount,
maintaining equality, that is, N7 (u) = NT(u), = N7 (u)g.

<

Case 4. Now consider a vertex u in Q with arrows alt(a) = u, s(a) = v,
the calculation for N7 (u) is similar to the calculation above only that the

direction of arrows joining u and v is reversed. Arrows target to u from v

are reversed in the unreduced mutated quiver @', while any path a,a; € Q
with t(a;) = u, s(a;) = v = t(ay) gives an arrow [a;a3] € Q. Define a
non-empty subset W C @ as the set of vertices which are a source of
arrows [a;az]. Elements of this set are wy, k € N, hence s(az) = wy for |

some k.

N'wr = Y N(s®)

beQ’ | t(b)=u
= X N+ Y Ns(a)
b)=u Qo L
el el
(6.2.9)
N’T(’U)R — Z N(t(b))
beQ’ | s(b)=u
= XY N@+ Y Neo)+ Y Ns®)
’|8 b)=u |8 b)=u o’
be@ (50 beQ| iy <@
: (6.2.10)

Calculations for equality are similar to those in Case 3. From the last
summations in (6.2.9) and (6.2.10), ¢(b) € W and s(ay) € W. If ¢(b) = wy,

and s(az) = wy. for some w; € W, then we have a 2-cycle in . Reduction
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of @' eliminates these trivial elements to give a quiver Q. Let wy € W,

we define x,,, as

i = 3 N(w)— > N(wy)

- 1 5(b)=
{al 02]EQ' 3( afgilz:tlz a2 ) beQ It‘zl()) 2__1:,;

In the reduced quiver, either x,, > 0 or x,, < 0 for any w; € W, but
not both. We now state N7 (u);, and N7 (u)g for the reduced quiver as;

Ny = > N(s(0))+ Xu(for xuw, >0)
beQfs iy

NMwr = Y. N@+ Y. N(b) - Xw(for Xuw <0)
b5 beQ|

where k # l. The elements X, (for Xuw, 2 0) and xu,(for xuw < 0)
reduces N'T(u);, and N'7(u)r by an equal amount. Equality is hence
maintained after reduction ie NT(u) = NT(u);, = NT(u)g.

In all the four cases, NT(v) = NT(v), = N7(v)g for any vertex v
of the quiver after mutation. This implies that for any vertex v in the
mutated quiver Q,

N@y= > Ns@®)= )Y N(p)

beQ|t(b)=v beQ|s(b)=v
Remark 6.2. If a quiver satisfies the first polar condition, its mutants

will always satisfy the first polar condition.
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To prove the theorem for the second polar condition, we consider four
different cases.

Case 1. Consider the mutated vertex v. Let (Q,S, N,8) be a polar

quiver, for any v € Qg totals

0"(v) == Y. 6(a)N(s(a)) (6.2.11)
a€eQ | t(a)=v

0%(v) = > 0(a)N(t(a)) - (6.2.12)°
a€Q | s(a)=v

are defined such that their sum,
6" (v) + 0%(v) = 2 (N (v) — N(v))

Mutation of the quiver Q) at v alters these angles. In the mutated quiver
Q, these angles are be given by;
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6% (v)

D OWE0) -

beQ | t(b)=v
D> (0(w) = 0(5(5)))moa 2N (5(b))

beQ | t(b)=v

> (0( )+ ¢ (( )) 0(s (b))) WE)) — by (5.2.2)

bGQ | t(b)=v mod 2w

> (0w) = 0(5(5))moazeN(s(b) + Y (;f;(v

beQ | t(b)=v beQ | (b)=v (

= Y O60) 0N O) + D N(s(e)

( ) beQ | t(b)=v

N(s(b)

bEQIt(b)—-'u
S Y (0®) — 00) etz N (t(@) + m R0
a€Q|s(a)=v ( )
R
- Z 0(a)N(t(a))+%%NT(v) ................. and by (6.2.12)
a€eqQ | s(a)=v '
6% ('U) T
") + TN )
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6%(v)

PRIONCD) -
beQ | s(b)=v
37 (0((b)) — 6(v))moa 2 N (£(b))

beQ | s(b)=v

5 (o(t(b)) 6(v) +

b| s(b)=v ()
> O — 0 meazeNEO) + Y LD Nar))

beQ | s(b)=v beQ | s(b)=v N(U)

- Y (6w - 0(t(b)))N(t(b))+” ©) S New)

beQ | s(b)=v ( ) beQ | s(b)=v

- ) (B - 0(8(0)))N(8(a))+ A N (v)

aeQ|t(a)=v ( )
— E 0(a)N(s(a)) + f—@—)-NT(v) ................. and by (6.2.11)
aeQ|t(a)=v ] N('U)

)+ i)

6" (”)) YO0 y— by (5.2.2)
mod 27

Adding the two angles we have,

0 (v) + 6%(v) = —6R(v) +

0 (v)NT( ) 0L( )+0 (v)NT( )

N(v) N(v)
= (0 +0°0) 8 @) + 0

NT(v)

= 2N ()= o — 20N (V) oo by (4.2.2) and (5.2.1)

= 27 (NT(’U) — N(v))
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Case 2. Consider u, a vertex in Q with no arrows joining it to v, mutation

at v will have no affect on the angles at u as shown below,

0'w) = Y O(b)N(s(b)

beQ | t(b)=u

= Y 0@NGs@)

aeqQ |t(a)=u
= 6"(u)

0fw) = > O@)N()

beQ | s(b)=u

= 3 0@N(a)

a€eqQ | s(af:u
= 0%(u)

adding the two angles,

0 (u) + 0%(u) = o- (u) + 0% (u)
= 2r (NT(u) — N(u))

Since there are no arrows joining u and v, from Case 2 of the proof in the
first condition, N7 (u) = NT(u). By the definition of mutation of a polar

quiver at a vertex v, N(u) = N (u) for any vertex u # v. Hence we can
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write the sum of the angles as;
0" (u) + 6% (u) = 2r (NT(u) - N(u)) -

Case 3. Consider u, a vertex in Q with arrows a|s(a) = u, t(a) = v.

Angles at u are given by,

0w = 3 6(a)N(s(a))

a€Qlt(a)=u
") = Y 6@NO+ Y 6@N(a)
acQ|y= acQ|;(o

where, by definition,

0"(u) +0%(w) = 2r(N"(u)— N(u))
= 27N(u)

Arrows target to v from u are reversed in the unreduced mutated
quiver ¢, while any path axa; € Q with s(a;) = u, t(a;) = v = s(ay)
gives an arrow [aga;] € Q'. Define a non-empty subset W ¢ Qp as the
set of vertices on which arrows [asa,] are target. Elements of this set are
vertices w;, ¢ € N, hence t(az) = w; for some i. We calculate the angles
at u for the reduced quiver Q, where the big brackets account for the
reduction, ¢ # j. In the big bracket, let s(b) = w; and t(ag) = w; for

some j.
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Bty = Y, OON@+ 3 OBN(sB) + -

~|t(b)=u 5 e e
b0 Q| gw
Y ONw)- Y ONw)
) i . ’ s(ay)=u
be@| ), fozen]eQ t(ax)(=lv)=s(“2)

In the big bracket below, let s(b) = w; and t(ag) = w; for some ¢

0% (w) = > 0(jaa)N(wi) — »,  O(laa)N(wi) | +
[a2a1]€Q’ ¢ af)(ilv)::slz ) beQ’| ;((bb)):;‘

S 0B)N(E)

s(b)=u

beQ

t(b)#v
Let
Bi=| Y. 60ON(s(w)) - > 0(b) N (w;)
beQ’ st((bb)):;‘] [a2a1]€Q’ t(af)(ilv):_;z as)
and
By = > 0(jaza)N(wi) — >, O(lazan])N(wi)
[a2a1]€Q’ t(a:)(:lv):sizﬂz) bte‘:((:)zzt:.

78




B; consists of arrows from w; to u that were left after reduction of the
quiver Q' while B, consists of the composite arrows [aza;], corresponding
to the paths asa; € Q through v, that were left after red;ction of Q.
Reduction of the quiver quotients out any two equivalent paths between

two vertices but opposite in direction.

We intend to calculate for 6% (u) + 8%(u). To do this, we first evaluate
B;, B, and find their sum. The result of this calculation will help in the
calculation for 6%(u) + 0% (u).

By = Y, O0(b)N(w)- > 0(b)N (w;)
g R T
= D> OON(w) - > (27 — 8([az01])) N (wj)
beQ st((bl;):utl‘j laza1}€Q t(af)(:‘v):stzag)

O(0)mod 2x = (27 — 0([a201])),00 2 SinCE b and [aza;] are two arrows be-
tween w; and u but in opposite directions. We drop the mod 27 since

(27 — 6([aza,])) > 0.
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Bl = Y 60@N(w)-2r 3 N(w;) +~

aca|, R MO
> (0(az) + 0(a1)) N (w;) cevoveerereennes by lemma (4.5)
a201€Q t(af )(:i:)::staxz)

= 3 6@N@)-2r > N(w;) +

t{a)=
e S((aa))=1:"j

3 > 6@)Nw)+ > > 6(a)N(w))

ey

s(a1)=u

3201€Q t(a1)=v=s(az)

We split the sum to a double sum. This enables us to sum over individual

arrows in the path asa; € Q.

> 0(laza)N(wi) = Y 6(lazaa])N(wi)

= t(b)=u
oy s(an) DEQ |y (b

- 3 (6(az) +0(ar)) N(w) — D (2w —6(a))N(w;)

s(a1)=u t(a)=
[a2a1]€Q’ t(a1 )(211)23(02) . aeQIs((aa))=:l:;

B,
[a2a1]eQ’

Since b and [aqa,] are two arrows between w; and » but in opposite
directions, we have 6([aza1]) = (27 — 6(a));,p90,- We drop the mod 2m

since (2 — 6(a)) > 0. We also split the first summand to a double sum,
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so that we can sum over individual arrows in the path asa; € Q.

B, = Y Y O@)Nw)+ Y > Gla)Nw,) -

a€Q ‘:83:: az|s(az)=v a,€Q :2::;:: azs(az)=v
2r Y Nw)+ Y. 68a)N(w)
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We now evaluate the sum of B; and B,.

Bi+B = Y > O@Nw)+ Y. 3 #a)N(w)+

1832,‘ az|s(az)=v a1€Q zg:g:: az|s(a2)=v

) > O@)Nw)+ Y D O(ax)N(wi) +

a1€Q

meqglan)=u mleloa)= meqfian =y e
Y t@N@)+ Y 6@Nw) -
<, <,

27 Z N(w;) + Z N(w;)
a;)= t(a)=u
t(af )(=17)=s’zaz) . aeQIS(:)=wi

- ¥ > f@)NHa)+ > D 0(az)N(t(az)) +

s(a1)=u az|s(az)=v s(a1)=u az|s(az)=v
t(e1)=v t(a1)=v

az2a1€Q)

a1€Q a1 €Q

Y. 6(a)N(s(a) +2r > Nw)+ Y N(w)
t(a)=u t(a)=u

GGQIS(II)EW a';”'l €eQ o1 )= aeQIS(a)zwi

t(a1)=v=s(az)

= ) 0@Nw+ Y 6fw)+ > 0(a)N(s(a)) -

8 = — tla)=
. R o acQ| =

a1€Q

27 E N(w;) + E N(w;)
s(a1)=u « t(a)=u
t(ay )=:)=s(az) EQI3(8)="H

a2a1€Q

(6.2.13)
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We now get back to the calculations for #%(u) and 6% (u).

@ = Y BN+ Y ONGE®)+B ©

beQ|S(os beq| 0=
o %F (9(u) - 0(11)) iy N(v) + Et; 0(b)N(s(b)) + B,
”“’s‘@ﬁ? | B
oL
> (9(u) o(v) + (v)) A+ Y 0ONGEG) + By
t(b)—u ( ) mod 2 e
e b€Q|sb)gw
0 Py = .
_ ( — (0(w) - o(u))) K+ 5 0@N(s(a) + B
R s t(a)=u
acQ t(a)=v e€Q| (W
9L(v) .
— = 0(0:) N(’U) + Z a(a)N(s(a)) + Bl
. aeQ S(a)—u mod 2m o )=u
T |Ha)=v o

. L
By the assumption of the theorem, we havg %(%’)l > 0(a) Va|s(a) =
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u, t(a) = v. This enables us to open the bracket as,

0 (u) = Z (GL(U) - 0(a)) N(v) + Z 0(a)N(s(a)) + B,

ol wal 5
= > 6@- > 0@Nw+ Y 6@N(s()+B
acq|i s L e e aca| (o)
= Y fw- Y @@ 0)-N)+ S 8a)N(s()+ B
acQf3 acQ[3 acQ| (e
= ) @+ Y 6@Nw) - > 0(@NT(v)+
seQf )y aeQ[i acQl{
> 0(a)N(s(a)) + B
aeQ| Ao

") = Y 8(B)N(®E)+ By
o

= ) 6(a)N((a))+ Be

s(a)=u
seQ t(a)#v

beQ

Adding the two angles gives,
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Orw) +0%w) = D @N@+ Y. 60@NEHa)+ Y 64)-

S e acQly i acQ|3
Y 6@NT(w)+ Y 6(a)N(s(a)) +Bi+ By
aeQl3 acQ| e
= ")+ Y )- 3 0@NT@w)+
S =R
Y 6(a)N(s(a)) + B: + B
<o aw

by Equation 6.2.13,
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) +0Rw) = OF(w)— Y. O@NT(@+ Y, 6@N()+

acQli )y acQ|amy
3> 6@N(s(@)+ Y, 6@N(s(@)+ Y o)+
acq| {05 acal, e acq|fS =y

Z 0% (v) — 27 Z N(w;) + Z N (w;)

s S| —=u _t(a)=u
a€Q :éﬁ;:: t(al)(::;)zs(az) : O‘GQIS(G)=we

= 0w+ Y. O@N(s@)+ Y. (0" +6%() -

a€Qlt(a)=u ocQ

a201€Q

s(a)=u
t{a)=v

2 Z N(w;) + Z N (w;)
s(a1)= & t(a)=u
t(al)(=1)=.;202) GQIS(G):wi

= 0R(w)+0"w)+2r Y N(v)-

s(a)=u
t(a)=v

a2a1€Q

acQ

2 Z N(w;) + Z N(w;)

s(a1)=u acQ) t(a)=u

aza;€Q t(a1)=v=s(az) s(a)=w;
= 2xN(u)+ 27 Z N(v) -
el
w| Y Nwpr T Nw) (6214
sldai )= t(a)=u
a2a1€Q t(al)(Z:J)zstZG-z) acq)| s((a))zwi

and from equation (6.2.8) which we have rewritten below,
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M@= 3 No)+ 3 N(s(b)) = xu(for xus <0)

t(b)= ~| t(b)=
s%b%:itt beQ s((b))¢vtl"

beQ

we have

N = 3 No+ Y. N(5(0) = xu,(for Xu, <0)

seafs= <l loew
= 2 N+ Y Ne®)+ Y Nw)-
N - S
3 N(w;)
lmsmnle|y ST

= X N+ Y Ne@)+ Y Nwy)-

t(a)= t(a)= 5 t(a)=u
9€Q) s (a)—v *€Q| (ew 2€Q5(a)=w;
> N (w;)
[aza1]eQ’ t(af )(:1)):;:2“2)

From which we get,

Y. F@)=N@w- Y Ns@)- Y Nw)+ >, N(w)

a€Q t(a)=u t(a)=u acq) t(a)=u

A %9 s(a)gw Wil e R Y

t(a1)=v=s(a2)
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Substituting this result into (6.2.14),

6°(u) +6%(w) = 2aN(u)+2rN"(u)—2r Y N(s(@) -

t(a)=u .

3€Q) (a)gW
Bar. Z N(wj;) — 27 Z N(w;) +
acQl aeal o,
or Y N(w;) —2m X N (w;)
fazarle@], , XV=Y [maarle@y, ST )

= 2xN(u) +2xNT (u) — 2 Z N(s(a)) — 27 Z N(s(a))

0€Q t(a)=u €Q t(a):u
s(a)¢gWw s(a)eWw
= 2xN(u) + 27 NT(u) — 27 Z N(s(a))
aeQlt(a)=u
= o (N(u) + NT(u) — NT(u))
= o (N(u) + NT(u) — N(u) — N(u)) ........... by (5.2.1)

= or (N7 (w) - N(a))

From the definition of mutation of a polar quiver at a vertex v, N(u) =

N (u) for any vertex u # v. Our equation becomes,

0% (u) + 0% (u) = 2n (NT(u)' - N(u))

Case 4. Lastly we consider u, a vertex in Q with arrows alt(a) = u, s(a) =
v. Calculations for 6%(u) and #%(u) in this case are similar to the calcu-
lations in case 3 above, only that arrows between v and v are reversed.

Addition of these angles gives the same result as in the case above.

In all the four cases, if the conditions of the theorem are satisfied,
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mutation of a quiver Q will give a quiver Q after reduction with the

angles 8 (v) and 6%(v), at any vertex v of the quiver, such that;

6% (v) + 0F(v) = 2r (NT(U) - ]\7(1)))

We show that N7 (v) > N(v) for any vertex v in the mutated quadru-

ple (Q,S,N,6). For any vertex v in the mutated quiver Q we have

0% (v) + 0% (v) = 2 (NT('U) - ]\7(1)))

fL(v) > 0 and §%(v) > 0 implying that 2r (NT(U) —N(U).) > 0.
This can only be true if N7(v) > N(v).

We now prove the theorem for the third and last condition. Let Q
be a polar quiver, then for any cyclic element a;...a, €S, n > 2 and
>;0(a;) = 2m. Let a; and a;4; be arrows in Q such that t(a;y;) = v =
s(a;). We will have a new potential S’ for the unreduced quiver @’ re-

sulting from the mutation of @ at v given by;

S =[S+ A,

where [S] is the potential for @ with the paths a;a;;; € Q through
v composed to arrows [a;a;41] in @’ and A, comprises of cyclic ele-
ments [a;a;41]al, 0} r%ulting from the composite arrows [a;a;,;]. For any
cyclic element a; ... [a;a;41]...an, €[S], n > 2 and ), 60(a;) = 27. Since
0([aiai+1]) = 6(a;) + 0(aiy1). We check for cyclic elements [a;a:41]a, 0}
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in A,,

0([a:iair1]) = 0(a:) +6(aiy1)
= (0(t(as)) = 0(v))moa2r + (0(v) — 6(5(i+1)))moa 2n

| 0(a;10)) = 0(a7) +0(aiyy)

| = (B(v) — 0(5(a})))moa 2 + (0(t(a}11)) — O(v))mod 2x
0% (v)

= (9(0)—9(8@3))*N(v)),,,;zf(a(t(“:“))_ ’ ”;fl’i) mod 2x

. ("R(”) (0(s(a)) — 0(”))),,.,,“,, + (‘J’V(()) — (0@) - o(t(a:+1))))md i
- (72 (0<t(a‘-))-e(v')))m‘h+(";g)’ - 600~ os(en))
- (R _0("‘))".042,,*(%g))_o(“‘“))mz, (6:2.15)

By the assumption of the theorem, —ﬁ%—)l > 6(a;4+1) and w-(i—)l > 6(a;)

which implies each of the brackets in (6.2.15) is positive, and

0% (v)
N(v)

Oosaaeiyiad) = 000 + @) + (i —0(a)) + (

@)
0%(v)  0%(v)
OO

= 2

= 0(ai+1))

&' is the potential for the unreduced quiver (. There might be arrows
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in cyclic elements of [S] which are in the opposite direction to the new
composite arrows [a;a;41] hence giving rise to 2-cycles. Reduction of Q'
eliminates 2-cycles while replacing these arrows with equiv;jent paths
(paths with same starting and target vertices as the arrows). By lemma
(4.5) the angles of the arrows and their equivalent paths are equal. Re-
duction of @’ does not alter the angles of cyclic elements of S’. For each
cyclic element a; . ..a, € S, the potential for the reduced quiver Q,n>2
and ), 0(a;) = 2.

L v
Suppose Qﬁé]—)) < 0(a;41), then

Ot aa)) ((jv ((v; B o(a'“))%m; (‘1’;((”)) _o(a,-))mm

(or+ it ~20) + (355~ o)

In which case

0(laiairi]aiy 0;) = 6(a;) +0(aia) + (27r+ # -0 a,-+1)) + (0 (v) 0(a; ))

(v) N(v)
o iey eem)
N@)  N(@)

= 2+

= 4

This contradicts the third condition for polar quivers, and hence com-

pletes the proof.
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The following lemmas are an immediate consequence of the theorem.

Lemma 6.3. Let (Q,S, N, 0) be a polar quiver. If for a vertes v, N(v) =
1 then the mutated quadruple (Q,S, N, 0) is a polar quiver.

Proof. Let N(v) = 1, the sums 0%(v) and 6X(v) are strictly greater
than each of their components. By theorem 6.1, the mutated quadru-
ple (Q, S, N, 5) is a polar quiver. O

Lemma 6.4. Let (Q,S, N, 0) be a polar quwver. If, for a vertex v, there:
exists 0 and ' such that 0(a) = 0 for all a|t(a) = v and 0(b) =@ for all
b|s(b) = v then the mutated quadruple (Q, S, N, 0) is a polar quiver.

Proof. 1f 6(a) is identical for all a|#(a) = v then

0“(v)=06(a) Y N(s(a)) = 6(a)N(v)

a|t(a)=v

w i (a)————m(v)
N(v) NT(v) — N(v)

Similarly for identical §(b) for all b| s(b) = v,

> 0(a).

6% () =0(b) Y N((v)) =(B)N"(v)

b s(b)=v

0%(v) ®) N'(v)
N(@w) " 'NT(v)— N(v)

> 0(b)

- By theorem 6.1, the mutated quadruple @Q,8,N, 6) is a polar quiver.
O
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6.3 Examples highlighting the importance

of the main theorem o

In this section, we revisit Examples 5.3 and 5.4 from chapter 5. We show
that the quiver whose mutants break some of the polar conditions fails to
satisfy the theorem. We also show that the quiver whose mutants satisfy

the polar conditions fulfills the requirements of the theorem.

Example 6.5. In this example, we have a polar quiver which fails to
satisfy the conditions of theorem 6.1. This is the quiver in Exami)le 5.3

shown below.

Figure 6.3.1: Diagram of P? quiver blown up at one point. It is a polar

quiver, but not any of its mutants.

In Example 5.3, the mutant of this quiver at W failed to satisfy the
second and third polar conditions. We show that this quiver fails to satisfy

the conditions of the theorem.

From the polar quiver above, we have;
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Ty 2 0%(T) 41r{ > 3 =060(ayr),
Fo) 3 > 3tew) N3 > gy
Bf’(U) _ 4 ) > = 0(ayr), 6%(U) 2m > T _ galt?)
@) 3\ < %—g@y NO) 3

where 0(al%; 2)) 0(a(1) ), Ny ) ) and so on. By Theorem 6.1, muta-
tion at any vertex of the quiver will not give a polar quiver. Mutation at
any vertex of this quiver will give a quiver which doesn’t satisfy the polar

properties, as was the case in chapter 5.
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Example 6.6. Here we revisit the quiver in Example 5.4 shown below.

Figure 6.3.2: P? quiver blown up at one point. This is a polar quiver, so

are its mutants.

As shown in example 5.4, mutation of this quiver gives a polar quiver.
We show that this quiver satisfy the conditions of theorem 6.1. From the

polar quiver above, we have;

6L(T) ___BR(T) =7 > {
_ T _ o2 N(T)
Ry~ " > g~ o) N(T)

= b(ayr),
= 0O(ayr)

AE

aL(U):7r i = Oayr), ¢2U) T a2
) >{ = ) NO) 7T 270
W) _tm 5 = i) ) _or  3n aa
N(v) 8 >{ E = Gy N 8 O 1w
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OR(W)  Tn = = o),
HL(W) g Or ﬁ X _(__..__). = 2“ 1AL

= —

i e S (1,2,3) N(W 8 { 3% _

Nw) 8 T 6?(awv) (W) AT = Oayw)
3273)

where 0(a{2%) = 0(all),), 0(aZ,), 8(al),) and so on. For any vertex

v of the quiver, %gi(:}’—)) > 0(a) for all a|t(a) = v and %%%1 > 6(b) for all

b|t(b) = v. By theorem (6.1), mutation at any vertex of this quiver will

w

give a polar quiver. This is shown in the previous chapter where the

quiver was mutated at W (the yellow vertex).
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Chapter 7

Summary and

recommendations

We introduced the concept of polar quivers and their mutations. Theorem
6.1 gives the conditions under which mutation of a polar quiver gives a

polar quiver. Two interesting questions are;

1. Is there a general way of assigning polar co-ordinates to quivers with

potential so that they satisfy the polar conditions?

2. Under what conditions is mutation an operation on polar quivers?
The examples we used are taken from the work of Stern [18] and relate
to geometry. With these examples, we have some idea of how to answer

the two questions using the geometry. It is not clear whether or not we

will be able to generalize these ideas.
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