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ABSTRACT

In recent times, there has been a lot of interest in the study of quivers,

both by mathematicians and theoretical physicists. We introduce a new

concept of polar quivers and their mutation. The idea of polar quivers

arises from the concept of anomaly free R-charges in theoretical physics.

Mutation of polar quivers is build on mutation quivers with potential,

which was defined by Derksen, Weyman and Zelevinsky. An R-charge as-

signs angles to the arrows of a quiver. In a polar quiver we assign angles

and positive non-zero integers to vertices and impose conditions equiv-

alent to the anomaly conditions for R-charges. We then establish that

mutation of a polar quiver will give a polar quiver if and only if a simple

additional condition is satisfied. We use families of quivers linked by mu-

tation, from the work of Stern, as our source of examples. The results of

this study have applications in geometry and theoretical physics.
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Chapter 1

Introduction

Quiver algebras are an example of non-commutative algebras. A quiver

Q consists of a set of vertices Qo, a set of arrows Ql and two maps

s and t, assigning to each arrow the starting and terminating vertices

respectively. The path algebra KQ = A of the quiver Q over the field K

has a basis the paths of the quiver, where a path is just a composition of

arrows. Chapter 2 of this thesis provides the mathematical background

for the study. Basic definitions and some important examples of quivers

are given in this chapter.

Our study is built on quivers with potential. A quiver with potential

(QP for short) is a quiver Q together with the potential S, which is a

sum of cycles in the path algebra of the quiver. Cyclic derivatives are

partial derivatives of the potentials with respect to arrows of the quiver,

which are in the cycles. For every potential S its Jacobian ideal J(S)

is the closure of the ideal in A generated by all elements of the cyclic

derivative. These are relations of the quiver that define the quotient

path algebra. In Chapter 3, we study quivers with potential and their

mutation. Mutation of quivers with potential was first studied and defined
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by Derksen, Weyman and Zelevinsky [8]. In their work, they proved that

there exist a non-degenerate potential which does not break as a result of

mutation. They also stated and proved splitting theorem whicll is used in

the reduction of the mutated quiver. We give some examples or"quivers

with potential and their mutations.

In chapter 4, we introduce a new idea of polar quivers which is inspired

by the concept of R-charge from theoretical physics. An R-charge assigns

angles to the arrows of a quiver, and this quiver has to satisfy the anomaly

free conditions. In a polar quiver, which will be denoted as (Q,S, N, 0),

we assign angles and positive non-zero integers to vertices. These then

induces angles for the arrows. A polar quiver has to satisfy an equivalent

of the anomaly conditions we refer to as polar conditions. From the

examples of polar quivers given in the last section of chapter 4, we can

observe that polar co-ordinates are not unique.

The process of mutation of a polar quiver is defined in chapter 5. We

give an illustration by mutating examples of polar quivers. In general we

would expect mutation of a polar quiver to give rise to a polar quiver. As

we will observe from example 5.3, this is not always the case.

In chapter 6, we state the main theorem of the study. The theorem

gives the conditions a polar quiver must satisfy for its mutation to give

a polar quiver. We follow up the examples from the previous chapter to

illustrate the significance of the theorem.

Chapter 7 gives a summary of the study. We highlight some questions

arising from this study and give recommendations on how this work can

be extended.
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Chapter 2

Mathematical background

2.1 Introduction

This chapter introduces the basic mathematics concepts that are funda-

mental to the understanding of the entire thesis. Such concepts as Vector

spaces and algebras are covered in Section 2.2. Our main source for this

section was the book by Connell [7], although many other sources were

used.

Section 2.3 introduces the basic objects of our study which are quivers.

Some important exaniples of quivers are given in this section. This section

also introduces the path algebra and gives examples. The main sources

of literature for this section include lecture notes by Crawley Boevey [6]

and papers by Kearnes [15] and Savage [17].

Section 2.4 gives some of the sources used for the study. In section 2.5,

we state the problem areas that our study has attempted to solve while

section 2.6 gives the main objectives of the study. The main approach

used in this study is stated in section 2.7. While the significance of the
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study is covered in section 2.8.

2.2 Vector space and Algebra

This is a section of basic algebraic definitions that might be helpful to the

understanding of the path algebra which we introduce in the next section.

Definition 2.1. A vector space over the field K is a set V on which

two operations are defined, called vector addition (+) and scalar multi- .

plication (.). These operations must satisfy the following conditions;

i. Closure; For all a E K and all u, v E V, u + v and the scalar product

a- v are uniquely defined and belong to V.

ii. Associativity: For all a, b E K arid all u, v, w E V, u + (v + w) =
(u+v)+wanda·(b·v)=(a·b)·v. ,

iii. Commutativity of addition: For all u, v E V, u + v = v + u.

iv. Distributive laws: For all a, b E K and all u, v E V, a . (u + v) =

(a· u) + (a· v) and (a + b) . v = (a· v) + (b· v).

v. Existence of an additive identity: 3 0 E V for which v + 0 = v = 0 + v

for all v E V;

vi. Existence of additive inverses: For each v E V 3x E V such that

v+x = 0 = x+v, x = -v is the additive inverse of v (the equations

x + v = 0 and v + x = 0 have a solution x E V denoted by -v)

vii Unitary law: For all v E Vi 1· v = v.
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Definition 2.2. Given a vector space V over a field K, a subset W of

V is called a vector subspace if W is a vector space over K under the

operations already defined on V.

An algebra is just a vector space in which multiplication of vectors is

defined. In an algebra, we can multiply elements of the algebra to get

another element which belongs to the same algebra.

Definition 2.3. An algebra is a pair (K, A), where K is a field and A

is a vector space over K, equipped with multiplication such that;

i. Closure: For all x, YEA, xy E A.

ii. Distri,butivity: a(xy) = (ax)y = x(ay) and a(x + y) = ax + ay for

a E K and x, YEA.

iii. A is commutative if xy = yx "Ix, yEA.

iv. A is associative if (xy)z = x(yz) "Ix,y, z E A.

v. A has a multiplicative identity lA such that lAX = x = XIA "Ix E A.

vi. A is finite dimensional if the underlying vector space of A is finite

dimensional.

Definition 2.4. A vector subspace I of A is called a left ideal if xy E

I "Ix E A, y E I, and a right ideal if yx E I "Ix E A, y E I.

Definition 2.5. I is an ideal of A if it is both a right and left ideal.
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2.3 Quivers and path algebras

In this section, we introduce quivers which are our objects of study, We

also describe algebras related to some examples of quivers.

2.3.1 Quivers

Definition 2.6. A Quiver Q is an oriented graph. To be more precise,

we allow multiple arrows between any two vertices. Formally, a quiver is .

a quadruple Q = (Qo, Ql, s, t) where;

• Qo is the set of vertices {v} which will be finite,

• Ql is the set of arrows which will be finite,

• sand t are two maps s, t :Ql ----t Qo, assigning to each arrow the

starling vertex and the terminating vertex respectively.

An arrow a starts at the vertex s( a) and terminates at the vertex t( a)

indicated as s(a) ~ t(a).

Definition 2.7. The quiver is finite if both sets Qo and Ql are finite. For

arrows a E Ql with s( a) = Vi and t( a) = Vj, we usually write. a : Vi ----t Vj

where Vi, Vj E Qo.

Example 2.8. The quiver Q with Qo = {VI, V2, V3,V4} and Ql = {a, b, d}

is represented by the diagram,
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Example 2.9. A quiver Q consisting of one vertex and one arrow (also

called the Jordan quiver or a loop).

Example 2.10. A quiver Q consisting of Qo = {VI, V2} and QI = {a, b},

this is called a 2-cycle.

Examples (2.9) and (2.10) are very important to our study, and we

will refer to them later.

2.3.2 Path algebras

In this section we discuss an algebra A over the field K, which has a basis

that consist of paths of a quiver Q.

Definition 2.11. A non trivial path x oflength n in Q is a composition

aIa2a3··········an of n arrows such that t(~+l) = s(ai) for 1 ~ i ~n -1. ie

tln tln-I a2 ale--e--··· __ e__ e__ e

t(x) = t(ad and sex) = s(Un) denotes the initial and final vertices

of the path x. A path is cyclic if its starting and terminating vertices

coincide.

For each vertex Vi E Qo we will denote by eVi the trivial path which

starts and terminates at the vertex Vi.
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Definition 2.12. Let K be a fixed field. The path algebra KQ as-

sociated to a quiver Q is the K-algebra whose underlying vector space
G

has basis the set of paths in Q, and with the product of paths given by
/

concatenation. Thus, if x = al ...an and y = bl ...bm are two paths, then;

This multiplication is associative since concatenation of paths is associa-

tive. We also have for x E KQ, Vi, Vj E Qo

e,.e", ~ {
eVi if Vi = Vj

0 if Vi i- vs

e,.x~ { : if t{x) = Vi

if t{x) i- Vi

xe",~{ : if s{x) = Vj

if s{x) i- Vj

Example 2.13. Let Q be the quiver VI ~ V2~ V3~ V4, then

KQ has a basis consisting of the paths eVIl eV2, eV3, eV4' al a2, a3 and

a2al· The product a2 . al of the paths al and a2 is the path a2al. On the

other hand the path ala2 = O. Some other products in the algebra are

Example 2.14. Let Q be the following quiver consisting of one vertex

and one arrow (the Jordan quiver or loop), then KQ ~ K[x] the algebra
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of polynomials in one variable.

Paths of this quiver include e, x, X2, x3, ... , x" where n is a nonnega-

tive integer. An element of the path algebra will be of the form 2::~kixi

where XO = e and ki E K i = 0, ... ,n. These are polynomials of degree n

over the field K.

Example 2.15. Let Q be the following quiver,

then for every VI ::; Vi ::; Vj ::; Vn there is a unique path from Vi to Vj. Let

f: KQ ---t Mn(K) be the linear mapfrom the path algebra to the n x n

matrices with entries in the field K that sends the unique path from Vi

to VVj to the matrix EVjVi with (Vj, Vi) entry 1 and all other entries zero.

Then f is an isomorphism onto the algebra of lower triangular matrices.

2.4 Literature review

A basic understanding of Ring theory, Field theory, Vector spaces and

Algebras was important to our study. Although there are many sources of

information in these areas, the papers [7, 15] were suitable for our study.

A good understanding of category theory was necessary to this study. In

my perspective, the book [12] y-rasa rich source, and the paper [14] was
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quite illustrative with examples.

Quivers appear in many areas of mathematics and theoretical physics.

A good understanding of quivers was fundamental to our study. It was

important to have an understanding of path algebras and modules over

path algebras which are part of the basic knowledge necessary to the

study. Our study required concepts on the category of representation of

quivers. For a reference in this area, I found the lecture notes in the paper

[2] to be detailed and easy to study, other sources of literature on quivers

that we studied include the papers [6, 11, 17].

Cluster algebra is a new and active area of study introduced and stud-

ied by Fomin and Zelevinsky in the papers [9] and [10]. Quivers have

been studied in cluster algebras where mutation of quivers is defined as

evidenced in [3]. Our study takes a slightly different direction in which we

study mutation of quivers with potential and R-charge. Mutation of quiv-

ers with potential was first studied by Derksen, Weyman and Zelevinsky

in the paper [8] in which they define the process of mutation of quivers

with potential. Their work ignited a growth of interest as evidenced in pa-

pers such as [4, 19]. We also studied polar quivers. A source of literature

in this area is the paper [1].

At the heart of this study are quivers with potential and R-charge.

This study heavily relies on examples of quivers with potential and R-

charge. The main source of these examples was the Phd thesis [18], Stern

studied tilting mutation of geometric helixes. Another source of literature

on R-charges was the paper [1]. We will provide additional information

in the introduction of each chapter on the key references used.
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2.5 Statement of the problem

Angles and positive non-zero integers can be assigned to the ~ertices of a

quiver such that the quiver satisfies polar conditions. In general w'eexpect

mutation of polar quivers to give a polar quivers. This is not always the

case. Mutation of these quivers can give mutant quivers which do not

satisfy the polar conditions.

2.6 Objective of the study

The main aim of this study is to establish conditions under which

mutation of a polar quiver gives a polar quiver.

2.7 Research methodology

The main method taken by our study is calculations involving examples

that come from Stern's thesis [18]. We establish conditions a polar quiver

must meet for its mutants to satisfy polar conditions. These are examples

of del Pezzo quivers which are related to del Pezzo geometric surfaces.

2.8 Significanceof the study

Given that polar quivers are based on anomaly free R-charges, we are

hopeful that the results of our work will have an impact on the study of

R-charges in theoretical physics.

11



Polar quivers are built on the concepts in mutation of quivers with

potential. It is possible that the added information can be integrated in

the study of non-degenerate quivers with potential.
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Chapter 3

Mutation of quivers with

potential

3.1 Introduction

Quivers with potential are the main objects of the study in this chapter.

In section 3.2, we give a definition of potential as well as their algebraic

importance. The key reference for this section is the paper by Derksen,

Weyman and Zelevinsky [8J. In the same paper we find the formal defi-

nition of mutation of quivers with potential, which is covered in section

3.3. In section 3.4, we give worked examples of mutation of quivers with

potential. The examples we used in this section are del Pezzo quivers

which come from geometry, and were found in the Phd thesis of Stern

[18J.
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3.2 Quiverswith potential

Let A = KQ be the path algebra and A = KQl be the arrow span of

the quiver Q, Ad = In- &J A &J ••.. &J 1\ consists of paths of length d and.•..
dtimes

A0 = LViEQo Ke"i are paths of length zero. We can also define the path

algebra A of Q as a graded algebra

(3.2.1) .

and

A~c= E9 A'f,iVi

viEQo

(3.2.2)

is the cyclic part of Ad which is the SPiUl of all paths al .... ad with sCad) =
t(ad for d 2: 1.

Definition 3.1. We define the closed vector subspace Acyc ~ A by set-

ting
00

Acyc = IIA~c
d=l

and call the elements of Acyc potentials, denoted as S (the potential is

non-zero if the path algebra A has oriented cycles, otherwise the potential

(3.2.3)

is zero).

Definition 3.2. Suppose Q is a quiver with an arrow span A, and

S E Acyc is a potential. The pair (Q, S) (or (A, S)) is a quiver with

potential (QP for short) if it satisfies the following conditions:

1. The quiver Q has no loops i.e. Avivi = 0 for all Vi E Qo,

14



2. No two cyclically equivalent paths appear in the decomposition of

S.

Definition 3.3. For every e E A* we define the cyclic derivative d£;as

the continuous K-linear map Acyc ----+ A acting on cyclic paths by

d

d£;(al.... ad) = 2::e(ak)ak+1 .... adal .... ak-l
k=l

(3.2.4)

Example 3.4. Consider the quiver

42:: e(ak)ak+1 .... a4al .... ak-l
k=l

a;}(al)a2a3a4 + a;}(a2)a3a4al + a;}(a3)a4alU2 + a;}(a4)ala2a3

Definition 3.5. For every potential S we define the Jacobian ideal

J(S) as the closure of the (two-sided) ideal in A generated by d£;(S) for

all e E A*. Jacobian ideals are just relations on the quiver Q generated

by cyclic derivatives on the potential d£;(S).
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Definition 3.6. We call the quotient AI J(S) the Jacobian Algebra of

S and denote it by P(Q,S) or P(A,S).

Remark 3.7. The cyclic derivative O£,.: Acyc ---t A does not depend on

the choice of the path basis. Cyclic derivatives do not distinguish between

the potentials that are equivalent as shown below.

Definition 3.B. Two potentials S and 8 are cyclically equivalent if

S - 8 lies in the closure of the span of all elements of the form al .... ad -

a2.... adal where al .... ad is a cyclic path.

Proposition 3.9. If two potentials Sand 8 are cyclically equivalent,

then O£,.(S)= 0£,.(8) for every ~ E A* hence J(S) = J(8) and P(Q, S) =
P(A, 8)

Proof Let S and 8 be two cyclically equivalent potentials, then S -

8 lies in the closure of the span of all elements of the form al .... ad -

ak .... adal .... ak-l with 1 ::s: k ::s: d, where al .... ad is a cyclic path.

For any ~ E A*,

0= o£,.(S-8)

=* o£,.(S)

o
o£,.(S) - 0£,.(8)

0£,.(8)

Since o£,.(S) = 0£,.(8) for all ~ E A*, the closure of the ideal in A

generated by O£,.(S)and 0£,.(8) for all ~ E A* is the same. Hence J(S) =
J(8).

Finally AIJ(S) = AIJ(8) which implies P(Q,S) = P(A, 8). 0

16



Definition 3.10. For any arbitrary QP (Q,S), we denote by S(2) E A2

the degree 2 homogeneous component of S. We call (Q,~) reduced if
<...-

S(2) = O. We define the trivial and reduced arrow spans of (Q,S) as

the finite dimensional K-bimodule given respectively by;

Definition 3.11. Let (Q,S) and (Q,8) be two QPs on the same vertex

in Qo. By a right equivalence between (Q,S) and (Q,8) we mean

an algebra isomorphism sp : A --T A such that <PIK = id and <peS) is

cyclically equivalent to 8

Theorem 3.12. (Splitting theorem) For every QP (Q,S) with the trivial

arrow span Atriv and the reduced arrtnu span Ared, there exists a trivial

QP (Atriv,Striv) and a reduced QP (Ared,Sred) such that (Q,S) is right-

equivalent to the direct sum (Atriv, Striv) El1 (Ared, Sred). Furthermore, the

right equivalence class of each of the QPs (Atriv, Striv) and (Ared, Sred) is

determined by the right-equivalence class of (Q,S).

Proof is provided in [8]. This theorem is essential especially in the

reduction of the mutated quivers.

Condition 3.13. Mutation of a QP (Q,S) can be defined if at any vertex

Vk E Qo the quiver satisfies the following conditions:

1. Q has no loops, i.e. Av;v; = 0 for each Vi E Qo,

2. Q has no oriented 2-cycles. For every vertex Vi, either Av;Vk or Avkv;

is zero.
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3.3 Mutation of a quiver with potential

Let (Q,S) have no loops or oriented 2-cycles, we associate to it a QP

lL~k(Q,S) = (Q', S') on the same set of vertices Qo. (Q', S') is the unre-

duced mutated quiver. We define the homogeneous components A'",Vj as

follows:

(3.3.1)
otherwise

Here the product AvivkAvkvj is understood as a subspace of A2 ~ A.

Thus, the K-bimodule A' is given by

(3.3.2)

where we use the notation

evk = 1- eVk = ~ ev,'

ViEQo-{Vk}

(3.3.3)

We associate to Q1 the set of arrows Q~ in the following way:

i) The vertices of the quiver remain unchanged.

ii) Replace each arrow a : Vi ----+ Vk in Q by a new arrowa* : Vk ----+ Vi'

iii) Replace each arrow b : Vk ----+ Vj in Q by a new arrow b" : Vj ----+ Vk.

iv) All the arrows c E Q1 not incident to Vk remain unchanged.

18



v) Add a new arrow [ba] : Vi --+ Vj for each pair of arrows a : Vi --+ Vk

and b: Vk --+ Vj in Q.

We denote by [ba] E (It nAvi'llkAvkvj the arrow in (It associated with

the product ba (to avoid confusion since it is a single arrow). We associate

to S the potential /L~k(S) = S' E A given by

S' = [SJ+ l:!.vk' (3.3.4)

where

l:!.Vk=l:!.vk (A) = L [baJa*b*
a,bEQl:S(b)=t(a)=Vk

(3.3.5)

and [S] is obtained by substituting [apap-t-lJ for each factor apap+1 with

s(ap) = t(ap+t} = Vk in any cyclic path a1 .... ad occurring in the expansion

of S. Note that none of the cyclic paths start nor terminate at Vk. Both

[SJ and l:!.vkdo not depend on the choice of a .basis Q1 of A. The following

proposition follows from the definitions.

Proposition 3.14. Suppose that a QP (Q,S) has no loops or oriented

2-cycles, and a QP (Q, S) is such that evkA = AeVk = {O}. Then we have

by theorem (3.12),

/L~k(Q EB Q, S + S) = /L~k(Q, S) EB (Q, S) (3.3.6)

Theorem 3.15. The equivalence class of the QP (Q',8') = /L'(Q, S) is

determined by the right-equivalence class of (Q, S)

Proofs for (3.14) and (3.15) are provided in [8J.
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Note that even if a QP (Q,S) is assumed to be reduced, the mutated

quiver (q,S') = p' (Q,S) is not necessarily reduced because the com-

ponent [S](2) E AI2 may be non-zero. Combining Theorems"--'(3.12) and

(3.15) we obtain the following corollary.

Corollary 3.16. Suppose a QP (A,S) has no loops or oriented 2-cycles,

and let (A',S') = p'(Q,S} . Let (A,S) be a reduced QP such that

(3.3.7)

Then the right-equivalence class of (A, S) is determined by the right-

equivalence class of (A, S)

Definition 3.17. In the situation of corollary (3.16) we use the notation

(3.3.8)

and call the correspondence

(3.3.9)

the mutation at vertex ui: See [8] for more details.
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on mutation of quivers with

potential

Example 3.18. Consider the quiver with potential Q given below,

the quiver has no loops or 2-cycles. The potential of the quiver is given

by;

S (1) (1) (1) (1) + (1) (2) (1) (2) + (2) (1) (2) (1) + (2) (2) (2) (2)= aTWaWVaVUaUT aTWaWVaVUaUT aTWaWVaVUaUT aTWaWVaVUaUT

(3.4.1)

We will mutate the quiver at V. The mutated quiver Q' will be given

by;

The four new arrows are [aWva~b]' [aWva~b]' [aWva~b] and [aWva~b].

While the unreduced potential of the mutated quiver will be given by;
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S'

We can rename the arrows of the quiver. First the four new arrows

as,

[a(l) a(l) 1 - a(l)
WV VU - WU [a(2) a(l) 1 - a(3)

WV VU - WU

[a(l) a(2) 1 - a(2)
WV VU - WU [a(2) a(2) 1 - a(4)wv vu - WU

On reduction, the potential then takes the form;

(3.4.3)

From the potential, we can see that the mutated quiver has no loops

or 2-cycles.

Example 3.19. Consider the quiver with potential in the diagram below,
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The quiver has no loops or 2~cycles and its potential is given by,

s (1) (3) (2) (2) (3) (1) (1) (1)
aUTaTWaWVaVU+aUTaTWaWVaVU+ auwawvaVU +

(2) (2) (1) (2) (2) (1)
auwawvavu + aVTaTWaWV +aVTa.rwaWV

We mutate the quiver at W to get an unreduced quiver Q' given by the

diagram below,

The new arrows created by the process of mutation are;

From V to T, From V to U,

[(1) (1)]
[auwaWv]a.rwawv

[(1) (2)] [ (2) 1aTWaWV auwaWV

[(1) (3)] [ (3) ]a.rwaWV auwawv

[(2) (1)]a.rwaWV

[(2) (2)]a.rwawv

[(2) (3)]a.rwawv
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and the potential for the unreduced quiver is given by;

Sf [(1) (3)] (2) [(2) (3)] (1) [ (1) ] (t}aUT aTWawv aVU + aUT aTWaWV aVU + auwaWv avu +
[auwa~]a~i, + aVT[aWva~V] + aVT[aWvaWv] +
[

(1) (1)] (1)* (1)* + [(1) (2)] (2)* (1)* + [(1) (3)] (3)* (1)* +aTWaWV aWVaTW aTWaWV aWVaTW arwawv awvarw

[
(2) (1)] (1)* (2)* + [(2) (2)] (2)* (2)* + [(2) (3)] (3)* (2)* +arwawv aWVaTW arwawv aWVaTW arwawv awvarw

There are two cycles in the quiver, and this is evident in the Unreduced

potential S'. We must undertake the reduction process to identify and

eliminate equivalent paths that are creating the 2-cycles. This is done by

taking cyclic derivatives with respect to the arrows in the 2-cycles. Taking

cyclic derivative with respect to aVT gives, [aWva~] = [aWvaWv] and,

taking cyclic derivative with respect to [auwaWv] and [auwa~v] gives

(1) (1)* * d (2) (2)* * ti 1 S b tit ti thiavu = awvauw an avu = awvauw res})ec rve y. u s 1 u mg s

result into the potential S', we get pairs of equivalent 2-cycles which

are eliminated in the reduction process. The number of new arrows are

reduced through this process. We rename the remaining arrows as,
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From V to T, From V to U,

[aWvaWv] E Q' = a~ E Q (1) ,',,-, -
[aUWaWV]E Q = 0 E Q

(2) , -
[auwaWv] E Q = 0 E Q

(3), -[aUWaWV]E Q = aUV E Q

[a(2) a(2) ] E Q' - a(4) E Q-TWWV - TV

[aWvaWv] E Q' = a~ E Q
This is shown in the reduced quiver below,

with a potential given by;

s - aUTa~a~ivawu + aUTa~a~ivawu + a~a~ivaWT +
(2) (2) (1) + (3) (3) (1) + (2) (1) (2) +

aTVaVWaWT aTVaVWaWT aTVaVWaWT

a~a~ivaWT + ~a~ivaWT + auva~ivawu

Mutation of quivers, and of quivers with potential is a reversible pro-

cess. We can get back to our original quiver from the mutated quiver by

carrying out mutation at the very vertex that was mutated. The theorem

below gives a detailed account for this.

Theorem 3.20. (Every mutation is an involution) The correspondence
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ILk : (Q,S) ---+ (A, S) acts as an involution on the right-equivalence

classes of the reduced QPs that are without loops or oriented 2-cycles,

that is IL~ (Q,S) is right equivalent to (Q,S)

Proof of the theorem is provided in [8].

26



Chapter 4

Polar quivers with potential

4.1 Introduction

In this chapter! we introduce polar quivers. Angles and positive non-

zero integers can be assigned to the vertices of a quiver with potential in

such a way that the quiver satisfy the polar conditions. In section 4.2,

we state the three polar conditions. In section 4.3, we give examples of

polar quivers with potential. This section gives an illustration of the polar

conditions.

4.2 Polar quivers

Definition 4.1. A quadruple (Q,S, N, ()), where Q is a finite quiver with

potential S, N : Qo -+ Z>O, () : Qo -+ [0,211") where () can be extended to

lUnless stated otherwise, the work covered from this chapter onwards is original
and therefore has no references.
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a function Ql -t [0,21T) by O(a) := (O(t(a)) - O(s(a))) mod 211"' is called a

polar quiver if all the following conditions hold:

1. For any v E Qo a total NT (v) can be defined such that

NT(v):= L N(s(a)) = L N(t(a))
a I·t(a)=v a Is(a)=v

(4.2.1)

2. For any v E Qo totals

OL(V) .- L O(a)N(s(a)),
a It(a)=v

OR(V) .- L ·O(a)N(t(a)),
als(a)=v

can be defined such that

(4.2.2)

where

(4.2.3)

3. For any cyclic element al ... an E S, n >2 and

(4.2.4)

The next section gives examples of polar quivers which offer illustra-

tions for each polar conditions;
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4.3 Examples of polar quivers

<..-

In this section, we give some examples of polar quivers. Through cal-

culations, we verify that they satisfy all polar conditions. The last two

examples are of particular interest for they concern the same quiver with

potential, but with different polar co-ordinates. From these examples we

conclude that polar co-ordinates for a particular quiver with potential are

not unique.

Example 4.2. Consider the diagram of t» x t» quiver with potential

below. We show that it is a polar quiver,

T IT U7IT 2" IT-
4 -+

tt
2"

IT

2"

Sii 1 3ii

~ IT ~w 2" v

Figure 4.3.1: Diagram of t» x pl. Vertices are given names T, U, V

and W, while the number in the vertices indicates the number of grouped

vertices.

The potential for the quiver is given by;

S - a(l) a(l) a(l) a(l) +a(l) a(2)' a(l) a(2) +n£) •.a(l) a(2) a(l) +a(2) a(2) a(2) a(2)
- TW WV VU UT TW wv VU UT +rw WV VU UT TW wv VU UT
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We show that this is a polar quiver,

1.

NT(v):= L N(s(a)) = L N(t(a))
alt(a}=t1 als(a}=t1

N(T) = 1

NT(U) - 2 x 1 = 2 xl N(U) == 1

N(V) = 1

NT (W) = 2 x 1 = 2 x r N(W) = 1

It is clear that ~ (v) > N (v) for any vertex.

2. For any v E Qo totals

OL(V) - L O(a)N(s(a)),
alt(a}=t1

OR(v) - L O(a)N(t(a)),
a Is(a}=t1

can be defined such that
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where

oL(W) = 2 x ~ x 1
2

= 7r

= 7r

= 7r = 7r

and their sums are;

- 27r(2 - 1)

27r(NT(T) - N(T))
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27f

27f(2 - 1)

27f(NT(U) - N(U))

- 27f

27f(2 - 1)

27f(NT (V) - N (V))

27f

= 27f(2 - 1)

27f(NT (W) - N (W))

3. For any cyclic element al ... an E S, n >·2 and

the quiver has a potential given by

S - nQ)•.a(l) a(l) a(l) +a(l) a(2) a(l) a(2) +n.£l..a(l) a(2) a(l) +nQ) a(2) a(2) a(2)
- -1"W WV VU UT TW WV VU UT -1"W WV VU UT -TW WV VU UT
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In any cyclic component a1 ... an of the potential, n > 2 and

4L O( ai) = 27f
i=l

as shown below

O( (1,2) (1,2) (1,2) (1,2))
aTW awv aVU aUT

7f 7f 7f 7f-+-+-+-
222 2

where a~ implies aWv or aWv and so on.

The next two examples of the same quiver with potential but with

different polar co-ordinates. These examples are a good illustration that

for a given quiver with potential, the polar co-ordinates are not unique.

s (1) (3) (2) (2) (3) (1)
aUTaTWaWVaVU +aUTOTwawvavu +
auwa~va~& + auwa~va~& +

(1) (2) (2) (1)
aVTOTwawv + aVTaTWaWV

Example 4.3. In this example, we assign to the quiver with potential a

set of polar co-ordinates that makes the quiver polar. This will be verified

in the calculations that follow.

We show that it is a polar quiver.
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w

ire T

12

v+-----------~--~h
12

Figure 4.3.2: Diagram of p2 quiver blown up at one point. Vertices are

given names T, U, V and W, while the number in the vertices indicates

number of grouped vertices. Angles are' assigned such that the quiver

satisfies all polar conditions but none of its mutants does.

1.

NT(v):= L N(s(a)) = L N(t(a))
a It(a)=v . a Is(a)=v

2 X 1 = (1 X 1) + (1 X 1)

2

N(T) = 1

(1 X 1) + (1 X 1) = 2 X 1

2

N(U) = 1
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NT(V) - (2 x 1) + (1 x 1) = 3 x 1

3

N(V) = 1

3 x 1 = (2 x 1) + (1 x 1)

= 3

N(W) = 1

It is clear that ~(v) > N(v) for any vertex.

2. For any v E Qo totals

(}L(V) - L "(}(a)N(s(a)),
a It(a)=t>

(}R( v) - L (}(a)N(t(a)),
a Is(a)=t>

can be defined such that

where

= (IX~Xl)+(IX5: Xl)
47f

3
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= (1 x iXl) + (1 x 5; Xl)
47r
3=

3

- (2XiXl)+(IX5; Xl)
37r
2=

eR(W) = (2XiXl)+(IX5; Xl)
37r
2

57r
3x - X 1

6
57r- 2

and their sums are;

=

= 27r(2 - 1)

= 27r(NT(T) - N(T))

= 27r(2 - 1)

= 27r(NT(U) - N(U»
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= 27r(3 - 1)

= 27r(NT(V) - N(V))

27r'(3 - 1)

27r(NT(W) - N(W))

3. For any cyclic element a1 ... an E S, n > 2 and

The quiver has a potential given by;

S (1) (3) (2) (2) (3) (1) (1) (1)
aUTaTWaWVaVU + aUTaTWaWVaVU + auwawvaVU +

(2) (2) (1) (2) (2) (1)
auwawvaVU + aVTaTWaWV + aVTaTWaWV

In any cyclic component a1 ... an of the potential, n > 2 and
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as shown below

()(aUTaWvaWva~b ) - ()(aUTa~a~va~b )

(}(aUT) +(}(a~) +(}(a~V) +(}(a~b)

7r 7r 57r 7r
2+3+6+3

= 27r

()(auw) +()(a~v ) +()(a~b )

57r 57r 7r
= -+-+-Q 6 3
= 27r

(}(a n.Q)•. a(2))vr=rw WV

(}(aVT) + (}(a~) + (}(aWv)

57r 7r 57r
= 6+3+6

27r

All conditions are satisfied, hence a polar quiver.

Example 4.4. In this example, we have the same quiver as in the previous

example but with a different set of polar co-ordinates. Just like in example
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4.3, we will show that this is a polar quiver.

T U

Figure 4.3.3: Diagram of p2 quiver blown up at one point. Vertices are

given names T, U, V and W, while the number in the vertices indicates

the number of grouped vertices. Angles are assigned such that the quiver

and all its mutants satisfy polar conditions.

We show that this is indeed a polar quiver,

1.

NT(v):= L N(s(a)) = L N(t(a))
alt(a)=v als(a)=v

2 x 1 = (1 x 1) + (1 x 1)

2

N(T) = 1

(1 x 1) + (1 x 1) = 2 x 1

2

N(U) = 1
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NT(V) _ (2 x 1) + (1 x 1) = 3 x 1

3

N(V) = 1

3 x 1 = (2 x 1) + (1 x 1)

3

N(W) = 1

From the calculations above, NT (v) > N (v) for any vertex.

2. For any v E Qo totals

(}L(V) .- L "O(a)N(s(a)),
a I t(a)=v

(}R( v) .- L (}(a)N(t(a)),
als(a)=v

can be defined such that

where

1r
2 x - x 1

2

1r = 1r

1r tt
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(2X~XI)+(IX3: Xl)

77r
4

= (2X~XI)+(IX3: Xl)

77r
4

37r
3x4 X 1

97r
=

4
and their sums are;

= 27r(2 - 1)

27r(NT(T) - N(T»

27r(2 - 1)

27r(NT(U) - N(U»
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r

27r(3 - 1)

- 27r(NT (V) - N (V))

27r(3 - 1)

= 27r(NT(W) - N(W))

3. For any cyclic element a1 ... an E S, n > 2 and

The quiver has a potential given by;

S (1) (3) (2) (2) (3) (1) (1) (1)
aUTaTWaWVaVU + aUTaTWaWVaVU + auwaWvaVU +

(2) (2) (1) (2) (2) (1)
auwawvaVU + aVTaTWaWV + aVTaTWaWV

In any cyclic component a1 ... ~ of the potential, n > 2 and
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as shown below

O(aUT) +O(a~) +O(aiVv) +O(a~&)
7r 7r 37r 7r

- 4+"2+7+"2
27r

- O(auw) + O(aWv) + O(a~&)
37r 37r 7r

= 7+7+2"
27r

O(a nQ)..a(2»)VT-TW WV

O(aVT) +O(a~) + O(aWv)
37r 7r 37r
7+2"+7
27r

All conditions are satisfied, hence a polar quiver.

Lemma 4.5. For any two distinct paths x and y of the quiver with a

common starting and target vertices, we have O(x) ~mod27r O(y):
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Proof. Let x = al ... an be a path of the quiver Q,

=

n

I:0(ai)
i=l

(O(t(an)) - O(s(an)))mod21f + ...+ (8(t(al)) - O(S(al)))mod21f

((O(t(an)) - O(s(an))) + ... + (O(t(at}) - O(S(al))))mod21f

(O(t(al)) - 8(s(an)))mod21f

(O(t(x)) - O(s(x)))mod21f

(O(x) )mod21f

~mod21f

Let y be any another path with s(x) = s(y) and t(x) = t(y), then

O(x) ~mod21f (O(t(x)) -' O(s(x)))mod27r

~mod21f (O(t(y)) - O(s(Y)))mod21f

~mod 21f O(y)

o

This lemma will become particularly important in the proof of the

major theorem in Chapter 6.
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Chapter 5

Mutation of Polar quivers

5.1 Introduction

This chapter introduces mutation of Polar quivers. Mutation of quivers

with potential was covered in Chapter 2, chapter 4 introduced polar quiv-

ers, with some interesting examples. Section 5.2 of this chapter gives a

continuation with mutation of polar quivers. It is in this section that we

state the process of mutation for polar quivers. Worked examples that

illustrate the process of mutation of polar quivers are given in section 5.3.

5.2 Mutation of polar quivers

Definition 5.1. Let (Q,S,N,O) be a polar quiver, at any vertex vEQo

define the mutation of (Q, S, N, 0) at v to be (Q, S, N, 0) where;

• Q and S are obtained by mutation of (Q,S) at v .

• For a vertex u i- v, N(u) '= N(u) and O(u) = O(u).

45



•
N(v) = NT(v) - N(v) ~ 1 (5.2.1)

• The position of v after mutation is given by,

O(v) = (O(V) _O~(V)) = (O(V) + O~(V))
N(v) mod 2,.- N(v) mod 2.,-

~5.2.2)

Mutation of the quiver at any vertex say v alters the position of the

vertex, and hence the orientation of vertices and arrows in the quiver.

The angles ~(~; and o;(~;determines the new position of v. If the
(lL(v) (lR(v) • -( ) _ ( ( ) _ (I,!'(V)) _sum of N(v) and ""iV(0IS 21f, we have 0 v - 0 V N(v) mod 2,.- -

(O(v) + o;«v))) , i.e. the new position for v is unique. If the sum is
v mod 211" •

not 21f, mutation at v will give rise to two different positions for v, hence

the second condition ensures that the new position for the mutated vertex

is unique.

We can visualize the third condition as implying that elements of the

potential define a convex polygon. The polar quiver has a cyclic order

to the vertices imposed by the angles. The third condition ensures that

this ordering is consistent with each element of the potential. From the

examples below, we will observe that mutation preserves this condition

although there are some cases in which it fails, In chapter 6, we will state

and prove the conditions that if a polar quiver satisfies, this problem will

be resolved.
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5.3 Examples on mutation of polar quivers

In this section, we illustrate the process of mutating polar c., quivers by

examples. The polar co-ordinates for the mutated vertex are changed. In

Example 5.2, the mutated vertex W has the same polar co-ordinate as U

which was unaffected by mutation. Example 5.3 highlights another effect

of mutation on polar quivers. Although we started with a polar quiver,

the resulting quiver after mutation breaks some of the polar conditions.

There are cases where everything goes right, as in eExample 5.4, where'

mutation of a polar quiver gave a polar quiver.

Example 5.2. In this example, we mutate the polar quiver in Example

4.2 shown below,

T IT U
7iT 2 tt- --t -!

IT

2

tt

2

SiT 1 3iT
-! IT 4w 2 v

Figure 5.3.1: Diagram of pI x pl. Vertices are given names T, U, V

and W, while the number in the vertices indicates the number of grouped

vertices.

We mutate the quiver at W (the yellow vertex). By the definition of
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mutation for a polar quivers, any other vertices not same as W will keep

their position after mutation. The new position for W is ~ven by;

O(W) = (O(W) _O~(W)) = (O(W) + O~(W))
N (W) mod 211" N (W) mod 211"

O(W) (O(W) _ O~(W))
N(W)

(5; - i)
mod 211"

mod 211"

4

This is the same position occupied by U the blue vertex.

if
7ii

T U,W
- 2 ii
-! --!

If

2

3.:r
v 4

Figure 5.3.2: pl x F" quiver mutated at W. The number 2 at the blue

vertex implies that two vertices U and W are sharing the same position.

The next task is to check if this quiver satisfies all polar conditions.
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1.

NT(v):= L N(s(a)) = L N(t(a)),
alt(a)=v als(a)=v <--

4xl=2x2 N(T) = 1

- 4

NT (U, W) = 2 x 1 = 2 x 1

= 2

N(U,W) = 1

2x2=4xl N(V) = 1

= 4

It is clear that ~ (v) > N(v) for all vertices.

2. For any v E Qo totals

()L(V) - L ()(a)N(s(a)),
a I t(a)=v

()R( v) .- L ()(a)N(t(a)),
als(a)=v

can be defined such that

where

49



()R(T) ,~ 2 x ~ x 2
24x1I"x1

- 211"

()L(T) -

- 411"

()R(U, W) 2 x ~ x 1- 22 x ~ x 1

= 11"

()L(U, W) -
2

- 11"

2 x ~ x 2()L(V) = 2

= 211"
and their sums are;

= 411"+ 211"()L(T) + ()R(T)

=' 611"

= 211"(4'- 1)

= 211"(NT(T) - N(T))

()R(U W)()L(U, W) + ,
= 211"

~ 2.-(2 -1) U W))
,-..rT(U W) - N( ,211"0'- , ,
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271"(4 - 1)

271"(NT(V) - N(V))

3. For any cyclic element al ... an E S, n > 2 and

The quiver has a potential given by

In any cyclic component al ... an of the potential, n > 2 and

3L B( lLi) = 271"
i=1

as shown below

B( (1,2) (1,2,3,4) (1,2»)
awTarv aVW B( (1,2) (1,2,3,4) (1,2»)

aUT arv aVU
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Where a(1,2) implies a(l) or a(2) and so onWT WT WT .

All Properties are satisfied, hence it is a polar quiver.

In the next two examples, we have the same quiver with potential but

with different polar co-ordinates. We mutate these quivers at the same

vertex to illustrate the process of mutation, and to check if the resulting

quivers satisfy the polar conditions.

Example 5.3. In this example, we have a polar quiver in Example 4.3

shown below.

7rr T

w v+-------------~--~7"
1212

Figure 5.3.3: Diagram of p2 quiver blown up at one point. It is a polar

quiver, but not any of its mutants.

We mutate this quiver at W. In the mutated quiver, any vertex not

W will have the same position as in the old quiver. W will have a new

position in the mutated quiver given by,

O(W) = (O(W) _ O~(W)) = (O(W) + O~(W))
N (W) mod 211" N(W) mod 211"
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O(W) (O(W) _ O~(W))
N(W)

(1;; - T)
mod 2,.-

171f 51f---
12 4

1f

mod 2,.-

6

The diagram below best illustrates this.

7IT

w ~
6

v
7IT
12

Figure 5.3.4: Diagram of a mutation of t= quiver blown up at one point.

This quiver does not satisfy the second and third polar conditions.

We check if this quiver satisfies all polar conditions.

1.

NT(v):= L N(s(a)) = L N(t(a))
a It(a)=v a Is(a)=v
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NT(T) _ 5 x 1 = (2 x 2) + (1 x 1)

= 5

N(T) = 1

(1 x 1) + (1 x 1) = 1 x 2

= 2

N(U) = 1

NT(V) = (3 x 2) = (5 x 1) + (1 x 1)

6

N(V) = 1

(2 x 1) + (1 x 1) = 3 x 1

3

N(W) = 2

It is clear that ~ (v) > N (v) for all vertices. The first condition is

satisfied.

2. For any v E Qo totals

OL(V) - L O(a)N(s(a)),
aJt(a)=v

OR(v) - L O(a)N(t(a)),
aJs(a)=v

can be defined such that
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where

71f5x - x 1
6

351f
6

(1 x i x 1) + (2 x ~; x 2)
131f

6

(lxix1)+(lX5; Xl)
131f
6

231f1x-x212
231f

6

51f R
3 x 12 x 2 o (V)

51f
2

(5x 7; Xl) + (1 x 5; Xl)

151f
2

(
51f ) ( 231f )2 x 12 x 1 + 1 x 12 x 1

1l7r
4

and their sums are;

351f 131f-+-6 6
81f

21f(5 - 1)

21f(NT(T) - N(T))
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eL(U) +eR(U)
1371" 2371"

= -+-6 6

- 671" "-'

=f 271"(2 - 1)

= 271"(NT(U)- N(U))

571" 1571"
- 2+2
= 1071"

_ 271"(6 - 1)

= 271"(NT (V) - N(V))

1171" 571"
- 4+4
= '471"

=f 271"(3 - 2)

= 271"(NT(W) - N(W))

This condition is broken at U and W.

3. For any cyclic element al ... an ES, n > 2 and

The quiver has a potential given by;
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In any cyclic component a1 ... CLn of the potential, n > 2. The arrow

aWU is not compatible with the polar ordering for the quiver. Any

cyclic component a1 ... CLn of the potential with this arrow in the

composition will have

as shown below

O(aUT) + O(an) + O(a~iv) + O(awu )
7r 77r 57r 237r
2"+6+ 12 +"12
47r

O( (1,2,3,4,5) (1,2,3) (1,2»arv aVW aWT O(a¥~,3,4,5» + O(a~&3» + O(a~~)
77r 57r 57r
6+ 12 + 12

= 27r
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(3) ,
8(auv) + 8(avw) + 8(awu)
57f 57f 237f

3+ 12 +1"2
47f

The second and third polar condition are broken, hence this is not

a polar quiver.
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Example 5.4. In this example, we have the same polar quiver as in

Example 4.4 shown below;

IS" T U

Figure 5.3.5: p2 quiver blown up at one point. This is a polar quiver, so

are its mutants.

We mutate this quiver at W. In the new quiver, W will have a new

position given by;

O(W) (O(W) _ O~(W))
N(W)

(1~7r - I)
mod 2.,.-

1l7r 91r
= ---8 8

7r

mod 211"

4

The position of other vertices is not changed in the mutated quiver.

1.

NT(v):= I: N(s(a)) = L N(t(a))
alt(a)=v als(a)=v
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lSn
S

5n
'8

Figure 5.3.6, DiagraIll of a mutation of p' quiver bloWll up at one point.

Tbis quiver satisties all polar conditions.

NT(T) ~ 5" 1 ~ (2 " 2)+ (1 " 1) .

= 5

N'(U) ~ (1" 1)+ (1" 1)~ 1" 2

= '2

N'(V) ~ (3" 2) ~ (5 " 1)+ (1 " 1)

= 6
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N(U) = 1

N(V) = 1
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NT(W) = (2 x 1) + (1 x 1) = 3 x 1

3

It is clear that ~ (v) > N (v) for all vertices.

2. For any v E Qo totals

()L(V) .- L ()(a)N(s(a)),
alt(a)=v

()R( v) .- L ()(a)N(t(a)),
als(a)=v

can be defined such that

where

N(W) =2

(2X3; X2)+(IXiXl)
71r
4

(IXiXl)+(IX3; Xl)
71r
4
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(5 x 5; x 1~+ (1 x 3; Xl)
3l7r

4

37r- 3xgx2
97r
4

(2x 3; Xl) + (1 xix 1)
77r
8

and their sums are;

oR(W)

=

257r 77r-+-4 4
= 87r

27r(5 - 1)

27r(NT(T) - N(T))

77r 7r= -+-4 4
27r

27r(2 - 1)

27r(NT(U) - N(U))

97r 3l7r
-+-4· 4

107r

- 27r(6 - 1)

= 27r(~(V) - N(V))
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27r(3 - 2)

27r( ~ (W) - N (W))

The second polar condition is fulfilled.

3. For any cyclic element al ... a.. E S, n > 2 and

The quiver has a potential given by;

Any cyclic element of the potential is of length > 2 and the sum of

angles is calculated below;

O( (3) (2) )aUTaTVaVWaWU

O(aUT) + O(aU) + O(a~~) + O(aWU)
7r 57r 37r 7r

- 4+4+8+8
- ,27r
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O( (1,2,3,4,5) (1,2,3) (1,2))aTV aVW aWT O(a¥~,3,4,5)) +O(a~~3)) +~(a~~)
57r 37r 37r-+-+-488
27r

O(auv) + O(a~iv) + O(awu )
37r 37r 7r-+-+-2 8 8
27r

This quiver meets the third polar condition, which implies that all

arrows are compatible with the polar ordering and hence consistent

with the potential.

From the last two examples, we mutated a quiver with potential but

having two different sets of polar co-ordinates. In Example 5.3 the mu-

tated quiver failed to satisfy the second and third polar conditions, while

in Example 5.4, the mutated quiver satisfied all the polar conditions. The

polar quiver in Example 5.4 must be having some special properties that

enables its mutants to meet all polar conditions. These are the conditions

that will be investigated in the next chapter.
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Chapter 6

Main theorem on mutation of

polar quivers

6.1 Introduction

From the previous chapter, we had two cases, Examples 5.3 and 5.4, of a

quiver with potential but with two different R-charges. On mutation, the

quiver in Example 5.3 fails to satisfy the second and third polar condi-

tions, while the quiver in Example 5.4 does. In this chapter we state and

prove the preconditions a polar quiver must satisfy for its mutants to sat-

isfy all polar conditions. In the last section, we highlight the importance

of the theorem by revisiting these two examples.

6.2 Main theorem

Given a polar quiver, its mutation can either give a polar quiver or a quiver

that breaks some of the polar ,conditions. There are certain conditions
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that if a polar quiver satisfies, the resulting quiver after mutation will be

a polar quiver. These conditions are stated in the following theorem.

Theorem 6.1. Let (Q, S, N, 0) be a polar quiver. The mutated quadruple

(Q, S, ii, 0) is a polar quiver if and only if for any vertex v E Q, o;(~j>
O(a) for all a I t(a) = v and e;(~l> O(b) for all b I s(b) = v.

Proof. We prove the theorem for each of the three polar conditions.

Let (Q, S, N, 0) be a polar quiver, we consider four different cases for.

the proof of the theorem for the first polar condition;

Case 1. Consider v, the mutated vertex .. By definition,

NT(v):= L N(s(a)) = L N(t(a))
alt(a)=v als(a)=v

mutation of Q gives the quiver Q with arrows reversed at v.

ilT(v)L - L N(s(b))
bEQI t(b)=v

L N(t(a))
aEQI s(a)=v

- NT(v)

ilT(v)R.- L N(t(b))
bEQls(b)=v

L N(s(a))
aEQ I t(a)=v

NT(v)
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At the mutated vertex v we have,

Case 2. Consider a vertex u E Q with no arrows joining it with v,

NT (uh_ .- L N(s(b))
bEQlt(b)=u

L N(s(a))
aEQlt(a)=u

- NT(u)

NT(u)R .- L N(t(b))
bEQI s(b)=u

L N(t(a))
aEQrs(a)=u

NT(u)

which illustrates equality as well as no change to NT(u), i.e. for a vertex

u with no arrows joining it to v, we have after mutation of the quiver at

v

(6.2.1)

Case 3. Consider a vertex u E Q with arrows a E Ql such that als(a) =

u, t( a) = v. We rewrite NT (u) to take to consideration this case. Thus

NT(U) = L N(s(a)) = L N(v) + L
aEQ It(a)=u aEQls(a)=u aEQls(a)=u

t(a)=v t(a)lv

N(t(a))

(6.2.2)
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Arrows incident to v from u are reversed in the unreduced mutated

quiver Q', while any paths a2al E Q with s(al) = u, t(al) = v = s(a2)

give arrows [~alJ E 0'. Define a non-empty subset W c CloGas the set

of target vertices for the arrows [a2alJ. Elements of this set are vertices

Wi, i E N, hence t(a2) = Wi for some i.

L N(s(b))
bEQ' It(b)=u

L N(v) + L N(s(b)) + L
bEQ,/t(b)=U bEQ'/ t(b)=u bEQ'/ t(b)=u

s(b)=v s(b)~W: s(b)EW

N(s(b))

L N(v) + L N(s(a)) + L N(s(a))
aEQ/s(a)=u aEQ/ t(a)=u aEQ/ t(a)=u

t(a)=v s(a)~W s(a)EW

L N(v) + L N(s(a))
aEQ/s(a)=u aEQlt(~)=u

t(a)=v

L N(v) + NT(u)
aEQ/s(a)=u

t(a)=v

(6.2.3)

68



L N(t(b))
bEQ'J s(b)=u

L N(t(b)) +
bEQ'\~m;~ [a2alIEQ'\t(a:{:~S(a2)

L N(t(a2)) by (6.2.2)

L N(t(a)) + L L N(t(a2))
aEQ\s(a)=u a EQ\s(ad=u a2Js(a2)=V

t(a)iv 1 t(ad=v

aEQls(a)=u
t(a)=v

a' EQ\s(ad=u
1 t(ad=v

NT(U) + L (NT(v) - N(v))
aEQ\S(a)=u

t(a)=v

NT(u) + L N(v)
aEQ\s(a)=u

t(a)=v

(6.2.4)

From (6.2.3) and (6.2.4), N'T(U)L = N'T(U)R for the unreduced quiver

Q'. We show that equality holds after reduction of Q' to a reduced quiver

Q.

=

L N(s(b))
bEQ'Jt(b)=u

L N(v) + L N(s(b)) + L
bEQ,\t(b)=U bEQ'1 t(b)=u bEQ'\ t(b)=u

s(b)=v s(b)¢W s(b)EW
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L N(t(b))
bEQ' Is(b)=u

L N(t(b)) +
IS(b)-U [l Q'I s(aI)=u

bEQ' t(b)#v a2al E t(aI)=V=S(a2)

(6.2.6)

From the last summations in (6.2.5) and (6.2.6), s(b) E Wand t(a2) E

W. If s(b) = Wi and t(a2) = Wi for some Wi E W, then we have a 2-cycle

in 0'. Reduction of 0' eliminates these trivial elements to give a quiver.

Q. Let ui, E W, we define Xw, as

(6.2.7)

The elements XWj < 0 consists of arrows' b while XWi > 0 consists of

the composite arrows [a2al] that were left after reduction of the quiver.

Xw, = 0 implies that all new arrows cancel out with old ones. We now

state NT(uh and NT(U)R for the reduced quiver as;

L N(v) + L N(s(b)) - XWj(fcrr XWj ~ 0)
bEQlt(b)=u bEQI t(b)=u .

s(b)=v s(b)¢W

(6.2.8)

NT(u)R = L N(t(b)) + XWi(fcrr Xw, ~ 0)
bEQIS(b)=U

t{b)ofv
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where i -=I- i. N,T(U)L and N'T(U)R are reduced by an equal amount,

maintaining equality, that is, NT(U) = NT(U)L = NT(U)R.

Case 4. Now consider a vertex U in Q with arrows alt(a) = u, s(a) = v,

the calculation for NT (u) is similar to the calculation above only that the

direction of arrows joining U and v is reversed. Arrows target to U from v

are reversed in the unreduced mutated quiver 0', while any path al a2 E Q

with t(al) = U, s(al) = v = t(a2) gives an arrow [ala2] E 0'. Define a

non-empty subset W c Q~ as the set of vertices which are a source of

arrows [ala2]. Elements of this set are Wk, kEN, hence s(~) = Wk for

some k.

L N(s(b))
bEQ' It(b)=u

L N(s(b)) +
bEQ'lt(b)=u []EQ' 'I t(ad=u

s(b)",v ala2 s(al)=v=t(a2)

(6.2.9)

L N(t(b))
bEQ'ls(b)=u

L N(v) + L N(t(b)) + L N(s(b))
bEQ'IS(b)=u bEQ'IS(b)=u bEQ'1 s(b)=u

t(b)=v t(b)¢W t(b)EW

(6.2.10)

Calculations for equality are similar to those in Case 3. From the last

summations in (6.2.9) and (6.2.10), t(b) E W and s(~) E W. Ift(b) = Wk

and s(a2) = Wk for some Wk E W, then we have a 2-cycle in Q'. Reduction
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of Q' eliminates these trivial elements to give a quiver Q. Let Wk E W,

we define XWk as

In the reduced quiver, either XWk ~ 0 or XWk ::; 0 for any Wk E W, but

not both. We now state fvT(U)L and fvT(U)R for the reduced quiver as;

L N(v) + L N(t(b)) - XWI(far XWI ::; 0)
bEQIS(b)=U bEQI s(b)=u

t(b)=v t(b)¢W

where k i= l. The elements XWk(far XWk ~ 0) and XWI(far XWI ::; 0)

reduces N'T(U)L and N'T(U)R by an equal amount. Equality is hence

maintained after reduction ie fvT(u) = fvT(U)L = fvT(U)R'

In all the four cases, fvT(v) = fvT(V)L = fvT(V)R for any vertex v

of the quiver after mutation. This implies that for any vertex v in the

mutated quiver Q,

NT(v) = L N(s(b)) = L N(t(b))
bEQlt(b)=v bEQls(b)=v

Remark 6.2. If a quiver satisfies the first polar condition, its mutants

will always satisfy the first polar condition.
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To prove the theorem for the second polar condition, we consider four

different cases.

Case 1. Consider the mutated vertex v. Let (Q, S, N, ()) be a polar

quiver, for any v E Qo totals

(}L(V) - L
aEQlt(a)=v

(}R( v) .- L
aEQ I s(a)=v

(}(a)N(s(a)) (6.2.11)

(}(a)N{t(a)) (6.2.12) .

are defined such that their sum,

Mutation of the quiver Q at v alters these angles. In the mutated quiver

Q, these angles are be given by;
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(jL(V) - L (j(b)N(s(b))
bEQI t(b)=v

L (O(v) - O(S(b)))mod21TN(S(b))
bEQI t(b)=v

L (O(V) + O~(v) - O(S(b))) N(s(b)) by (5.2.2)
bEQlt(b)=v N(v) mod21T

OR(v)L (O(v) - O(S(b)))mod21TN(S(b)) + L ---N(s(b))_ _ N(v)
bEQ It(b)=v bEQ It(b)=v. .

OR(v)- L (O(s(b)) - O(V))mod21TN(S(b)) + -- - L N(s(b))
- NM -bEQ It(b)=v bEQ It(b)=v

. OR(V)L (O(t(a)) - e (V))mod 21TN(t(a)) + -__ ilT(V)
aEQls(a)=v N(v)

~ OR(v) -T~ O(a)N(t(a)) + -_-N (v) and by (6.2.12)
aEQls(a)=v N(v)

OR(V)_OR (V) + -_-ilT(v)
N(v)

=
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OR(V) - L O(b)N(t(b))
bEQI s(b)=v

L (O(t(b)) - O(V))mod21fN(t(b))
bEQ I s(b)=v

= L (O(t(b)) - O(v) + O~(V)) N(t(b)) by (5.2.2)
bls(b)=v N(v) mod21f

OL(V)
= L (O(t(b)) - O(V))mod21fN(t(b)) + L ---N(t(b))- - NMbEQ Is(b)=v bEQ Is(b)=v .

= - L (O(v) - O(t(b)))N(t(b)) + O~(v) L N(t(b))
- N(v) _

bEQ Is(b)=v bEQ Is(b)=v

. OL(v)
= L (O(v) - O(s(a)))N(s(a)) + -_-iVT(v)

aEQlt(a)=v N(v)

" OL(V) -T~ O(a)N(s(a)) + -_-N (v) and by (6.2.11)
aEQlt(a)=v N(v)

= -OL(v) + o~(v) iVT(V)
N(v)

Adding the two angles we have,

OR(V) OL(V)-OR(V) + iVT(V) - OL(V) + ---fII'(V)
N(v) N(v)

= (OL(V) +OR(V)) ~(V) _ (OL(V) + OR(V))
N(v) .

- fII'(V) -
= 27fN(v)-_- - 27fN(v) by (4.2.2) and (5.2.1)

N(v)

27f (iVT(V) - iV(v))
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Case 2. Consider u, a vertex in Q with no arrows joining it to v, mutation

at v will have no affect on the angles at u as shown below,

jjL(U) L f)(b)N(s(b))
bEQlt(b)=u

L f)(a)N(s(a»
aEQlt(a)=u

f)L(U)

jjR(U) L f)(b)N(t(b))
bEQls(b)=u

L. f)(a)N(t(a»
aEQls(a)=u

= f)R(U)

adding the two angles,

jjL(U) + jjR(U) _ f)L(u) + f)R(u)

= 27f (NT(U) - N(u»)

Since there are no arrows joining u and v, from Case 2 of the proof in the

first condition, ~(u) = iP'(u). By the definition of mutation of a polar

quiver at a vertex v, N(u) = N(u) for any vertex u =1= v. Hence we can
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write the sum of the angles as;

Case 3. Consider u, a vertex in Q with arrows als(a) = u, t(a) = v.
Angles at u are given by,

OL(U) = L O(a)N(s(a»
aEQlt(a)=u

OR(u) L O(a)N(v) + L O(a)N(t(a»
aEQ/s(a)=u ~EQ/s(a)=u

t(a)=v t(a)fv

where, by definition,

27r(NT(u) - N(u»

27rN(u)

Arrows target to v from u are reversed in the unreduced mutated

quiver Q', while any path a2al E Q with s(al) = u, t(al) = v = s(a2)

gives an arrow [a2al] E Q'. Define a non-empty subset W c Q~ as the

set of vertices on which arrows [a2al] are target. Elements of this set are

vertices Wi, i EN, hence t(~) = Wi for some i. We calculate the angles

at u for the reduced quiver Q, where the big brackets account for the

reduction, i # j. In the big bracket, let s(b) = Wj and t(a2) = Wj for

some j.
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OL(U) - L O(b)N(v) + L (}(b)N(s(b)) +
bEQlt(b)=U bEQI t(b)=u

s(b)=v s(b)¢W

In the big bracket below, let s(b) = Wi and t(a2) = Wi for some i

L (}(b)N(t(b))
bEQIS(b)=U

t(b)ofv

Let

and

78



B, consists of arrows from Wj to u that were left after reduction of the

quiver Q' while B2 consists of the composite arrows [a2al], corresponding
o

to the paths a2al E Q through v, that were left after reduction of 0'.
Reduction of the quiver quotients out any two equivalent paths between

two vertices but opposite in direction.

We intend to calculate for jjL(u) +jjR(u). To do this, we first evaluate

B1, B2 and find their sum. The result of this calculation will help in the

calculation for jjL (u) + jjR (U).

L O(b)N(wj) -
bEQ-1 t(b)=u

s(b)=wj

O(b)mod2...- = (27r - O([a2al]))mod27r since b and [a2al] are two arrows be-

tween Wj and u but in opposite directions. We drop the mod 27r since
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aEQI t(a)=u
s(a)=wj

(O(ll2) + O(al))N(wj) by lemma (4.5)

I t(a)=u
aEQ s(a)=wj

We split the sum to a double sum. This enables us to sum over individual

arrows in the path ll2al E Q.

aEQI t(a)=u
s(a)=w;

Since b and [a2al] are two arrows between Wj and u but in opposite

directions, we have O([ll2al]) = (211" - O(a))mod2"'-. We drop the mod 211"

since (211" - O(a)) > O.We also split the first summand to a double sum,
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so that we can sum over individual arrows in the path a2al E_ Q.

aEQI t(a)=u
s(a)=Wi

aEQI t(a)=u
s(a)=Wi
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We now evaluate the sum of BI and B2•

(6.2.13)
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We now get back to the calculations for OL(u) and OR(u).

OL(U) = L_ O(b)N(v) + L O(b)N(s(b)) + e. G

bEQlt(b)=U bEQI t(b)=u
s(b)=v s(b)¢W

L (O(u) - O(v)) mod21r N(v) + L O(b)N(s(b)) + s,
bEQlt(b)=U bEQI t(b)=u

s(b)=v s(b)¢W

L (O(u)- O(v) + O~(v)) N(v) + L O(b)N(s(b)) + e,
bEQlt(b)=U N(v) mod21r -I t(b)=u

s(b)=v bEQ s(b)¢W

L (O~(v) - (O(v) - O(U))) N(v) + L O(a)N(s(a)) + e,
aEQls(a)=u N(v) mod21r aEQI t(a)=u

t(a)=v s(a)¢W

L (O~(v) - O(a)) N(v) + L O(a)N(s(a)) + Bl
aEQls(a)=u N(v) mod21r It(a)=u

t(a)=v aEQ s(a)¢W

By the assumption of the theorem, we have ~~?> O(a) 'v'als(a) =
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u, t(a) = v. This enables us to open the bracket as,

jjL(U) = L (O~(v) ~ o(a) N(v) + L O(a)Jv(s(a)) + e,
aEQls(a)=u N(v) It(a)=u

t(a)=v aEQ s(a)¢W

= L OL(~) _ L O(a)N(v) + L O(a)N(s(a)) + B,
aEQls(a)=u aEQls(a)=u aEQI t(a)=u

t(a)=v t(a)=v s(a)¢W

L OL(V) - L O(a) (NT(v) - N(v)) + L O(a)N(s(a)) + B,
aEQls(a)=u aEQls(a)=u It(a)=u

t(a)=v t(a)=v aEQ s(a)¢W

= L OL(v) + L O(a)N(v) - L O(a)NT(v) +
aEQls(a)=u aEQls(a)=u aEQls(a)=u

t(a)=v t(a)=v t(a)=v

L O(a)N(s(a)) + e,
aEQI t(a)=u

s(a)¢W

jjR(U) L O(b)N(t(b)) + B2
bEQIS(b)=U

t(b)lv

= L O(a)N(t(a)) + B2
aEQls(a)=u

t(a)lv

Adding the two angles gives,
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L O(a)N(v) + L_ O(a)N(t(a))'q- L
aEQIS(a)=u EQIS(a)=u

t(a)=v a t(a),w
tiEQls(a)=u

t(a)=v

L' O(a)NT(v) + L O(a)N(s(a» +s, + B2
aEQls(a)=u aEQI t(a)=u

t(a)=v s(a)ftW

Qls(a)=u
aE t(a)=v

L_ O(a)N(s(a» + s,+ B2
QI t(a)=u

aE s(a)ftW

by Equation 6.2.13,
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OR(U) - L O(a)NT(v) + L U(a)NT(v) +
aEQIS(a)=u aEQIS(a)=u

t(a)=v t(a)=v

L O(a)N(s(a)) + L O(a)N(s(a)) +
QI

t(a)=u aEQI t(a)=u aEQIS(a)=u
aE s(a)~W s(a)EW t(a)=v

L OR(V) - 21f ( L N(wj) + L N(Wi))

aEQI~~:~:: a2alEQlt(a:i::~:S(a2) aEQlst(~l::;i

OR(U) + L O(a)N(s(a)) + L (OL(V) + OR(V)) -
aEQlt(a)=u aEQIS(a)=u

t(a)=v

(6.2.14)

and from equation (6.2.8) which we have rewritten below,
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NT(U) = L N(v) + L N(s(b)) - XWj(Jar x~7~ 0)
bEQlt(b)=U bEQI t(b)=u

s(b)=v s(b)~W

we have

L N(v) + L N(s(b)) - XWj(Jar XWj.~ 0)
bEQIS(b)=U bEQI t(b)=u

t(b)=v s(b)~W

L N(v) + L N(s(b)) + L N(wj) -
bEQIS(b)=U bEQI t(b)=u bEQ'1 t(b)=u

t(b)=v s(b)~W s(b)=wj

L N(v) + L_ N(s(a)) + L N(wj) -
aEQlt(a)=u aEQI t(a)=u aEQI t(a)=u

s(a)=v s(a)~W s(a)=wj

From which we get,

L N(v) = NT(u)- L N(s(a))- L N(wj)+
aEQlt(a)=u aEQI t(a)=u aEQI t(a)=u []EQ'I S(al)=U

s(a)=v s(a)~W s(a)=Wj a2al t(al)=V=S(a2)
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Substituting this result into (6.2.14),

jjL(U) + jjR(U) = 21l.j{(u) + 27rNT(u) - 27r L N(s(a) -
aEQI t(a)=u

s(a)¢W

27r L N(wj) - 27r L N(Wi) +
QI t(a)=u EQI t(a)=u

aE s(a)=wj a s(a)=w;

27r L N(Wj) - 27r L~ N(Wj)
[ J Q'I s(al)=u [ JEQ'I s(aI)=u
a2al E t(al)=v=s(a2) B2al t(aI)=v=s(a2)

27rN(u) + 27rNT(u) - 27r L N(s(a» - 27r L
aEQ/ t(a)=u aEQ/ t(a)=u

s(a)¢W s(a)EW

N(s(a»

27rN(u) + 27rNT(u) -. 27r L~ N(s(a»
aEQlt(a)=u

27r (N(u) + NT(u) - NT(U»)

27r (N(u) + NT(u) - N(u) - N(u») by (5.2.1)

27r (NT(u) - N(~»)

From the definition of mutation of a polar quiver at a vertex v, N(u) =
N(u) for any vertex u =1= v. Our equation becomes,

Case 4. Lastly we consider u, a vertex in Q with arrows alt( a) = u, s( a) =
v. Calculations for jjL(U) and jjR(U) in this case are similar to the calcu-

lations in case 3 above, only that arrows between u and v are reversed.

Addition of these angles gives the same result as in the case above.

In all the four cases, if the conditions of the theorem are satisfied,
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mutation of a quiver Q will give a quiver Q after reduction with the

angles OL(V) and OR(v), at any vertex v of the quiver, such that;

We show that ifI'(v) >N(v) for any vertex v in the mutated quadru-

ple (Q, S ,N, 0). For any vertex v in the mutated quiver Q we have

OL(V) > 0 and OR(v) > 0 implying that 271" (NT(V) - N(v).) > O.

This can only be true if NT(V) > N(v).

We now prove the theorem for the third and last condition. Let Q

be a polar quiver, then for any cyclic element al ... a.. E_S, n > 2 and

Li O(ai) = 271". Let a; and a;+I be arrows in Q such that t(ai+I) = v =

s(ai). We will have a new potential Sf for the unreduced quiver Qf re-

sulting from the mutation of Q at v given by;

Sf = [S] +Llv

where [S] is the potential for Q with the paths aiai+1 E Q through

v composed to arrows [aiai+1] in Qf and Llv comprises of cyclic ele-

ments [aiai+I]ai+Iai resulting from the composite arrows [a;ai+I]. For any

cyclic element al ... [a;ai+IJ ... a.. E [S], n > 2 and Li O(ai) = 271". Since

O([a;ai+lJ) = O(ai) + O(ai+l). We check for cyclic elements [aiai+IJai+Iai
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in ~v,

O([aiai+l]) = O(ai) + O(ai+l)

(O(t(ai)) - O(v))mod27T + (O(v) - O(s(ai+l)))mod27T

O(a;) + O(a;+l)

(9(v) - O(s(a;)))mod27T + (O(t(a;+l)) - 9(V))mod27T

(O(V) - O(s(a;)) + O~(v)))' + (O(t(a;+l)) _ O(v) + O~((v)))
N (v mod 27T N V mod 27T

(O~(v) _ (O(s(a;)) _ O(v))) + (O~((v)) - (O(v) - O(t(a;+l))))
N(v) mod27T N v mod27T

(
OR(V) . ) (OL(V) )-- - - (O(t(Ui)) - O(v)) + +xr- - - (O(v) - O(s(ai+l)))

N(v) mod27T N(v) mod27T

(
OR(V) ) (OL(V) )--- - O(Ui) + --- - O(ai+l) (6.2.15)

N(v) mod27T N(v) mod27T

By the assumption of the theorem, o;(:~> O(ai+l) and o;(~}> O(ai)

which implies each of the brackets in (6.2.15) is positive, and

O([Uiai+l]a;+la;) O(ai) + O(ai+l) + (~~; - O(Ui)) + (~i:;- O(ai+l))

OR(V) OL(V)
---+---
N(v) N(v)

= 27r

S' is the potential for the unreduced quiver Q'. There might be arrows
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in cyclic elements of [Sl which are in the opposite direction to the new

composite arrows [ai tli+l 1 hence giving rise to 2-cycles. Reduction of Q'

eliminates 2-cycles while replacing these arrows with equivalent paths

(paths with same starting and target vertices as the arrows). By lemma

(4.5) the angles of the arrows and their equivalent paths are equal. Re-

duction of Q' does not alter the angles of cyclic elements of S'. For each

cyclic element al ... an ES, the potential for the reduced quiver Q, n > 2

(JL(V) ( )Suppose N(v) < ()ai+l , then

In which case

This contradicts the third condition for polar quivers, and hence com-

pletes the proof.

o
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The following lemmas are an immediate consequence of the theorem.

Lemma 6.3. Let (Q,S, N, 0) be a polar quiver. If for a vertex v, N (v) =
1 then the mutated quadruple (Q, S, N, iJ) is a polar quiver.

Proof Let N(v) = 1, the sums OL(v) and OL(v) are strictly greater

than each of their components. By theorem 6.1, the mutated quadru-

ple (Q,S,N,iJ) is a polar quiver. o

Lemma 6.4. Let (Q, S, N, 0) be a polar quiver. If, for a vertex v, there

exists 0 and ()' such that O(a) = 0 for all a I t(a) = v and O(b) = ()'for all

b I s(b) = v then the mutated quadruple (Q, S, N, iJ) is a polar quiver.

Proof If O(a) is identical for all a I t( a) = v then

OL(V) = O(a) L N(s(a» = O(a)NT(v)
a It(a)=v

OL(V) ~(v)
-- - = O(a)NT() N() > O(a).N(v) v - v

Similarly for identical O(b) for all b I s(b) = v,

OR(V) = O(b) L N(t(v» = O(b)NT(v)
bl s(b)=v

O~(v) = O(b) ~(v)· > O(b)
N(v) NT(v) - N(v)

By theorem 6.1, the mutated quadruple (Q,S,N,iJ) is a polar quiver.

o
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6.3 Examples highlighting the importance

of the main theorem

In this section, we revisit Examples 5.3 and 5.4 from chapter 5. We show

that the quiver whose mutants break some of the polar conditions fails to

satisfy the theorem. We also show that the quiver whose mutants satisfy

the polar conditions fulfills the requirements of the theorem.

Example 6.5. In this example, we have a polar quiver which fails to

satisfy the conditions of theorem 6.1. This is the quiver in Example 5.3

shown below.

w v+-------------~--~7rr
12

7ii T

Figure 6.3.1: Diagram of p2 quiver blown up at one point. It is a polar

quiver, but not any of its mutants.

In Example 5.3, the mutant of this quiver at W failed to satisfy the

second and third polar conditions. We show that this quiver fails to satisfy

the conditions of the theorem.

From the polar quiver above, we have;
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~(U) ~ 4~ { > ~ = O(aUT)' OR(U) 21f ~ _ O( (1,2»)
fI(U) > - aVUN(U) 3 < 5; = O(aVT) 3 3

O~(V) ~ 3~ { > !!: _ O( (1,2») OR(V) 51f 51f _ O( (1,2,3»)3 - aVU ,
- >N(V) 4 < 5; = O(aVT) fI(V) 4 6~ awv·

51f > 51f _ 0 a(1,2,3) OR(W) = 31f {> ~= O(a¥~),
4 6 - ( WV) fI(w) 4 5,.. _ lI( )< If -u auw

where O(a¥~) = O(aWv), O(aSilv) and so on. By Theorem 6.1, muta-

tion at any vertex of the quiver will not give a polar quiver. Mutation at

any vertex of this quiver will give a quiver which doesn't satisfy the polar

properties, as was the case in chapter 5.
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Example 6.6. Here we revisit the quiver in Example 5.4 shown below.

Figure 6.3.2: p2 quiver blown up at one ·point. This is a polar quiver, so

are its mutants.

As shown in example 5.4, mutation of this quiver gives a polar quiver.

We show that this quiver satisfy the conditions of theorem 6.1. From the

polar quiver above, we have;

(}L(T)
---- = 7f
N(T)

(}R(T)
---- = 7f
N(T) > { ~3,.-

4"

(}L(U)
---- = 7f
N(U) > { ~

31< =4"

(}R(U)
---- =7f
N(U)

(}L(V) = 787f > { 3~

N(V) f
()( (1,2»)avu ,

37f _ ()( (1,2,3»)- awv4
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(}~(W) = 97f > 37f = (}(a(1,2,3»)
N(W) 8 4 wv

where (}(a~~3») = (}(aWv), (}(aWv), (}(aWv) and so on. For any vertex

v of the quiver, ~(:1> O(a) for all a I t(a) = v and o;(~l> (}(b) for all

b I t(b) = v. By theorem (6.1), mutation at any vertex of this quiver will

give a polar quiver. This is shown in the previous chapter where the

quiver was mutated at W (the yellow vertex).
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Chapter 7

Summary and

recommendat.ions

We introduced the concept of polar quivers and their mutations. Theorem

6.1 gives the conditions under which mutation of a polar quiver gives a

polar quiver. Two interesting questions are;

1. Is there a general way of assigning polar co-ordinates to quivers with

potential so that they satisfy the polar conditions?

2. Under what conditions is mutation an operation on polar quivers?

The examples we used are taken from the work of Stern [18]and relate

to geometry. With these examples, we have some idea of how to answer

the two questions using the geometry. It is not clear whether or not we

will be able to generalize these ideas.
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