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Abstract

It is well known that in a finite ring with identity, every element is either a zero

divisor or a unit. The classification of finite rings is not fully settled. Different

studies have generated interesting results on certain classes of finite rings. It is

worthwhile to note that completely primary finite rings have proved to be useful

towards the classification of finite rings. This is due to the fact that a finite ring

has a unique maximal ideal if and only if it is a full matrix ring over a completely

primary finite ring. Moreover, any commutative ring is a direct sum of completely

primary finite rings. A deeper understanding of the elements in a finite ring enables

us to fully understand the ring. In this study, we investigate and characterize the

zero divisor graphs of classes of commutative completely primary finite rings of

maximal prime power characteristic. For each class of rings, zero divisor graphs are

drawn and trends in their geometric properties established through graph theoretic

approach. In higher order cases, properties of zero divisors of commutative rings

are employed in interpreting and determining the invariant geometrical structures of

the graphs. This study has established that the diameter of the zero divisor graphs

of the rings studied lie between 0 and 2 while their girth is either 3 or ∞. None

of the rings has a zero divisor graph that is n-gon, where n is an integer greater

than 3. Fundamentally, this study has revealed that rings whose zero divisor graphs

are isomorphic are not necessarily isomorphic. The findings of this study extend

further the knowledge about the structure theory of finite rings and in particular,

the classification of the zero divisors of commutative completely primary finite rings.
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Chapter 1

Introduction

1.1 Background of the study

Rings considered in this thesis are finite, associative and commutative with 1 as

the identity. Although finite rings have been studied extensively in recent years

by Raghavendran [25] and Wilson [29] and tools necessary for describing completely

primary finite rings have been available for some time (See [12, 13, 14, 15, 16] and [25]

), their classification into well known structures is not complete. For any given ring

R, the elements of R are either units or zero divisors. Classification of finite rings

would be complete and better understood if the structures of both sets of elements

in a ring are known. However, most research on rings has been on classification of

their units. This perhaps is because a set of zero divisors, Z(R) of any general ring

R lacks algebraic structure. The set Z(R) is not necessarily closed under addition.

For instance in the ring Z6, 2 and 3 are zero divisors while 2 + 3 is not. Thus Z(R)

is typically not a subring of R and hence is not an ideal. In 1988, Istvan Beck [11]
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introduced an alternative approach to the study of sets of zero divisors of rings using

graph theory. His original definition of the graph of a commutative ring consist of

the vertex set of all the elements of a ring such that distinct vertices x and y are

adjacent if and only if xy = 0. Anderson and Livingston [7], later modified this

definition. Their graph called the zero divisor graph of the ring R, denoted by Γ(R),

is a graph whose vertices are nonzero zero divisors of R such that two vertices u and

v in Z(R)\{0} = Z(R)? are connected by an edge u− v, if and only if uv = 0. This

definition, now considered standard, is the one adopted in our study. Properties of

such a graph reveals important properties about the ring R. Classification of units

of completely primary finite rings of prime power characteristic has been addressed

by Chikunji and Oduor (See [12, 24]) among others. However, no evidence exists

that similar studies have been conducted on the zero divisors of these rings. To

bridge this gap, our study has addressed the structures of zero divisor graphs of

three particular classes of completely primary finite rings of maximal prime power

characteristic.

1.2 Statement of the problem and Justification

The structure of a finite ring with identity 1 is well understood if the characterization

of its units and zero divisors is complete. Every finite ring with 1 is a direct sum of

matrix rings over completely primary finite rings. A comprehensive understanding of

completely primary finite rings would therefore make the classification of finite rings

achievable. The units of the classes of completely primary finite rings considered in

this thesis are well known (see [24]). However, the structures of the zero divisors
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of these rings have not been established. In this thesis, we study the geometric

properties of graphs of the zero-divisors of completely primary finite rings of maximal

prime power characteristic. Our study involves establishing the diameter, girth, the

binding number, the clique number besides determining the partiteness of these

graphs.

1.3 Objectives of the study

1.3.1 General objective

The structures of the zero divisors of certain classes of completely primary finite rings

whose units have been established, [24] are not known. The objective of this study

is to investigate and characterize the zero divisor graphs of commutative completely

primary finite rings of maximal prime power characteristic using the graph theoretic

properties.

1.3.2 Specific objectives

Specific objectives are to;

(i) identify and investigate the zero divisor graphs of the Galois rings.

(ii) characterize the zero divisor graphs of finite rings in which the product of a

finite number of zero divisors is zero.

(iii) characterize the zero divisor graphs of finite rings in which the product of any

two zero divisors lies in the Galois subring.
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1.4 Basic Concepts On Ring Theory

Unless otherwise stated, the concepts and definitions in the sequel can also be found

in [2, 20] and [21].

Definition 1.4.1 A ring is a non empty set R together with two binary operations

+ and × called addition and multiplication such that (R,+) is an abelian group,

R is associative under multiplication and the left and right distributive laws of

multiplication over addition hold. R is a commutative ring if ab = ba for all a, b ∈ R.

It is called a ring with identity or with 1 if R contains the element 1 6= 0 such that

a.1 = 1.a = a for all a ∈ R.

Definition 1.4.2 A non empty subset H of a ring R is called a subring of R if H

is itself a ring under the same operations of R. A subring I of a ring R is a left

ideal if rx ∈ I for all r ∈ R and for all x ∈ I and is called a right ideal if xr ∈ I

for all r ∈ R and for all x ∈ I. If I is both a left and right ideal, then I is simply

called an ideal of R.

Definition 1.4.3 Let S be a subset of a ring R and let {Ai : i ∈ I} be the family

of all ideals in R which contain S. Then
⋂
i∈I Ai is called the ideal generated by

S and denoted by (S). The elements of S are called generators of the ideal (S). If

S = {s1, s2, . . . , sn}, then the ideal (S) is denoted by (s1, s2, . . . , sn) and said to be

finitely generated. An ideal (s) generated by a single element is called a principal

ideal.

Definition 1.4.4 An ideal M in a ring R is said to be maximal if M 6= R and for

every ideal N such that M ⊂ N ⊂ R, either N = M or N = R.
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Definition 1.4.5 For any ring R, an R − Module is a set M together with two

operations of addition in M and multiplication with elements of R such that for all

m, n ∈M and a, b ∈ R the following hold;

(a) (M,+) is an Abelian group,

(b) (a+ b).m = a.m+ b.m and a.(m+ n) = a.m+ a.n,

(c) (a.b).m = a.(b.m),

(d) 1.m = m.

Definition 1.4.6 Let R be a commutative ring with 1 and U be an R - module.

The idealization of U over R is a ring R⊕ U satisfying the following:

(r1, u1) + (r2, u2) = (r1 + r2, u1 + u2) and (r1, u1) (r2, u2) = (r1r2, r1u2 + r2u1) where

r1, r2 ∈ R and u1, u2 ∈ U.

1.5 Units and zero divisors

A ring R is said to be finite if it contains a finite number of elements. Let R be

a finite commutative ring with identity 1 6= 0. An element u ∈ R is a unit if there

exists an element v ∈ R such that uv = vu = 1 6= 0. An element x ∈ R is a zero

divisor if there exists a nonzero element y ∈ R such that xy = yx = 0. A ring R is

called a division ring or skew field if every nonzero element in R has a multiplicative

inverse so that the nonzero elements form a group in R under multiplication. A

field is a commutative ring with the identity element 1 6= 0 in which every nonzero

element has a multiplicative inverse. A commutative ring with identity 1 6= 0 is
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called an integral domain if it has no zero divisors.

A completely primary finite ring is a ring R with identity 1 6= 0 whose subset of

all its zero divisors forms the unique maximal ideal. A Galois ring is a finite ring

with identity 1 6= 0 such that the set of all its zero divisors with 0 included forms a

principal ideal. For instance, Zpk , for some positive integer k, is a Galois ring with

(p) as its unique maximal ideal. When k = 1, Zpk = Fp. The leading role in the

classification of all the finite rings with identity certainly makes completely primary

finite rings attractive to most researchers. Similar to completely primary finite rings

so far studied, our attention has been restricted to the finite commutative rings in

which the set of all the zero divisors forms an additive group.

Let R be an arbitrary ring ( not necessarily rings considered in this thesis ), then

the set of all the zero divisors of R is not necessarily an ideal of the ring. For

instance, the element (2, 3) and (1, 4) of the ring Z4⊕Z6 endowed with component-

wise addition and multiplication are zero divisors, but if the set of the zero divisors

were to be an ideal, then (3, 1) would be a zero divisor, an obvious contradiction.

Theorem 1.5.1 (See [15],Section 1 ) If a ring R is finite, then every left unit is

a right unit and every left zero divisor is a right zero divisor. Furthermore, every

element of R is either a unit or a zero divisor.

Theorem 1.5.2 [16] If a ring R has n ≥ 2 left zero divisors (including zero ), then

R is a finite ring, and |R| ≤ n2.

Proof.

Suppose a 6= 0 is a left zero divisor in R and consider the right ideal Ra of R. Since

a is a left zero divisor in R, there exists x 6= 0 ∈ R such that ax = 0, so that
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for all r ∈ R, r(ax) = (ra)x = 0. So Ra consists entirely of left zero divisors.

Thus |Ra| ≤ n. Now, since Ra is finite, consider the surjective additive group

homomorphism φ : R → Ra defined by r → ra with kerφ = {y ∈ R : ya = 0}.

We have R/kerφ ∼= Ra, and every element of the kernel is a left zero divisor of R

( since a 6= 0), so that |kerφ| ≤ n. Thus kerφ and Ra are finite, so that R is finite

and therefore, |R| = |kerφ||Ra| ≤ n2. �

An ideal J of a ring R is said to be nil if all its elements are nilpotent. The ideal

J is said to be nilpotent if Jn = (0) for some n ∈ Z+. The ring of polynomials over

a commutative ring R has been denoted by R[x] while

J [x] = {a0 + a1x+ · · ·+ asx
s, ai ∈ J} ⊆ R[x].

A polynomial f(x) ∈ R[x] is called monic if the coefficient of the term with the

highest power of x in f(x) is equal to 1, which is the identity element of R. The

group of automorphisms of R has been denoted by AutR while AutTR denotes the

subgroup of AutR which fixes R elementwise. A ring R is called a left (or right)

Artinian if any descending chain of left (or right) ideals of R has a minimal element

and is an Artinian ring if it is both left and right Artinian. R is called left (or

right) Noetherian if any ascending chain of left (or right) ideals of R has a maximal

element and is said to be a Noetherian ring if R is both left and right Noetherian.

The Jacobson radical J(R) of a ring R is the intersection of all the maximal left (or

right) ideals of R. It contains all the left and right nil ideals of R and if u ∈ J(R),

then 1 + u is a unit in R. By notation, (J(R))0 = R and R̄ = R/J(R) so that for

any r ∈ R, r̄ = r + J(R). The characteristic of R is denoted by charR and for any

ring R, if R̄ = R/J(R) is a division ring, then char R = q where q is identically zero
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or q = pn for some prime integer p and positive integer n. Thus R has a copy of Z

or Zpn where Z is the ring of integers while Zpn is the ring of integers modulo pn

respectively. An R-module M shall be both left and right such that (as)b = a(sb)

for each a, b ∈ R and s ∈M. For any ring R, all R-modules are unitary such that

if M is an R-module, then 1m = m for each m ∈ M. A chain of submodules of an

R-module M given by M = M0 ⊃ M1 ⊃ · · · ⊃ Mn = (0) is a composition series

of R-submodules of M if the factor Mi/Mi+1 has no proper submodules. A similar

definition exists for the composition series of ideals.

Definition 1.5.3 Let R be a ring. A positive integer n ≥ 1 is called the index of

nilpotency of J(R) if (J(R))n = (0) and (J(R))n−1 6= (0).

Theorem 1.5.4 Let R be an Artinian ring. Then J(R) is nilpotent.

Proposition 1.5.5 Let R be a ring and J be the Jacobson radical of R. Then a ∈ R

is a unit if and only if a+ J is a unit in R/J.

Proof.

Clearly, if a is a unit in R, then a + J is a unit in R/J. Conversely, let a + J be a

unit in R/J. Then there exists an element b+ J ∈ R/J such that (a+ J)(b+ J) =

(b + J)(a + J) = 1 + J. Thus ab = ba = 1 which implies that b = a−1. Hence a is a

unit. �

Lemma 1.5.6 (Nakayama’s Lemma) Let I be an ideal of a ring R. The following

conditions are equivalent

(i) I ⊆ J(R).
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(ii) 1 + i is a unit for each i ∈ I.

(iii) If M is finitely generated R−module such that IM = M, then M = (0).

(iv) If N is a submodule of a finitely generated R−module M such that

M = IM +N, then M = N.

Definition 1.5.7 Let R be a ring and M an R−module which has a composition

series of R − submodules M = M0 ⊃ M1 ⊃ · · · ⊃ Mn = (0). Then n is called the

length of M as an R−module and is denoted by d(RM).

Theorem 1.5.8 ( See [2]) Let R be a ring and M an R-module. If

M = M0⊕M1⊕· · ·⊕Mh where Mi 6= (0) for all 0 ≤ i ≤ h, M = M ′
0⊕M ′

1⊕· · ·⊕M ′
s

where M ′
j 6= (0) for all 0 ≤ j ≤ s with h ≤ s and Mi ⊆M ′

j, for all 0 ≤ i ≤ h

and for all 0 ≤ j ≤ s, then Mi = M ′
i and h = s.

Remark 1.5.9 Let R be a ring, M an R −module and I an ideal of R such that

IM = (0). Then M is an R/I − module such that for each a + I ∈ R/I and

m ∈M, (a+ I)m = am.

Lemma 1.5.10 Let R be a ring with a finite length of composition series d(RR)

and R0 a subring of R such that R = R0 + J(R). Then d(R0R) = d(RR).

Definition 1.5.11 Let R be a commutative ring, σ an automorphism of R and P

the set of all left polynomials Σs
i=0aix

i over R. Then P can be made into a ring by

usual addition and the multiplication defined by the rule xa = σ(a)x for all a ∈ R.

This ring is called the skew polynomial ring over R given by σ and is denoted by

R[x, σ]. If σ is of finite order t, then R[x, σ] is denoted by R[x, σ, t].
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Proposition 1.5.12 Let R[x, σ] be a skew polynomial ring over R and g(x) ∈

R[x, σ] a monic polynomial. Then, for any f(x) ∈ R[x, σ], there exists unique

q(x), r(x) ∈ R[x, σ] such that f(x) = q(x)g(x) + r(x) with deg r(x) < deg g(x) or

r(x) = 0.

Remark 1.5.13 Let F [x, σ] be a skew polynomial ring over a field F. Then F [x, σ]

is a principal ideal domain.

Proposition 1.5.14 Let R[x, σ] be a skew polynomial ring over R and f(x) ∈

R[x, σ] a monic polynomial of degree r. Then R[x, σ] / < f(x) > ∼= R⊕R⊕ · · · ⊕R︸ ︷︷ ︸
h copies

as an R-module and hence d(R(R[x, σ] / < f(x) >)) = d(RR).deg f(x) = rd(RR).

1.6 Local Rings

The concepts and definitions in this section are also adapted from [2] and [10].

1.6.1 Characterization of Local Rings

Let R be a finite commutative ring and let R? denote the multiplicative group of

units of R. Then R is local if it has a unique maximal ideal K and 1 + K ⊆ R?.

Thus, R is local if all the non units of R form an ideal.

Definition 1.6.1 Let R be a ring, then R is called a local ring if its subset of non-

units is closed under addition.

Proposition 1.6.2 (See [10], Theorem 2.3 ) For a ring R, the following statements

are equivalent.
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(i) R is a local ring.

(ii) R has a unique maximal left ideal.

(iii) J(R) is a maximal left ideal.

(iv) The set of elements of R with no left inverses is closed under addition.

(v) J(R) = {x ∈ R | Rx 6= R}.

(vi) R/J(R) is a division ring.

(vii) J(R) = {x ∈ R | x is not a unit}.

(viii) If x ∈ R, then either x or 1 + x is a unit.

Proposition 1.6.3 Let R be an Artinian ring. If R has no non-trivial idempotent

elements then, R is a local ring.

Definition 1.6.4 Let R be a ring and let S be the smallest subring of R containing

the identity 1 6= 0 such that for any integer n, n1 is a unit in R, then if (n1)−1 ∈ S,

then S is called the prime subring of R. If the prime subring S is a field, then S is

called the prime subfield of R.

Example 1.6.5 Let p be a positive prime integer. Then Zp[x] is ring of all polyno-

mials with coefficients in Zp as its prime subfield.

Proposition 1.6.6 ( See [2]) Let R be a local ring with J(R) a nil ideal and S the

prime subring of R.

(i) If charR = 0, then S ∼= Q.
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(ii) If charR = pn, then S ∼= Zpn , for all n > 0.

Proposition 1.6.7 ( See [2]) Let R be a local ring with J(R) a nil ideal and S the

prime subring of R. Then S̄ = (S+J(R))/J(R) is a prime subfield of R̄ = R/J(R).

Definition 1.6.8 Let R be a commutative local ring and f(x) ∈ R[x]. Then f(x) is

called a regular polynomial if f(x) is not a zero divisor in R[x].

Theorem 1.6.9 Let R be a commutative local ring with J(R) a nil ideal and

f(x) = Σs
i=0aix

i ∈ R[x]. Then f(x) is nilpotent if and only if a0, a1, . . . , as are

nilpotent.

1.7 Galois Rings

It is well known (See Raghavendran [25],Theorem 1.7.1 ), that if R is a finite local

ring, then |R| = pnr, |J(R)| = p(n−1)r, R̄ = R/J(R) ∼= GF (pr) and charR = pk,

where 1 ≤ k ≤ n, for some prime p and positive integers k, n, r.

Of special interest is the case when k = n. Then R is commutative and isomorphic

to Zpk [x]/ < f(x) >, where f(x) ∈ Zpk [x] is a monic irreducible polynomial of

degree r in Zp. These rings, denoted by GR(pkr, pk), are called Galois rings of

order pkr and characteristic pk.

The following results due to Raghavendran and Wirt( [25], [30]), are well known.

Proposition 1.7.1 Let R be a Galois ring of the form GR(pkr, pk). Then

R = Zpk [a] where a is a root of monic polynomial f(x) of degree r over Zpk which

is irreducible over Zp.
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Proposition 1.7.2 Let R be a finite local ring. Then R is Galois if and only if

J(R) = pR for some prime number p.

Proposition 1.7.3 [12] If R is a Galois ring, then AutR ∼= Aut (R/J(R)) .

Lemma 1.7.4 Let R be a Galois ring of the form GR(pkr, pk). Then R has a unique

Galois subring of the form GR(pkt, pk) if and only if t r.

Remark 1.7.5 A subring R0 of a Galois ring R is not necessarily Galois. However,

R0 is Galois if and only if it is a principal ideal.

Proposition 1.7.6 Let R0 and R1 be two Galois rings of the same characteristic.

Then R0
∼= R1 if and only if R0/J(R0) ∼= R1/J(R1).

Proposition 1.7.7 ( see [12] ) Let R be a Galois ring of order pkr and of charac-

teristic pk, having a maximal ideal J(R) such that R/J(R) ∼= GF (pr).

Let ψ : R → R/J(R) be the cannonical homomorphism and let f ∈ Zpk [x]. If f =

a0 +a1x+ · · ·+atxt, let ψ(f) denote the polynomial ψ(a0)+ψ(a1)x+ · · ·+ψ(at)x
t.

Then if ψ(f) is irreducible over Zp and if λ̄ is a root of ψ(f) in R/J(R), then there

exists λ ∈ R such that ψ(λ) = λ̄ and f(λ) = 0. If in addition, R is commutative,

then λ is uniquely determined by the given condition.

Proof.

Let λ0 ∈ ψ−1(λ̄) and let R0 be a commutative subring of R containing λ0 ( for

instance the subring Zpm [λ0] ). Then R0 is a Galois ring with maximal ideal

R0 ∩ J(R) = (J(R0)). Let ψ(f) = g ∈ Zp[x]. Since g is irreducible over Zp, λ̄ is

a simple root of g and therefore g(λ̄) 6= 0̄. Let x ∈ λ0 + (J(R0)). Then ψ(f(x)) =

13



ψ(f)(ψ(x)) = ψ(f)(λ̄) = 0 and so f(x) ∈ J(R), but f(x) ∈ R0 since x ∈ R0 and

Zpm [x] ⊂ R0. Therefore f(x) ∈ (J(R0)).

Now consider the map σ defined on R0 ⊕ J(R0) by σ(λ0 + ui) = f(λ0 + ui) for all

λ ∈ R0 and ui ∈ J(R0). We show that σ is injective. Let σ(λ0 + u1) = σ(λ0 + u2)

with u1, u2 ∈ J(R0). Then f(λ0 + u1) − f(λ0 + u2) = 0, and therefore, since R0 is

commutative, we use the binomial formula to obtain;

0 = Σt
i=1ai [(λ0 + u1)i − (λ0 + u2)i]

= Σt
i=1ai

[
Σi
j=0

(
i
j

)
λi−j0 uj1 − Σi

j=0

(
i
j

)
λi−j0 uj2

]
= Σt

i=1ai

[
Σi
j=0

(
i
j

)
λi−j0 (uj1 − u

j
2)
]

= Σt
i=1ai

[
Σi
j=1

(
i
j

)
λi−j0 (uj1 − u

j
2)
]

= (u1 − u2)
[
Σt
i=1ai

[
Σi
j=1

(
i
j

)
λi−j0

(
uj−1

1 + uj−2
1 u2 + uj−3

1 u2
2 + · · ·+ uj−1

2

)]]
= (u1−u2)

[
Σt
i=1iaiλ

i−1
0 + Σt

i=2ai

[
Σi
j=2

(
i
j

)
λi−j0

(
uj−1

1 + uj−2
1 u2 + uj−3

1 u2
2 + · · ·+ uj−1

2

)]]
= (u1 − u2) (f ′(λ0) + u′) ,

where u′ = Σt
i=2ai

[
Σi
j=2

(
i
j

)
λi−j0

(
uj−1

1 + uj−2
1 u2 + uj−3

1 u2
2 + · · ·+ uj−1

2

)]
∈ (J(R0)).

Suppose u1 − u2 6= 0, then f ′(λ0) + u′ is a zero divisor of R0 so that

ψ(f ′)(λ̄) = ψ(f ′(λ0)) = 0. But f ′ is the derivative of f and hence ψ(f ′) is the

derivative of ψ(f), so ψ(f ′)(λ̄) = 0 implies ψ(f) has λ̄ as a multiple root which is a

contradiction since ψ(f) is irreducible over Zp. Thus f ′(λ0) /∈ (J(R0)). So f ′(λ0)+u′

is invertible in R0, implying u1−u2 = 0, and σ is injective. But |λ0+(J(R0))| = |R0|,

and (J(R0)) is finite so that σ is surjective. Thus σ is onto, therefore there exist a

unique λ ∈ λ0 + (J(R0)) ⊂ ψ−1(λ̄) such that f(λ) = 0. �

Corollary 1.7.8 Let f ∈ Zpk [x], be a monic polynomial of degree r and ψ(f) be

irreducible over Zp. Then f has at least r roots in R. If R is commutative, then f

has exactly r roots in R.
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The following result demonstrates the ”existence” of Galois rings.

Proposition 1.7.9 [25] Let f ∈ Zpk [x] be a monic polynomial of degree r whose

image is irreducible over Zp. Then R = Zpk [x]/ < f(x) > is a Galois ring of order

pkr and characteristic pk whose maximal ideal J = pR.

Proof.

Consider the ideals (p), (f) ⊂ (p, f) ⊂ Zpk [x]. Clearly,

R/pR =
(
Zpk [x]/ < f(x) >

)
/ ((p, f)/ < f(x) >) ∼= Zpk [x]/ ((p, f)) ∼= GR(pr, p).

So pR is a nilpotent ideal of R. Since R is commutative, then R/pR is invertible such

that if u ∈ pR, then un = 0 for some n ∈ Z+. Let w /∈ pR, then wm = 1+u, u ∈ pR,

for some m ∈ Z+, so wm = 1− v, v ∈ pR and

wm(1 + v + · · ·+ vm−1) = (1− v)(1 + v + · · ·+ vm−1) = 1− vm = 1.

Therefore elements of R/pR are invertible and so R is a completely primary finite

ring with maximal ideal pR. Since, f is monic of degree r, R has pkr elements. Then

R has order pkr, R/pR has order pr and characteristic of R = pk. This implies that

R is a Galois ring. �

Proposition 1.7.10 [25] Given a prime integer p, and positive integers k and r,

there exists a unique ( up to isomorphism ) Galois ring of order pkr and |R/pR| = p.

Proof.

Let R be a Galois ring of order pkr and let |R/pR| = pr. We establish that R is

isomorphic to the Galois ring constructed in the above proposition. Let the homo-

morphism θ : Zpk [x] → R be defined by θ(h) = h(α). Obviously, Im θ = Zpk [α].
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First, we show that Zpk [x] = R, by proving that it is of order greater than or equal

to pkr. Suppose Σr−1
i=0µiλ

i = Σr−1
i=0νiλ

i, with (µ0, µ1, . . . , µr−1) 6= (ν0, ν1, . . . , νr−1).

Then, Σr−1
i=0 (µi − νi)xi = 0. Let pl with 0 ≤ l ≤ k be the largest integer such that

pl (µi − νi) . Then pl
(
Σr−1
i=0 τiλ

i
)

= 0 with (τ0, τ1, . . . , τr−1) 6= 0 mod p. But since

l ≤ k, Σr−1
i=0 τiλ

i is a zero divisor and hence Σr−1
i=0 τix

i must be a nonzero polynomial

in Zpk [x] having λ̄ as a root, which is a contradiction. Hence Zpk [α] = pkr and

R = Zpk [α], so the homomorphism θ is surjective so that Zpk [x]/kerθ ∼= R. Cer-

tainly, f ∈ kerθ therefore fZpk [x] ⊂ kerθ. We must have equality, since otherwise,

Zpk [x]/kerθ < pkr. Therefore R ∼= Zpk [x]/fZpk [x] = R0. �

Lemma 1.7.11 ( [25]) Let R ∼= GR(pkr, pk), with k ≥ 1 and with maximal ideal

J(R). Then if K0 = R0/J(R0) = R0/pR0, then every element of J(R) is uniquely

expressible in the form Σk−1
i=1 αip

i where αi ∈ K0.

Proof.

Let k = 1. Then R = K0
∼= GF (pr) and the result readily follows. Now suppose

k > 1. Since charR = pk, then Zpk [x] is a subring of R and therefore Zpk [a] ⊆ R.

Let r ∈ R, then there exists α ∈ K0 so that r + J(R) = α + J(R) which implies

that there exists u ∈ J(R) such that r = α + u. Now by Raghavendran (see [25],

Theorem 1.7.1 ), there exists αi ∈ K0 and i ∈ {1, . . . , k−1} such that u = Σk−1
i=1 αip

i.

Hence r = α + Σk−1
i=1 αip

i ∈ Zpk [b] so that R ⊆ Zpk [a]. It follows that R = Zpk [a]. �

Lemma 1.7.12 [25] Let R ∼= GR(pkr, pk). If r ∈ R annihilates pi for some

0 < i ≤ k, then r = pk−ix for some x ∈ R.
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Proof.

If k = 1, then r = x so the result is trivial. Now, suppose k > 1, and pi.r =

0. Assume 1 ≤ i ≤ k, otherwise, there is nothing to prove. Using the previous

notations, there exists µ0 ∈ K0, u ∈ J(R) such that r = µ0+u. But u = Σk−1
i=1 µip

i for

some µi ∈ K0. Thus, r = µ0 +Σk−1
i=1 µip

i = µ0 +pµ1 +· · ·+pk−i−1µk−i−1 +pk−ix where

x = µk−i+· · ·+pi−1µk−1 ∈ R. Therefore, 0 = pi.r = pi(µ0+pµ1+· · ·+pk−i−1µk−i−1).

But pi 6= 0, since i < k, so that µ0 +pµ1 +· · ·+pk−i−1µk−i−1 is a zero divisor of R and

therefore belongs to J(R). But then, µ0 ∈ J(R) and therefore µ0 = 0. This implies

that 0 = pi+1(µ1+pµ2+· · ·+pk−i−2µk−i−2). Therefore µ1+pµ2+· · ·+pk−i−2µk−i−2 ∈

J(R) so that now, µ1 = 0. Repeating the argument another (k − i − 2) times, we

obtain that µ0 = µ1 = · · · = µk−i−1 = 0. Hence r = pk−ix �

Remark 1.7.13 The group of automorphisms of a Galois ring is cyclic, and there-

fore completely classifies the automorphism groups of the Galois rings.

1.8 Some results on Completely Primary Finite

Rings

Let R be a finite ring with identity 1 6= 0 and Z(R) be the Jacobson radical of

R. Then R is said to be primary if R/Z(R) is simple and is completely primary

if R/Z(R) is a division ring ( see Wilson [29]). Moreover, notice that (Z(R))i ⊃

(Z(R))i+1 for each nonzero (Z(R))i. The quotient field R/Z(R) is called the residue

field. The quotient spaces (Z(R))i/(Z(R))i+1 may be regarded as vector spaces over

the residue field R/Z(R) via the action defined by (x + Z(R))(y + (Z(R))i+1) =
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xy + (Z(R))i+1 for x ∈ Z(R) and y ∈ (Z(R))i+1.

The following results are due to Raghavendran [25], who has done a more exten-

sive study on completely primary finite rings.

Theorem 1.8.1 (See [25], Theorem 2 ) Let R be a completely primary finite ring

and Z(R) be its subset of all the zero divisors including the zero. Then,

(i) Z(R) is the unique maximal ideal of R and R/Z(R) ∼= GF (pr), for some prime

p and positive integer r,

(ii) |R| = pnr and |Z(R)| = p(n−1)r for some prime integer p and positive integers

n and r,

(iii) (Z(R))m = (0), m ≤ n,

(iv) there exists an element a ∈ R of multiplicative order pr − 1 such that if

φ : R → R/Z(R) is the canonical homomorphism, then φ(a) is a primitive

element of R/Z(R) and F0 =< a > ∪{0} forms a complete system of coset

representatives of Z(R) in R. Further, if λ, µ ∈ F0 with λ − µ ∈ Z(R), then

λ = µ,

(v) charR = pk for some k with 1 ≤ k ≤ m,

(vi) if charR = pm, then R is commutative.

Proof.

(i) Suppose u, u′, u′′ ∈ Z(R) and x ∈ R, then obviously u′ ± u′′ ∈ Z(R) and

xu = ux ∈ Z(R) so that Z(R) is an ideal of R. Since every element of R is

either a zero divisor or a unit, R− Z(R) consists of units and since any ideal
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which contains a unit is R itself, then Z(R) is maximal. Furthermore

R/Z(R) ∼= GF (pr) since R/Z(R) is a finite field. This follows from the fact

that every finite division ring is a finite field.

(ii) For each positive integer j, consider (Z(R))j / (Z(R))j+1 as an R/Z(R) vector

space where scalar multiplication is defined as (x+ Z(R)j+1) (y + (Z(R))j+1) =

xy + (Z(R))j+1 . Hence (Z(R))j/(Z(R))j+1 = pkjr. Since (Z(R))m = (0),

|R| = R/Z(R) Z(R)/(Z(R))2 . . . (Z(R))m−2/(Z(R))m−1 (Z(R)m−1

= pr(1+k1+···+km−1)

= prn, n = 1 + k1 + · · ·+ km−1.

Clearly, ki ≥ 1 and m ≤ n. Therefore (Z(R))n = (0) and

|Z(R)| = |R|/|GF (pr)| = pnr/pr = p(n−1)r.

(iii) Finiteness of R implies that for some u ∈ Z(R), there exists positive integers

i and j with j ≤ i so that xj = xi and xj(xi−j − 1) = 0. Since xi−j is a unit,

it does not belong to Z(R). Then xj = 0 and Z(R) is a nil ideal. Finiteness

of R also implies that Z(R) is nilpotent, that is, (Z(R))m = (0).

(iv) Let R∗ = R − Z(R), then the canonical homomorphism ψ : R → R/Z(R)

induces a surjective multiplicative group homomorphism θ : R∗ → R/Z(R).

Since kerψ = Z(R), then kerθ = 1 + Z(R) so that 1 + Z(R) is a normal

subgroup of R∗. Now, suppose < α >= R/Z(R) and a0 = θ−1(α), then the

order of a0 is q(pr − 1) and |R− Z(R)| = pnr − p(n−1)r = p(n−1)r(pr − 1).

So, the order of a0 is of the form pt(pr − 1). But a = a0p
t has multiplicative

order pr − 1 and θ(a0p
t) = αpt which also generates R/Z(R) since pt and

pr − 1 are relatively prime. Furthermore, θ(F0) = R/Z(R) and therefore F0
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is a complete set of coset representative of Z(R) in R. The last part of the

result follows from this property.

(v) char (R/Z(R)) = p since R/Z(R) is a finite field. So p ∈ Z(R) and pm = 0

because Z(R) is nilpotent. Then charR = pk for 1 ≤ k ≤ m.

(vi) Consider the field K0 = {(0, αt : t = 1, . . . , pr−1)} of pr elements from (iv),

α − β ∈ Z(R) implies that α = β for α, β ∈ K0. Let charR = pm, then by

induction on t, we can show that for αt, βt ∈ K0 the equation

Σm−1
t=0 p

t.αt = Σm−1
t=0 p

t.βt. (1.1)

imply that pm−1 (αt − βt) = 0 and that αt − βt = 0 for t = 0, . . . ,m− 1.

So the set {Σm−1
t=0 p

t.αt : αt ∈ K0} contains pmr distinct elements and is con-

tained in R, hence R = {Σm−1
t=0 p

t.αt : αt ∈ K0} and every element of R is

uniquely expressed as Σm−1
t=0 p

t.αt, αt ∈ K0, so that R is a commutative ring.

�

Remark 1.8.2 The ring R is said to be of maximal prime power characteristic if

Theorem 1.8.1 part (vi) holds.

Corollary 1.8.3 Let R be a completely primary finite ring. Then every element of

R is uniquely expressible in the form α + x, α ∈ K0 =< a > ∪{0} and x ∈ Z(R).

Remark 1.8.4 If k = n, then R = Zpk [a] where a is an element of R of multiplica-

tive order pr − 1, Z(R) = pR and Aut(R) ∼= Aut (R/Z(R)) . As earlier stated,

R is a Galois ring GR
(
pkr, pk

)
.
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In addition to the above results, the following theorem due to Wirt [30] was also

of great value in this study;

Theorem 1.8.5 Let R be a completely primary finite ring and Z(R) be its subset of

the zero divisors, R/Z(R) = pr and charR = pk. Then R has a coefficient subring

R0 of the form GR
(
pkr, pk

)
which is a maximal Galois subring of R. Moreover,

there exist u1, . . . , uh ∈ Z(R) and θ1, . . . , θh ∈ Aut(R0) such that

R = R0 ⊕ Σh
i=1 ⊕ R0ui (as R0-modules, and uix = xθiui, for every x ∈ R0 and

every i = 1, . . . , h).

The following results are immediate from the above theorem:

(i) θ1, . . . , θh are uniquely determined by R and R0 ( See Theorem 1, [4]).

(ii) θi is called the automorphism associated with ui and θ1, . . . , θh are the associ-

ated automorphisms of R with respect to R0 ( See Theorem 8, [25] ).

(iii) If R′ is another coefficient subring of R, then there exists an invertible element

y ∈ R such that R′ = yR0y
−1 ( See Theorem 8, [25]).

(iv) It is clear that R is commutative if and only if θi is an identity automorphism.

1.9 Basic Concepts On Zero Divisor Graphs Of

Finite Rings

The following definitions and concepts in graph theory, which can also be found in

( [18]and [21]), have been used throughout the thesis.
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For the purpose of our study, the graphs of interest are simple non loop, non-directed

graphs.

Definition 1.9.1 A (Simple) graph Γ = (V,E) is a set V, called the vertex set, and

a set of irreflexive, symmetric relations E, on V, called the edge set. If x and y are

distinct vertices of Γ, then if x and y are related in E, we call the relation an edge

between x and y, denoted by x − y or {x, y}. The size or order of a graph denoted

by |V (Γ)| is the number of vertices in the vertex set V (Γ). A subgraph Γ′ of a graph

Γ is a graph whose set of vertices and set of edges are all subsets of Γ. That is if

Γ′ = (V ′, E ′) ⊂ Γ = (V,E), then V ′ ⊂ V and E ′ ⊂ E.

Definition 1.9.2 Let R be a commutative with the identity 1 6= 0 and Z(R) be its

subset of zero divisors. We associate with R, a zero divisor graph, denoted by Γ(R)

which is a simple graph with vertex set being the set of non-zero zero-divisors of

R, Z(R)? = Z(R)− {0}, and with x− y an edge if and only if x 6= y and xy = 0.

Definition 1.9.3 Chromatic or colouring number of the graph Γ(R) denoted by

χ(R) is the least number of colours which can be assigned to the vertices of a graph

so that no adjacent vertices have the same colour.

Definition 1.9.4 The degree d(v) of a vertex v is the number of edges E(v) that

are incident with or connecting a vertex v. The sum of the degrees of all the vertices

is called the degree of the graph.

In Figure 1.1 below, the degree of vertex a is 3 while the rest of the vertices in the

graph are of degree 1 each. Thus d(a) = 3; d(b) = d(c) = d(d) = 1.
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d a

b

c

Figure 1.1: Illustration of degree of a vertex of a graph

Definition 1.9.5 (Path) A path is a sequence of distinct consecutive edges in a

graph. The length of a path is the number of edges traversed.

For instance in Figure 1.2 below, d→ e→ b→ c→ d is a path of length 4.

a

e

b

c

d

Figure 1.2: Illustration of a path in a graph

Definition 1.9.6 Let P = x0 · · ·xk−1 be a path with k ≥ 3. The graph C := P +

xk−1x0 is called a cycle. The length of a cycle is its number of edges (or vertices) on

the cycle. A cycle of length k is denoted Ck and called a k − cycle. The minimum

length of a cycle in a graph Γ is called the girth of Γ and is denoted by gr(Γ(R)). If

Γ(R) does not contain a cycle, we set gr(Γ(R)) =∞.

Definition 1.9.7 (Complete graph) A graph Γ(R) is called complete if for every

u, v ∈ V (Γ(R)), u 6= v, there exists an edge {u, v} . Thus, a complete graph with

n vertices, denoted by Kn is a graph in which each vertex is connected to each and
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every other vertex by an edge. A non empty graph Γ(R) is called connected if there

is a path linking any two of its vertices.

Examples of complete graphs of vertices 1, 2, 3, 4 and 8 respectively are shown

in Figure 1.3 below.

K1 K2 K3 K4 K8

Figure 1.3: Illustration of complete graphs

Definition 1.9.8 (k-partite verties). Let Z(R)∗ denote the set of all nonzero zero

divisors of a ring R. Then the vertex set V = {V1, V2, . . . , Vk} ⊆ Z(R)∗ are k−

partite of the set V if and only if

(i) Vi 6= ∅, ∀ 1 ≤ i ≤ k,

(ii) Vi ∩ Vj = ∅, 1 ≤ i, j ≤ k,

(iii) ∪ki=1Vi = V.

Definition 1.9.9 A k-partite graph is a graph whose vertices can be partitioned into

k-disjoint sets such that no two vertices within the same set are adjacent. If k = 2,

the graph is a bipartite graph. A k-partite is called complete if every pair of vertices

in the k-set are adjacent.

Definition 1.9.10 A bipartite graph is a graph whose vertices can be partitioned

into two disjoint subsets U and V such that each edge connects a vertex in U to
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one in V and no edge exists between the vertices in the same subset. The bipartite

graph is complete if every vertex in U is connected to every vertex in V. If U has

n elements and V has m elements, then the complete bipartite graph is denoted by

Km,n.

Complete bipartite graphs, K2,3 and K3,3 are illustrated in Figure 1.4 below.

K2,3 K3,3

Figure 1.4: Illustration of complete bipartite graphs

Definition 1.9.11 A star graph Sr is the complete bipartite graph K1,r in which

one of the vertex sets is a singleton.

The following results apply to star graphs:

(i) If Γ(R) is a star graph having p vertices where p is a prime number, then the

center of the star graph is idempotent element in R.

(ii) If Γ(R) is a star graph of order p and center vertex a, then {0, a} forms an

ideal in R.

(iii) If R = Zpq where p and q are distinct prime numbers, then the set of all

vertices having the same degree form ideals in R.

(iv) Let R = Zn, then n = 2p if and only if Γ(R) is a star graph of order p.
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(v) If Γ(R) is a star graph with order p where p ≥ 3 is prime, then R is a ring

such that for all a ∈ R, there exists a b ∈ R satisfying a = aba, also called Von

Neumann regular ring.

(vi) If R = Zp2 , then Γ(R) = p− 1.

Definition 1.9.12 (Clique and Clique Number) A subgraph of a graph is any subset

of vertices together with any subset of edges containing those vertices. An induced

subgraph is a subgraph maximal with respect to the number of edges. A complete

induced sub-graph Kn of any graph Γ is called a Clique and the Clique number of Γ,

denoted by ω(Γ) is the greatest integer r ≥ 1, such that Kr ⊂ Γ.

Definition 1.9.13 ( Diameter of a graph ) For vertices u and v in Γ(R), the dis-

tance between u and v denoted by d(u, v) is the length of the shortest path from u

to v in Γ(R), for instance d(u, u) = 0 and d(u, v) = ∞ if no such path exists. The

diameter of Γ(R), denoted by diam(Γ(R)), is defined as diam(Γ(R)) = sup{d(u, v)|u

and v are vertices of Γ(R)}.

Definition 1.9.14 A vertex that has no incident edges is called an isolated vertex.

Definition 1.9.15 A graph is said to be almost connected if there exists a path

between two non isolated vertices in the graph.

Definition 1.9.16 A graph is called singleton if it is a connected graph with zero

diameter.

Theorem 1.9.17 (see [8], Theorem 2.2 ) Let R be a commutative ring. Then Γ(R)

is finite if and only if either R is finite or R is an integral domain. In particular, if

1 ≤ |Γ(R)| <∞, then R is finite with |R| ≤ |Z(R)|2 and R is not a field.
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Theorem 1.9.18 (See [7], Theorem 2.3)Let R be a commutative ring. Then Γ(R)

is connected and diam(Γ(R)) ≤ 3. Moreover if Γ(R) contains a cycle,

then gr(Γ(R)) ≤ 7.

Theorem 1.9.19 (See [7], Theorem.2.8 ) Let R be a commutative ring. Then Γ(R)

is complete if and only if either R = Z2 × Z2 or xy = 0 for all x, y ∈ Z(R).

Definition 1.9.20 Let R be a finite ring. The binding number of a graph Γ(R)

denoted by b(Γ(R)) is defined by b(Γ(R)) = N(S)
S

where S ⊆ V (Γ(R)), S 6= ∅,

N(S) 6= V (Γ(R)) and satisfy the following conditions

(i) N(S) ∪ S = V (Γ(R)).

(ii) N(S) ∩ S = ∅.

(iii) the degree, d(u) ≤ d(v) for all u ∈ S, v ∈ N(S).

(iv) no two vertices in S are adjacent.

1.10 Structure of the thesis

The first chapter introduces the basic concepts and definitions which have been used

in the thesis. The second chapter accounts for the literature related to this research.

The results on the zero divisor graphs of the Galois rings are provided in Chapter

3 while in Chapter 4 we state a well known construction of a class of completely

primary finite rings and discuss the results of their zero divisor graphs. In Chapter 5,

we have provided results of the zero divisor graphs of completely primary finite rings

in which the product of any two zero divisors lies in the Galois subring. Chapter 6

concludes the thesis and provides some recommendations.
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Chapter 2

Literature Review

The concept of a zero divisor graph was first introduced by Beck [11]. His graph

consists of the vertex set of all elements of the ring R, such that distinct vertices u

and v are adjacent if and only if uv = 0. This is a simple (no loops) connected graph

whose diameter is less than or equal to 2 since the zero vertex is adjacent to every

other element of the ring. Beck was mainly interested in the chromatic number of

the graph of R and conjectured that the chromatic number of the graph is equal to

its clique number. He classified all finite rings with chromatic number strictly less

than 4.

Later, Anderson and Naseer [5] proved a counterexample to Beck’s conjecture by

providing a finite ring whose zero divisor graph had the clique number strictly less

than its chromatic number. They proved several results for which the conjecture

holds and extended Beck’s classification of finite rings with small chromatic number

to those cases when the chromatic number is exactly 4.

Anderson and Livingstone [7] simplified Beck’s zero divisor graph. The vertex set
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in their graph consisted of nonzero zero divisors of the ring R and denoted this

simple undirected graph by Γ(R). This better illustrated the structure of the zero

divisors of the ring. They established that if R is a commutative ring, then Γ(R)

is connected with the diameter, diam(Γ(R)) ≤ 3. They succeeded in showing that

Γ(R) is finite if and only if the ring R is finite. This approach enabled Anderson and

Livingstone [7] to classify finite rings whose graph is complete or is a star graph.

Anderson et al. [8] studied the clique number of Γ(R) and the relationship between

graph isomorphisms and ring isomorphisms. They proved that Γ(R) is complete if

and only if either R = Z2 × Z2 or xy = 0 for all non zero x and y in Z(R)?. In

particular they established a fundamental result that if S and T are finite reduced

rings which are not fields, then Γ(S) and Γ(T ) are graph isomorphic if and only if

S and T are ring isomorphic. They further determined all positive integers n for

which Γ(Zn) is planar, and posed an open problem as to which of the finite rings

in general would determine a planar zero divisor graph. This problem was partially

answered by Akbari et al. [1] where the authors refined the question to local rings

whose cardinality is at least 32.

Concurrently, Smith [27], independently provided a complete solution, classifying all

the rings with planar zero divisor graphs by listing 44 isomorphism classes altogether.

Crucial to all proofs concerning planar graphs, is Kuratowski’s Theorem which states

that a graph is planar if and only if it contains no subgraph homeomorphic to the

complete graph K5 or the complete bipartite K3,3.

Akbari et al. [1] listed all the rings that determine a complete r-partite graph.

These results are similar to those obtained by Anderson and Livingstone [7], where
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the ring R is such that Γ(R) is a star graph.

Using the zero divisor graph as introduced by Anderson and Livingstone [7], Duane

[19] explored p-partite structure of Γ(Zn) and determined a complete classification

of chromatic number of Γ(Zn) and further, determined how these concepts relate to

the prime factorization of n. Duane [19] proved that for each prime integer p,

(i) Γ(Zp2) is a complete graph Kp−1.

(ii) Γ(Zp3) is a complete p−partite.

(iii) Γ(Zpk), where k ∈ Z+, has an induced complete p− partite subgraph.

Nazar et al. [23] also investigated the zero divisor graph Γ(R) of certain finite rings

and were able to characterize the complete bipartite zero divisor graphs of certain

finite commutative rings. They characterized Γ(R) for R = Zpnq, where p and q are

distinct prime integers while n is a positive integer and proved that if p and q are

distinct prime integers and k > 1 a positive integer, then the clique number,

ω
(
Γ(Zpkq)

)
=

{
p

k
2 , if k is even ;

p
k−1
2 + 1, if k is odd.

Worthy to note is that concurrently, Sankeetha et al. [26] were also able to evaluate

the binding number of the zero divisor graphs of the ring of integers modulo n. They

computed the binding numbers of Γ(Zn) and proved the following results:-

For each distinct prime integers p, q and k ∈ Z+,

(i) b(Γ(Z2p)) = 1
p−1

.

(ii) b(Γ(Zp2)) = 1
p−2

.

(iii) b(Γ(Zpq)) = p−1
q−1

, where p < q.
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(iv) b(Γ(Z2k)) =


2k−1−2

k
2 Σ

k−4
2

i=0 2i−2

2
k
2 Σ

k−4
2

i=0 2i+1

, if k is even ;

2
k−1
2

(
2
k−1
2 −Σ

k−3
2

i=0 2i
)
−1

2
k−1
2 Σ

k−3
2

i=0 2i
, if k is odd.

(v) b(Γ(Z4p)) = 3
2(p−1)

, p > 4.

(vi) b(Γ(Z8p)) = 7
4(p−1)

, p > 8.

(vii) b(Γ(Z2kp)) = 2k−1
2k−1(p−1)

, p > 2k.

(viii) b(Γ(Z3k)) = 7
3k−1−8

, k > 3.

In this thesis, more generalized results on the binding numbers, the clique num-

bers and the partiteness of the zero divisor graphs of finite rings of prime power

characteristic have been obtained.

The girth is one of the graph invariant properties studied for zero divisor graphs.

Known in literature is that if Γ(R) has a finite girth then gr(Γ(R)) ≤ 4. If R is

Noetherian and Γ(R) has finite girth, then gr(Γ(R)) ≤ 3.

Anderson and Livingston [7] investigated the interplay between graph theoretic prop-

erties of Γ(R) and the ring theoretic properties of R and showed that if R is Artinian

ring and Γ(R) contains a cycle, then gr(Γ(R)) ≤ 4. The authors conjectured that

this upper bound would hold in general and was later confirmed in two independent

studies by De Meyer and Schneider [17] and Mulay [22].

Anderson, Axtell and Stickles [6] assessed the preservation of the diameter and

girth of the graph of a commutative ring under extensions to polynomials and the

power series rings. They investigated the preservation of the diameter and girth

under idealizations of commutative rings. They characterized the girth of the zero

divisor graph of an idealization and completely established the conditions under
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which the zero divisor graph of an idealization will be complete. They further pro-

vided some conditions for which the zero divisor graph of idealization will have a

diam(Γ(R)) = 2.

In the sequel we consider some important results proved by Anderson et al. [6].

They showed that if R is a ring and U is an R− module then,

(a) The girth, gr (Γ (R⊕ U)) = 3 if and only if one of the following exists,

(i) U ≥ 4,

(ii) U ∼= Z3, and one of the following hold.

• there exists a nonzero r ∈ R such that r2 = 0 or

• there exist distinct a, b ∈ Z(R)? such that ab = 0 = aU = bU.

(b) The girth, gr (Γ (R⊕ U)) =∞ if and only if one of the following hold.

(i) U ∼= Z3 and ann (U) = 0 and R ∼= Z3 or

(ii) U ∼= Z2 and either R ∼= Z2 ⊕ Z2 or R is an integral domain.

The only case in which gr (Γ (R⊕ U)) = 4 is when U ∼= Z2 and R does not meet

any of the conditions. For instance, gr (Γ (R⊕ Z2)) = 4 when R ∼= Z3 ⊕ Z2.

The diameter of the zero divisor graph of an idealization need not be preserved.

Moreover if diam (Γ (R)) > 1, then diam (Γ (R⊕ U)) > 1. It is worthy to note that

a ring R may be such that Γ (R) is complete and diam (Γ (R⊕ U)) > 1 besides

other possible combination between the diameter of R and that of R ⊕ U. The

necessary and sufficient conditions to guarantee that Γ (R⊕ U) is complete have

been provided and some results for the cases when diam (Γ (R⊕ U)) = 2 have also

been established.

The authors [6] proved that if Γ (R) 6= ∅, then Γ (R⊕ U) is complete if and only if
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R⊕ U satisfies the following properties;

(i) (Z (R))2 = 0.

(ii) For every element r ∈ R, ru 6= 0 for all u ∈ U? = U\{0}.

(iii) If r ∈ Z(R)?, then rU = 0.

They established that Γ (R⊕ U) is complete if and only if Z ((R⊕ U))2 = 0

and even though it is clear that Γ (R⊕ U) > 1 if Γ (R) > 1, and that idealizations

need not preserve the diameter of the zero divisor graph, it is possible to construct

idealizations which preserve the diameter of the zero divisor graphs. For instance,

diam (Γ (Z8)) = 2 and diam (Γ (Z8 ⊕ Z2)) = 2, ( see [6]).

The classification of the diameter of an idealization would be exhausted if it was

possible to find the necessary and sufficient conditions for ensuring that

diam (Γ (R⊕ U)) = 2. This classification is still open even though it has been noted

that the characterization of the diameter 3 is manageable.

The authors [6] also found that diam (Γ (R⊕ U)) = 2 if R ⊕ U is such that

(Z (R))2 = 0 and for every element r ∈ R, ru 6= 0 for all u ∈ U? = U\{0} but if

r ∈ Z(R)?, then rU 6= 0. Alternatively, diam (Γ (R⊕ U)) = 2 if (Z (R))2 6= 0 and

for every element r ∈ R, ru 6= 0 for all u ∈ U? = U\{0}, but if r ∈ Z(R)?, then

rU = 0.

Mulay [22] introduced another version of the zero divisor graph associated to a ring

R. He considered two zero divisors u, v ∈ Z(R)? to be equivalent if annR(u) =

annR(v). His graph, denoted by ΓE(R), is a simple graph with the vertex set equal

to the set of equivalence classes {[u] | u ∈ Z(R)?} so that distinct equivalence classes
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[u] and [v] are adjacent in ΓE(R) if and only if uv = 0 in R. Mulay [22] showed

that for a given a ring R the graph is connected with diam(ΓE(R)) ≤ 3.

Spiroff and Wickam [28] compared and contrasted ΓE(R) with Γ(R). A critical

distinction between ΓE(R) and two earlier versions of zero divisor graphs is that

ΓE(R) can be finite even when R is infinite, which therefore gives a more explicit

visual description of the zero divisor structure of the ring. For instance they showed

that if R = Z/(3) × Z/(3), then Γ(R) is a 4 cycle graph with gr(Γ(R)) = 4 while

ΓE(R) is an edge. Some of their other findings were that if R is Noetherian ring,

then ΓE(R) is complete K2 graph and if ΓE(R) is complete bipartite, Kn,m, then

n = 1 so that ΓE(R) is a star graph. They also found that if ΓE(R) has at least 3

vertices then it is not a cycle or more generally not regular. One other significant

aspect of Mulay’s graph is that its vertices correspond to the annilator ideals in the

ring R so that the associated primes of R are represented in ΓE(R).

These results have proved to be useful for comparison reasons to the results that have

been obtained for the zero divisor graphs of the finite rings constructions investigated

in this thesis. In most research articles related to our study, it has been argued that

the zero divisor graph in which the vertices are nonzero zero divisors yield better

characterization of the zero divisors of commutative rings. This study has extended

the idea of the zero divisor graphs of idealizations by providing constructions of two

classes of more generalized idealizations and investigated the structures of their zero

divisors.

Taking into consideration the fact that any finite ring is decomposable into a finite

direct sum of completely primary finite rings, this study has characterized the zero
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divisor graphs based on their invariant geometrical properties and has made an

immense contribution towards the classification of these finite rings.
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Chapter 3

Zero divisor graphs of Galois

Rings

Throughout this section, R0 shall denote a Galois ring. The objective of this

section is to investigate the properties of the zero divisor graphs of Galois ring

R0 = GR(pkr, pk) of order pkr and characteristic pk where p is prime and k and r

are positive integers.

Let R0 be Galois ring and Z(R0) be its subset of the zero divisors (including

zero). Then Z(R0) is a unique maximal ideal and is hence the Jacobson radical of

R0. Associate with R0, the graph Γ(R0) whose vertices are the elements of the set

Z(R0)?. Two distinct vertices x, y ∈ Z(R0)? are adjacent if xy = 0. We also explore

the graph of equivalent vertices in R0 denoted by ΓE(R0) which was introduced by

Mulay in [9] as a simple graph with vertex set Z(R0)?/ ∼, such that [x], [y] ∈ Z(R0)?/

∼ are adjacent if the product xy = 0. Consider x ∈ Z(R0)? and s 6= 1 a unit element

in R0. Let the vertices x and sx in Γ(R0) be distinct and [x] = [sx] in ΓE(R0), (Note
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that [x] = [sx] implies that ann(x) = ann(sx)). We investigate the connectedness

of Γ(R0) and ΓE(R0) and also compute diameter, girth and binding number as well

as clique number of both Γ(R0) and ΓE(R0). We begin with the trivial case and

later consider the general case.

3.1 Trivial Case

Lemma 3.1.1 Let R0 = GR(pkr, pk). Consider the graph Γ(R0) whose vertices are

given by plrα with α ∈ R?
0 and l, a positive integer.

Then

deg(plrα) =


plr − 1, if 2l < k;

plr − 2, if 2l ≥ k.

Proof.

We have two cases to consider.

Case (i): When r = 1. So GR(pkr, pk) = G(pk, pk) ∼= Zpk .

Clearly R0 = Zpk and gcd(α, pk) = 1. So all the vertices adjacent to (plα) in the

set pZpk of vertices of the graph Γ(R0) are the same vertices adjacent to (pl). Hence

to find the deg(plα) it suffices to find all vertices adjacent to (pl). Let n be the

number of vertices adjacent to (pl) in Γ(R0). Now, the first term in this sequence

of vertices is pk−l and the nth term is pk−l + (n− 1)pk−l. Since the last term in the

sequence is pk − pk−l, it easily follows that pk−l + (n− 1)pk−l = pk − pk−l leading to

n = pl − 1 if pk−l > pl or k > 2l. If pk−l ≤ pl or k ≤ 2l, then p2l−k(pk−l) = pl is

adjacent to itself, so that deg(pl) = pl − 2.

Case (ii): When r > 1, then the degree of f(x) > 1. So if plα ∈ R0 where α ∈ R?
0,
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then deg(plα) = |ann(plα)− {0, plα}|. Now ann(plα) = p(k−l)R0. Hence

|ann(plα)| = |pk−lR0| = p(k−(k−l))r = plr.

When k > 2l, we claim that plα /∈ ann(plα). Without loss of generality, let

k = 2l + 1, then p(k−l)α = p(2l+1−l)α = p(l+1)α. This implies that p(l+1)α is the least

element in ann(plα). When k ≤ 2l, we claim that plα ∈ ann(plα). Without loss of

generality, let k = 2l − 1, then p(k−l)α = p(2l−1−l)α = p(l−1)α is the least element in

ann(plα). Therefore conclusively, when k > 2l, then |ann(plα)− {0, plα}| = plr − 1

and when k < 2l, |ann(plα)− {0, plα}| = plr − 2. which completes the proof. �

Proposition 3.1.2 Let R0 = GR(pk, pk) be the Galois ring of order pk and char-

acteristic pk. Then the graph of R0 is

Γ(R0) =


p

k
2 − 1 − partite, if k is even;

p
k−1
2 − partite, if k is odd.

Proof.

Let R0 = GR(pk, pk) and consider the set Z(R0)? = Z(R0)\{0} = pR0\{0} of all

the non zero zero divisors of R0. We partition Z(R0)? as follows;

Case (i): k is an even integer.

Partition Z(R0)? into the following subsets.

V1 = Z(R0)?\{
⋃
{j(p k

2 )}, 2 ≤ j ≤ p
k
2 − 1} and Vj = {j(p k

2 )}, 2 ≤ j ≤ p
k
2 − 1.

Clearly, each of the Vi for 1 ≤ i ≤ p
k
2 − 1 are distinct non empty sets, containing

non adjacent vertices. Thus; Vi 6= ∅ for all 1 ≤ i ≤ p
k
2 − 1, V1 ∩ Vj = ∅ for all

2 ≤ j ≤ p
k
2 − 1 and Vj ∩ Vl = ∅ for all j 6= l, 2 ≤ j, l ≤ p

k
2 − 1. Finally

Z(R0)? = V1 ∪ ∪p
k
2−1

j=2 {Vj} = ∪p
k
2−1

i=1 {Vi}. Therefore Γ(R0) is (p
k
2 − 1)− partite.
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Case (ii): k is an odd integer.

Partition Z(R0)? into the following subsets. V1 = Z(R0)?\
⋃
{(j − 1)p

k+1
2 } for 2 ≤

j ≤ p
k−1
2 and Vj = {(j − 1)p

k+1
2 } for all 2 ≤ j ≤ p

k−1
2 . Clearly, each of the Vi

for all 1 ≤ i ≤ p
k−1
2 contains non adjacent vertices. Moreover, Vi 6= ∅ for 1 ≤ i ≤

p
k−1
2 , V1 ∩ Vj = ∅ for 1 ≤ j ≤ p

k−1
2 and Vj ∩ Vl = ∅ for j 6= l, 2 ≤ j, l ≤ p

k−1
2 .

Finally, Z(R0)? = V1

⋃
∪p

k−1
2

j=2 {Vj} =
⋃p

k−1
2

i=1 {Vi}. It thus follows that for odd integer

k, Γ(R0) is p
k−1
2 − partite. �

Proposition 3.1.3 Let R0 = GR(pk, pk), k ≥ 3. Then

(i) diam(Γ(R0)) = 2.

(ii) gr(Γ(R0)) =


∞, if p = 2 and k = 3;

3, elsewhere.

(iii) b(Γ(R0)) =


p
k
2−2

pk−1−p
k
2 +1

, if k is even;

p
k−1
2 −1

pk−1−p
k−1
2
, if k is odd.

Proof.

To establish (i), the vertex pk−1 of Γ(R0) is adjacent to every other vertex. Sup-

pose t1 + t2 6≡ 0 (mod pk), then the vertices pt1 and pt2 are nonadjacent. Thus

diam (Γ(R0)) = 2.

To prove (ii), let p = 2 and k = 3, then the graph, Γ(R0) shown below

2 4 6

is a bipartite graph, and therefore does not admit a polygon as a subgraph.

Elsewhere, for t ∈ Z+ and 2 ≤ s ≤ p− 1, the graph
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pk−1 tp spk−1 pk−1

is a triangle. Moreover, pk−1 is adjacent to all the vertices. Thus Γ(R0) admits

K3.

To prove (iii), let k be even and let V1 = Z(R0)? − {j(p k
2 ), 2 ≤ j ≤ p

k
2 − 1}.

Then by Definition 1.9.20, N(V1) = {j(p k
2 ), 2 ≤ j ≤ p

k
2 − 1}. Now we have that

V1 = (pk−1 − 1)− (p
k
2 − 2) = pk−1 − p k

2 + 1 and N(V1) = p
k
2 − 2 so that the

binding number, b (Γ(R0)) = N(V1)
V1

= p
k
2−2

pk−1−p
k
2 +1

.

When k is odd, we have that V1 = Z(R0)? − {(j − 1)(p
k+1
2 ), 2 ≤ j ≤ p

k−1
2 } and

N(V1) = {(j − 1)(p
k+1
2 ), 2 ≤ j ≤ p

k−1
2 }. Then, V1 = pk−1 − p k−1

2 and N(V1) =

(pk−1 − 1)− (pk−1 − p k−1
2 ) = p

k−1
2 − 1. So b (Γ(R0)) = N(V1)

V1
= p

k−1
2 −1

pk−1−p
k−1
2
.

�

Example 3.1.4 Let R0 = GR(34, 34) = Z81. Here, p = 3 and k = 4. Then

Z(R0)? = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78}.

Then we have V1 = {3, 6, 9, 12, 15, 21, 24, 30, 33, 39, 42, 48, 51, 57, 60, 66, 69, 75, 78},

V2 = {18}, V3 = {27}, V4 = {36}, V5 = {45}, V6 = {54}, V7 = {63} and V8 = {72}.

Thus, Γ(Z81) is 8-partite or octa-partite as seen in Figure 3.1 below with;

diam(Γ(R0)) = 2.

gr(Γ(R0)) = 3.

b(Γ(R0)) = 7
19
.

ω(Γ(R0)) = 8.
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72

Figure 3.1: The zero divisor graph of GR(34, 34)
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Example 3.1.5 Let R0 = GR(23, 23) = Z8. Here, p = 2 and k = 3. Then Z(R0)? =

{2, 4, 6} , with V1 = {2, 4, 6} \ {4} = {2, 6} and V2 = {4}.

So the zero-divisor graph Γ(Z8) of Z8 is bi-partite graph drawn in Figure 3.2 below

with;

diam(Γ(R0)) = 2.

gr(Γ(R0)) =∞.

b(Γ(R0)) = 1
2
.

ω(Γ(R0)) = 2.

2

4 6

Figure 3.2: The zero divisor graph of GR(23, 23)

Remark 3.1.6 We observe from the above examples that if R = Zpk and Γ(R) is

a perfect graph (i.e. if for every subgraph H ⊆ Γ(R), ω(H) = χ(H)), then the

partite number is equal to the clique number of Γ(R). So the clique number for Γ(R)

is p
k
2 − 1 if k is even and is p

k−1
2 if k is odd.

Automorphisms of zero divisor graphs of trivial Galois rings

Trivial Galois rings can be exhibited in two ways: when k = 1, R0 = GR(pr, p) and

when r = 1, R0 = GR(pk, pk). In the former case, the zero divisor graph is empty.

It is therefore of interest to describe the group of automorphisms of the zero divisor
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graphs of Galois rings in the latter case.

We use the ideas based on the findings of Anderson and Livingston [7]. Distinct

ring automorphisms of R induce distinct graph automorphisms of Γ(R) provided R

is a finite ring and is not a field.

An automorphism f of a graph Γ(R) is a bijection f : Γ −→ Γ which preserves

adjacency. The set Aut(Γ) of all graph automorphisms of Γ forms a group under the

usual composition of functions. Moreover if |V (Γ)| = pk, then Aut(Γ) is isomorphic

to a subgroup of Spk and hence it follows thatAut(Kpk) ∼= Spk . Infact, for a graph Γ of

order pk, Aut(Γ) ∼= Spk if and only if Γ = Kpk . Now, by restricting each f ∈ Aut(R)

to Z(R)? we obtain a natural group homomorphism φ : Aut(R) −→ Aut(Γ(R)).

Generally, Aut(Γ(R))� Aut(R).

Remark 3.1.7 An f ∈ Aut(R) is completely determined by its action on Z(R).

Theorem 3.1.8 Let R be a completely primary finite ring which is not a field, and

let f ∈ Aut(R). If f(x) = x, for all x ∈ Z(R), then f = 1R. Thus φ : Aut(R) −→

Aut(Γ(R)) is a monomorphism.

Now consider the ring Zpk . For pk ≥ 4, k 6= 1. Let

X = {d ∈ Z | 1 < d < pk and d | pk}.

For each d ∈ X, let Vd = {x ∈ Z | 1 < x < pk and gcd(x, pk) = d}. We note that

Z(Zpk)? is the disjoint union of Vd′s. Furthermore, notice that two vertices have the

same degree if and only if they are in the same Vd.

Proposition 3.1.9 If k ≥ 2 is an integer, then

(i) |Aut(Γ(Z2k))| ∼= Πk
i=2(2k−i)! if p = 2,
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(ii) |Aut(Γ(Zpk))| ∼= Πk
i=2p

k−i(p− 1)! if p 6= 2.

Proof.

(i) The set X = {2, 4, . . . , 2k−1}, then

V2 = {2t : 1 ≤ t < 2k−1 is odd };

V4 = {4t : 1 ≤ t < 2k−2 is odd };

...

V2k−1 = {2k−1 }.

Upon counting, |V2| = 2k−2, |V4| = 2k−3, and continuing inductively in this

manner, we have |V2k−2| = 2 and |V2k−1| = 1. Then Aut(Γ(Z2k)) ∼= Πk
i=2S2k−i

and the required result readily follows.

(ii) Taking a prime integer p 6= 2, and the set X = {p, p2, . . . , pk−1}, then,

Vp = {pt : 1 ≤ t < pk−1 and (t, p) = 1};

Vp2 = {p2t : 1 ≤ t < pk−2 and (t, p2) = 1};

...

Vpk−1 = {pk−1t : 1 ≤ t < p and (t, pk−1) = 1}.

Upon counting, we have |Vp| = pk−2(p−1), |Vp2 | = pk−3(p−1), and continuing

inductively in this manner, we have |Vpk−2| = p(p − 1) and |Vpk−1| = (p − 1).

Then Aut(Γ(Zpk)) ∼= Πk
i=2Spk−i(p−1) and the required result readily follows.

�
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3.2 General Case

Theorem 3.2.1 (See [2]) Let R be a commutative ring (not necessarily Galois).

Then Γ(R) is finite if and only if R is finite or an integral domain.

Remark 3.2.2 By the immediate theorem Γ(R0) is finite since R0 is finite.

Lemma 3.2.3 Let R0 = GR(pr, p), then Z(R0)? = ∅.

Proof.

R0 has no nonzero zero divisors since it is a field. �

Proposition 3.2.4 Let R0 = GR(p2r, p2). Then Γ(R0) = Kpr−1 and ΓE(R0) is a

single vertex.

Proof.

Since (Z(R0))2 = 0, each zero divisor is adjacent to each other. But

|Z(R0)?| = pr − 1, so that Γ(R0) is complete on pr − 1 vertices. That ΓE(R0) is a

single vertex follows from the fact that ann(Z(R0)) = Z(R0). �

Example 3.2.5 For k = 3, r = 2, we have R0 = GR(26, 23) = Z8[x]/(x2 + 1). So

let α be the root of f(x) = x2 + 1 in Z8. Then Z(R0)? = {2, 4, 6, 2α, 2α + 2, 2α +

4, 2α + 6, 4α, 4α + 2, 4α + 4, 4α + 6, 6α, 6α + 2, 6α + 4, 6α + 6}.

We partition Z(R0)? as follows: V1 = {2, 6, 2α, 2α + 2, 2α + 4, 2α + 6, 4α + 2, 4α +

6, 6α, 6α + 2, 6α + 4, 6α + 6}, V2 = {4}, V3 = {4α}, V4 = {4α + 4}. So Γ(R0) is

a 4-partite graph as seen in Figure 3.3 below with the following characteristics;

diam(Γ(R0)) = 2, gr(Γ(R0)) = 3 and b(Γ(R0)) = 1
4

while ω(Γ(R0)) = 4.
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6

2α

2α + 2

2α + 4

2α + 6

6α

6α + 2

6α + 4

6α + 6

4

4α

4α + 4

4α + 6

4α + 2

4-partite graph

Figure 3.3: The zero divisor graph of GR(26, 23)

Note that V1 = {2, 6, 2α, 2α+2, 2α+4, 2α+6, 4α+2, 4α+6, 6α, 6α+2, 6α+4, 6α+6}

represent the equivalence class [2] while Vi , i ∈ {2, 3, 4}, is the equivalence class

[4] so that ΓE(R0) is an edge as shown below in Figure 3.4.

[2] [4]

Figure 3.4: The graph ΓE of zero divisors of GR(26, 23)

Remark 3.2.6 Observe by the above two examples that if R0 = GR(p3r, p3), then

Γ(R0) is more crowded or messy while ΓE(R0) is a single edge.
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Proposition 3.2.7 Let R0 = GR(pkr, pk) where k ≥ 3, r ∈ Z+. Then,

Γ(R0) =


(p

k
2
r − 1)− partite, if k is even;

p
k−1
2
r − partite, if k is odd.

Proof.

Clearly Z(R0)? = Z(R0)\{0} = pR0\{0}. We have two cases to consider.

Case I: When k is an even integer.

Let ε1, . . . , εr ∈ R0 with ε1 = 1 such that ε̄1, . . . , ε̄r ∈ R0/pR0 form a basis for R0/pR0

regarded as a vector space over its prime subfield GR(p). We now partition Z(R0)?

into the following subsets; Ui = {Σaiεi} where 1 ≤ i ≤ r and ai ∈ {0, j(p
k
2 )}

for 1 ≤ j ≤ p
k
2 − 1; VΣaiεi = Ui\{0, p

k
2 } and V1 = Z(R0)?\

⋃
i VΣaiεi . Now, for

each i = 1, . . . , r, VΣaiεi 6= ∅ and each of the VΣaiεi contains no adjacent vertices.

V1 ∩ VΣaiεi = ∅ and the sets VΣaiεi are all mutually disjoint. Moreover, Z(R0) =

V1 ∪ {∪
r
VΣ

i
aiεi}. Thus Γ(R0) is (p

k
2
r − 1)− partite.

Case II: When k is an odd integer.

We partition Z(R0)? into the following subsets. Let Ui = {Σaiεi} where 1 ≤ i ≤

r and ai ∈ {0, (j)(p
k+1
2 )} for 2 ≤ j ≤ p

k−1
2 ; VΣaiεi = Ui\{0} and V1 = Z(R0)?\Ui.

The rest of the proof is similar to Case I above with slight modifications. �

Proposition 3.2.8 Let R0 = GR(pkr, pk), k ≥ 3. Then the

(i) diameter, diam(Γ(R0)) = 2.

(ii) girth, gr(Γ(R0)) =


∞, p = 2, k = 3, r = 1;

3, elsewhere.
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(iii) binding number,

b(Γ(R0)) =


p

k
2
r − 2

p(k−1)r − p( k
2

)r + 1
, if k is even;

p( k−1
2

)r − 1

p(k−1)r − p( k−1
2

)r
, if k is odd.

Proof.

Since R0 = GR(pkr, pk) is of characteristic pk , proof to (i) and (ii) are similar to

Proposition 3.1.3.

(iii) Let ε1, . . . , εr ∈ R0 with ε1 = 1, such that ε̄1, . . . , ε̄r ∈ R0/pR0 form a basis

for R0/pR0 regarded as a vector space over its prime subfield Fp. Let k be even

and partition Z(R0)? as done in the proof of Proposition 3.2.7, then by definition

of V1, N(V1) =
⋃
i VΣaiεi . So |N(V1)| = p

k
2
r − 2 and |V1| = |Z(R0)| − |

⋃
i VΣaiεi | =

(p(k−1)r− 1)− (p
k
2
r− 2) = p(k−1)r− p k

2
r + 1. Then b(Γ(R0)) = |N(V1)|

|V1| = p
k
2 r−2

p(k−1)r−p(
k
2 )r+1

if k is even.

If k is odd, then |N(V1)| = |
⋃
i VΣaiεi| = p( k−1

2
)r−1 and |V1| = |Z(R0)?\

⋃
i VΣaiεi | =

|Z(R0)?|−|
⋃
i VΣaiεi | = (p(k−1)r−1)−(p( k−1

2
)r−1) = p(k−1)r−p( k−1

2
)r. Then b(Γ(R0)) =

|N(V1)|
|V1| = p(

k−1
2 )r−1

p(k−1)r−p(
k−1
2 )r

. �

Corollary 3.2.9 Let R0 = GR(pkr, pk) where k ≥ 4. Then,

ΓE(R0) =


k
2
− partite, if k is even;

k+1
2
− partite, if k is odd.

Proof. Case I: When k is even.

The vertex set of ΓE(R0) is partitioned into the following subsets V1 = {J l} where

1 ≤ l ≤ k
2

and Vi = {J i} with k
2
< i ≤ k − 1. For each i, V1 ∩ Vi = ∅ and Vi are

mutually disjoint. Moreover V1

⋃
∪k−1

i= k
2

{Vi} = V (ΓE(R0)) where V (ΓE(R0)) is the
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vertex set of ΓE(R0). The result follows by counting the disjoint subsets.

Case II: When k is odd.

The vertex set of ΓE(R0) is partitioned into the following subsets V1 = {J l} with

1 ≤ l ≤ k−1
2

and Vi = {J i} where k−1
2
< i ≤ k − 1. Then clearly as in case I above,

for each i, V1 ∩ Vi = ∅ and Vi are mutually disjoint. Moreover V1

⋃
∪k−1

i= k−1
2

{Vi} =

V (ΓE(R0)). The result follows by counting the disjoint subsets.

�

Corollary 3.2.10 Let R0 = GR(pkr, pk) where k ≥ 4. Then the clique number,

ω(ΓE(R0)) =


k
2
, if k is even;

k+1
2
, if k is odd.

Proof.

It suffices to find a maximal complete subgraph of ΓE(R0)). Let s be a unit in R0 and

the elements of the vertex set of ΓE(R0)) be of the form pl such that k
2
≤ l ≤ k − 1

when k is even and k−1
2
≤ l ≤ k− 1 when k is odd. We consider the following cases;

Case I: Let k be even.

We show that ΓE(R0) has a maximal complete subgraph S with vertices {[pls] =

[pl]} for k
2
≤ l ≤ k − 1. Suppose on the contrary that S is not maximal in ΓE(R0).

Then there exists S ′ ⊂ ΓE(R0) so that S ⊂ S ′ ⊆ ΓE((R0).Without loss of generality,

assume that pi ∈ V (S ′) where

{
0 < i < k

2
, if k is even ;

0 < i < k−1
2
, if k is odd.

So there exists some j > i > 0 so that pi.pk−1−j = pk−1+i−j 6= 0 which implies that

S ′ is not a complete subgraph, leading to a contradiction.

Case II: When k is odd:
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By a similar argument as in Case I above, we can show that ΓE(R0) contains a

maximal complete subgraph with vertices {[pls] = [pl]}, for k−1
2
≤ l ≤ k − 1. �

Proposition 3.2.11 Let R0 = GR(pkr, pk), k ≥ 4. Then

(i) diameter, diam(ΓE(R0)) = 2.

(ii) girth, gr(ΓE(R0)) = 3.

(iii) binding number, b(ΓE(R0)) =


k−4
k
, if k is even;

k−5
k−1

, if k is odd.

Proof.

Proofs to (i) and (ii) are easy to see.

To prove (iii), we consider the two separate cases when k is even and when k is odd

respectively. By considering partitions in the proof of Corollary 3.2.9 if k is even,

|V1| = k
2

while |N(V1)| = k−4
2

so that b(ΓE(R0)) = k−4
k
. Finally, when k is odd,

|V1| = k−1
2

while |N(V1)| = k−5
2

by partition in the proof of same Corollary 3.2.9.

Then b(ΓE(R0)) = |N(V1)|
|V1| = k−5

k−1
. �

Proposition 3.2.12 Consider R0 = GR
(
pkr, pk

)
for k ≥ 2 and r ≥ 1. Then

Aut (Γ (R0)) = Πk
l=2

(
p(k−l)r (pr − 1)

)
!

Proof.

Let ε1, . . . , εr ∈ R0 with ε1 = 1 such that ε̄1, . . . , ε̄r ∈ R0/Z(R0) forms a basis for

R0/Z(R0) regarded as a vector space over its prime subfield GF (p). For each prime

integer p, let X = {p, p2, . . . , pk−1} and VΣaiεi where ai ∈ X be disjoint vertices,

then routine enumeration yields

Aut (Γ (R0)) = Πk
l=2Sp(k−l)r(pr−1) for 2 ≤ l ≤ k.
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�

Chapter Summary

The remark and subsequent theorems, summarizes our characterization of the zero

divisor graph, Γ(R0) of the Galois rings established in this chapter.

Remark 3.2.13

(a) The zero divisor graphs of a Galois ring GR(pkr, pk) is of infinite girth if the

ring is one of the following:

i) GR(pr, p).

(ii) Z4.

(iii) Z8.

(iv) Z9.

(b) The zero divisor graph of a Galois ring is triangular if the ring is GR (24, 22) .

(c) The diameter of zero divisor graph of a Galois ring is zero if the ring is Z4.

(d) The diameter of a zero divisor graph of a Galois ring is infinite if the ring is

GR(pr, p).

(e) There exists no Galois ring whose zero divisor graph is an n− gon, n > 3.

(f) The binding number b
(
Γ(GR(pkr, pk))

)
is infinite if k = 1.
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Theorem 3.2.14 Let R0 = GR
(
pkr, pk

)
. Then,

(i) Γ(R0) =



∅, if R0 = GR(pr, p);

Kpr−1, if R0 = GR(p2r, p2);

(p( k
2

)r − 1)− partite, if k ≥ 3 is even;

p( k−1
2

)r − partite, if k ≥ 3 is odd.

(ii) diam (Γ(R0)) =



0, if p = 2, k = 2, r = 1;

1, if p = 3, k = 2, r = 1;

2, elsewhere .

(iii) gr (Γ(R0)) =



∞, if p = 2, k = 2, 3, r = 1;

or if p = 3, k = 2, r = 1;

3, elsewhere.

(iv) ω(Γ(R0)) =


(p( k

2
)r − 1)− partite, if k ≥ 3 is even;

p( k−1
2

)r − partite, if k ≥ 3 is odd.

(v) b (Γ(R0)) =


p(

k
2 )r−2

p(k−1)r−p(
k
2 )r+1

, if k ≥ 3 is even;

p(
k−1
2 )r−1

p(k−1)r−p(
k−1
2 )r

, if k ≥ 3 is odd.
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Theorem 3.2.15 Let R0 = GR
(
pkr, pk

)
. Then,

(i) ΓE(R0) =



K1, if charR0 = p2;

K2, if charR0 = p3;

k
2
− partite, if k ≥ 4 is even ;

k+1
2
− partite, if k > 4 is odd .

(ii) diam (ΓE(R0)) =



0, if charR0 = p2;

1, if charR0 = p3;

2, elsewhere .

(iii) gr (ΓE(R0) =


∞, if charR0 = pi, i = 2, 3;

3, elsewhere.

(iv) b (ΓE(R0)) =


k−4
k
, if k ≥ 4 is even,

k−5
k−1

, if k > 4 is odd.

(v) ω(ΓE(R0)) =


k
2
, if k ≥ 4 is even,

k+1
2
, if k > 4 is odd.

(vi) Aut (Γ(R0)) = Sp(k−l)r(pr−1), 2 ≤ l ≤ k.
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Chapter 4

A class of finite rings I

Throughout this chapter, R shall denote finite commutative rings with identity as

constructed in Section 4.1 below. The structure of the groups of units of these rings

are known ( see [24]). In this chapter, we verify some of the algebraic properties

of R and further, identify and investigate the invariant properties of the graphs of

their zero divisors.

4.1 Construction I

Let R0 be the Galois ring of the form GR
(
pkr, pk

)
where p is a prime integer and

k and r are positive integers. For each i = 1, . . . , h let ui ∈ Z(R) and U be

an h-dimensional R0-module generated by {u1, . . . , uh}. Then R = R0 ⊕ U is an

additive group. On this group, define multiplication by the following relation;

(i) If k = 1, 2, then pui = uiuj = ujui = 0, uir0 = (r0)σi ui and

(ii) If k ≥ 3, then pk−1ui = 0, uiuj = p2γij, u
k
i = uk−1

i uj = uiu
k−1
j = 0;
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uir0 = (r0)σi ui, where r0, γij ∈ R0, 1 ≤ i, j ≤ h and σi is the automorphism

associated with ui. Further, let the generators {ui} for U satisfy the additional

condition that if ui ∈ U , then pui = uiuj = 0.

By this multiplication on R, it is easy to see that if r0 + Σh
i=1λiui and

s0 + Σh
i=1γiui, where r0, s0 ∈ R0, γi, λi ∈ F0

∼= R0/pR0 are elements of R, then(
r0 + Σh

i=1λiui
) (
s0 + Σh

i=1γiui
)

= r0s0 + Σh
i=1 ((r0 + pR0) γi + λi (s0 + pR0)σi)ui.

We verify that this multiplication makes R a ring with the identity element equal

to (1, 0, . . . , 0).

Let r0 + Σh
i=1λiui ∈ R with r0 ∈ R0 and λi ∈ F0

∼= R0/pR0, then we need to find

s0 + Σh
i=1γiui with s0 ∈ R0 and γi ∈ F0 such that(

r0 + Σh
i=1λiui

) (
s0 + Σh

i=1γiui
)

=
(
s0 + Σh

i=1γiui
) (
r0 + Σh

i=1λiui
)

= r0 + Σh
i=1λiui.

Now if r0s0 +Σh
i=1 ((r0 + pR0) γi + λi (s0 + pR0)σi)ui = r0 +Σh

i=1λiui, then r0s0 = r0

and Σh
i=1 ((r0 + pR0) γi + λi (s0 + pR0)σi)ui = Σh

i=1λiui. So ((r0 + pR0)γi)ui = 0R,

and s0 = 1R0 for each i = 1, . . . , h. Since ui 6= 0, (r0 + pR0)γi = 0F0 . But r0 ∈ R0,

so γi = 0F0 for each i = 1, . . . , h. Thus s0 + Σh
i=1γiui = (1, 0, . . . , 0). Similarly,

we can show that (s0 + Σh
i=1γiui)(r0 + Σh

i=1λiui) = r0 + Σh
i=1λiui implies that

s0 + Σh
i=1γiui = (1, 0, . . . , 0).

Now, we prove that multiplication is associative. Suppose r0, s0, t0 ∈ R0 and

λi, γi, κi ∈ F0, let r0 + Σh
i=1λiui, s0 + Σh

i=1γiui, t0 + Σh
i=1κiui ∈ R. Then

(r0 + Σh
i=1λiui)((s0 + Σh

i=1γiui)(t0 + Σh
i=1κiui))

= (r0 + Σh
i=1λiui)(s0t0 + Σh

i=1((s0 + pR0)κi + γi(t0 + pR0)σi)ui)

= r0s0t0 + Σh
i=1((r0 + pR0)((s0 + pR0)κi + γi(t0 + pR0)σi) + λi(s0t0 + pR0)σi)ui

= r0s0t0 + Σh
i=1((r0s0 + pR0)κi + ((r0 + pR0)γi + λi(s0 + pR0)σi)(t0 + pR0)σi)ui
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= (r0s0 + Σh
i=1((r0 + pR0)γi + λi(s0 + pR0)σ)ui)(t0 + Σh

i=1κiui)

= ((r0 + Σh
i=1λiui)(s0 + Σh

i=1γiui))(t0 + Σh
i=1κiui).

Moreover,

(r0 + Σh
i=1λiui)((s0 + Σh

i=1γiui) + (t0 + Σh
i=1κiui))

= (r0 + Σh
i=1λiui)(s0 + t0 + Σh

i=1(γi + κi)ui)

= r0(s0 + t0) + Σh
i=1((r0 + pR0)(γi + κi) + λi((s0 + t0 + pR0)σi)ui

= r0s0 +Σh
i=1((r0 +pR0)γi+λi(s0 +pR0)σi)+r0t0 +Σh

i=1((r0 +pR0)κi+λi(t0 +pR0)σi)

= (r0 + Σh
i=1λiui)(s0 + Σh

i=1γiui) + (r0 + Σh
i=1λiui)(t0 + Σh

i=1κiui), which shows that

the left distributive law holds in R. Similarly, we can show that,

((r0 + Σh
i=1λiui) + (s0 + Σh

i=1γiui))(t0 + Σh
i=1κiui)

= (r0 + Σh
i=1λiui)(t0 + Σh

i=1κiui) + (s0 + Σh
i=1γiui)(t0 + Σh

i=1κiui), so that the right

distributive law also holds. Clearly R is a ring with identity.

We now discuss some properties of R.

Lemma 4.1.1 R is commutative if and only if σi = idR0 , the identity automor-

phism, for all i = 1, . . . , h.

Proof.

If σi = idR0 , then commutativity of R follows from the definition of multiplication.

Conversely, suppose R is commutative. Then for each a0, b0 ∈ R0, αi, βi ∈ R0/pR0,

we have that
(
a0 + Σh

i=1αiui
) (
b0 + Σh

i=1βiui
)

=
(
b0 + Σh

i=1βiui
) (
a0 + Σh

i=1αiui
)
.

This implies that,

a0b0+Σh
i=1 [(a0 + pR0) βi + αi (b0 + pR0)σi ]ui = b0a0+Σh

i=1 [(b0 + pR0)αi + βi (a0 + pR0)σi ]ui.

Commutativity of R then implies that a0b0 = b0a0 which requires that,

Σh
i=1 [(a0 + pR0) βi + αi (b0 + pR0)σi ]ui = Σh

i=1 [(b0 + pR0)αi + βi (a0 + pR0)σi ]ui.
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Which further implies that αi (b0 + pR0)σi−(b0 + pR0)αi = βi (a0 + pR0)σi−(a0 + pR0) βi.

Since αi 6= βi, then for the equality to hold then αi must be the identity in R0, i. e.

σi = idR0 , for all i = 1, . . . , h. �

Proposition 4.1.2 If k = 1 or 2, then R is a ring in which the multiplication of

any two zero divisors is zero, that is (Z(R))2 = (0).

Proof.

Follows from the definition of multiplication on R. �

Remark 4.1.3 Such rings with property of Proposition 4.1.2 are well known to be

completely primary finite rings (See Alkhamees [3]).

4.2 Rings of characteristic p

Let R0 = GF (pr) and F = R0/pR0 so that U = F h is an R0-module generated by

u1, u2, . . . , uh. On the additive group R = R0⊕U = R0⊕F h, define multiplication

on R as follows:

(r0, r1, . . . , rh)(s0, s1, . . . , sh) = (r0s0, r0s1 + r1s0, . . . , r0sh + rhs0).

This multiplication turns R into a ring with identity (1, 0, . . . , 0).

Proposition 4.2.1 If in the Construction I, R is a ring of characteristic p, then

(i) |Γ(R)| = prh − 1.

(ii) Γ(R) is complete.

(iii) Γ(R) = Kprh−1.

(iv) diam(Γ(R)) = 1.
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(v) gr(Γ(R)) =


∞, if r = 1, h = 1 and p = 2, 3;

3, elsewhere.

(vi) The binding number b(Γ(R)) =∞.

Proof.

(i) By the above construction, we have that R0 = GF (pr) and F = R0/pR0. Let

U = F h be an R0-module generated by u1, . . . , uh so that R = R0 ⊕ U is an

additive group. It is clear that Z(R) = R0u1 ⊕ R0u2 ⊕ · · · ⊕ R0uh and every

non zero element in Z(R) is of the form (0, r1, r2, . . . , rh). We show that any

element not contained in Z(R) is invertible. So let (r0, r1, r2, . . . , rh) /∈ Z(R).

Choose an element say (s0, s1, s2, . . . , sh) /∈ Z(R) such that

(r0, r1, r2, . . . , rh)(s0, s1, s2, . . . , sh) = (1, 0, 0, . . . , 0). This implies that

r0s0 = 1, thus s0 = r−1
0 and r0si + ris0 = 0, which implies that si = −rir−2

0

for 1 < i ≤ h. Since this holds in the reverse order, we have established that

(r0, r1, r2, . . . , rh)
−1 = (r−1

0 ,−r1r
−2
0 ,−r2r

−2
0 , . . . ,−rhr−2

0 ).

Since |R| = |R0||U | = pr.phr = p(h+1)r so that |Z(R)| = prh and V (Γ(R)) =

Z(R)− {0}, then |Γ(R)| = prh − 1 which establishes (i).

(ii) To establish this, note that the product of every pair (0, r1, r2, . . . , rh),

(0, s1, s2, . . . , sh) ∈ Z(R) − {0} is equal to zero so that every pair of vertices

in V (Γ(R)) are adjacent. Hence Γ(R) is complete.

(iii) This follows from (i) and (ii).
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(iv) Follows from (ii) and (iii).

Alternatively, note that diam(Γ(R)) = Sup{d(x, y)|x, y ∈ Γ(R)}. Since V (Γ(R)) =

Z(R)−{0} and for all distinct x, y ∈ Z(R)−{0}, xy = 0, Γ(R) is complete (see

Definition 1.9.12 ), hence d(x, y) = 1. So Sup{d(x, y)} = 1 for all x, y ∈ Γ(R)

which implies that diam(Γ(R)) = 1.

(v) This follows from (iii).

Alternatively we note that Γ(R) = Kprh−1 is complete. Then when r = 1, h =

1 and p = 2 or 3 then (prh − 1) ≤ 2. So gr(Γ(R)) = ∞. Otherwise, for all

(prh−1) > 2 we have by Diestel [18] that gr(Γ(R)) = 2 diam(Γ(R))+1. Since

diam(Γ(R)) = 1, the result readily follows.

(vi) Since the set S of minimal degree in Γ(R)) is empty, b(Γ(R)) =∞.

�

4.3 Rings of characteristic p2

Let R0 = GR(p2r, p2) and F = R0/pR0 so that U = F h is an R0-module generated

by u1, u2, . . . , uh on the additive group R = R0⊕U = R0⊕F h. Define multiplication

as follows: (r0, r1, . . . , rh)(s0, s1, . . . , sh) = (r0s0, r0s1 + r1s0, . . . r0sh + rhs0).

This multiplication turns R into a ring with identity (1, 0, . . . , 0).

Proposition 4.3.1 Let R be the ring of Construction I whose charR = p2. Then

the following hold:

(i) |Γ(R)| = p(h+1)r − 1.
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(ii) Γ(R) is complete.

(iii) Γ(R) = Kp(h+1)r−1.

(iv) diam((Γ(R))) = 1.

(v) gr(Γ(R)) =


∞, if r = 1, h = 0 or 1 and p = 2 or 3;

3, elsewhere.

(vi) The binding number b(Γ(R)) =∞.

Proof.

(i) By the construction, x ∈ Z(R)−{0} if and only if x is of the form (0, r1, r2, . . . , rh).

Now let x = (r0, r1, r2, . . . , rh) 6∈ Z(R) be an element in R, then x is invert-

ible and indeed x−1 is (s0, s1, . . . , sh) such that s0 = r−1
0 and si = −rir−2

0 for

1 ≤ i ≤ h. Since |R| = |R0||U | = p2r.phr = p(h+2)r. Thus |Z(R)| = p(h+1)r and

Γ(R) = Z(R)− {0}, then |Γ(R)| = p(h+1)r − 1.

(ii) For all x, y ∈ Z(R)− {0}, xy = 0. Then as in proof of part (ii) of Proposition

4.2.1, Γ(R) is complete.

(iii) This also follows from (i) and (ii), i.e Γ(R) = Kp(h+1)r−1.

(iv) It is clear that for all x, y ∈ Γ(R), d(x, y) = 1. So Sup{d(x, y)} = 1 for all

x, y ∈ Γ(R). Therefore the result is immediate.

(v) When r = 1, h = 0 and p = 2 or 3 then Γ(R) = Kn is complete. Since

n = (p(h+1)r − 1) ≤ 2, Γ(R) has no circles. So gr(Γ(R)) = ∞. Otherwise, for

all r, h ≥ 1, n = (p(h+1)r − 1) > 2. So the completeness of Γ(R) implies that

gr(Γ(R)) = 2diam(Γ(R)) + 1 = 3, since diam(Γ(R)) = 1.
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(vi) Similar to Proposition 4.2.1.

�

Corollary 4.3.2 Let R be a ring in Construction I satisfying (Z(R))2 = (0). The

graph Γ(R) is triangular if R is either of the following.

(i) Z2 ⊕ Z2 ⊕ Z2.

(ii) F4 ⊕ F4.

(iii) Z4 ⊕ Z2.

Proof.

A zero divisor graph is triangular if Γ(R) = K3. Let R be a ring described by

Construction I with char(R) = p or p2, then Γ(R) = Kphr−1 or Γ(R) = Kp(h+1)r−1

respectively. It suffices to find values of p, r and h for which phr − 1 or p(h+1)r − 1

equals 3. Now let R be of characteristic p = 2. Then (i) holds for r = 1 and h = 2.

(ii) holds when r = 2, h = 1. When R is of characteristic p2, then Γ(R) is clearly

triangular in case (iii), when r = 1, h = 1. �

4.4 Rings of characteristic pk, k ≥ 3

Lemma 4.4.1 Let R0 = GR(pk, pk), k ≥ 3 and R = R0⊕R0/pR0⊕· · ·⊕R0/pR0.

Then, Z(R) = pR0⊕R0/pR0⊕· · ·⊕R0/pR0 and ann(Z(R)) = pn−1R0⊕R0/pR0⊕

· · · ⊕R0/pR0 for n ≥ 2.

Proof.

Let x ∈ ann(Z(R)), then x ∈ R, so that Z(R)x = xZ(R) = (0). So let
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x = (r0, r̄1, . . . , r̄h) ∈ Z(R) and u = (ps0, s̄1, . . . , s̄h) ∈ Z(R). Now

xu = (r0, r̄1, . . . , r̄h)(ps0, s̄1, . . . , s̄h) = (r0ps0, r0s̄1 + r̄1ps0, . . . , r0s̄h + r̄hps0)

= (ps0r0, ps0r̄1 + s̄1r0, . . . , ps0r̄h + s̄hr0) = ux = (0, 0̄, . . . , 0̄).

Thus r0ps0 = ps0r0 = 0, implies that s0r0 ∈ pn−1R0.

Since s0 ∈ R0, then r0 ∈ pn−1R0. Moreover, r0s̄1 + r̄1ps0 = · · · = r0s̄h + r̄hps0 = 0̄.

For each i = 1, . . . , h, r0s̄i + r̄ips0 = 0̄. This implies that, r0s̄i + r̄ips0 ∈ pR0. Since

r0 ∈ pn−1R0, s̄i ∈ R0/pR0, then r0s̄i ∈ pR0 and r̄ips0 ∈ pR0 so that r̄i ∈ R0/pR0.

This shows that x = (r0, r̄1, . . . , r̄h) ∈ pn−1R0⊕R0/pR0⊕· · ·⊕R0/pR0 which implies

that ann(Z(R)) ⊆ pn−1R0 ⊕R0/pR0 ⊕ · · · ⊕R0/pR0.

Conversely, let x ∈ pn−1R0⊕R0/pR0⊕· · ·⊕R0/pR0. Notice that Z(R)n−1 = pn−1R0

so that (pn−1R0 ⊕R0/pR0 ⊕ · · · ⊕R0/pR0)Z(R) = Z(R)(pn−1R0 ⊕R0/pR0 ⊕ · · · ⊕

R0/pR0) = (Z(R))n = (0), hence pn−1R0 ⊕R0/pR0 ⊕ · · · ⊕R0/pR0 ⊆ ann(Z(R)).

�

Lemma 4.4.2 Let R0 = GR(pk, pk), k ≥ 3 and let R = R0 ⊕ R0/pR0 ⊕ · · · ⊕

R0/pR0. Then,

Z(R) = pR0⊕R0/pR0⊕· · ·⊕R0/pR0, ann(Z(R)) = pn−1R0⊕R0/pR0⊕· · ·⊕R0/pR0

and (Z(R))n−1 = pn−1R0. Moreover, when

(i) x ∈ ann(Z(R)), then deg(x) = | Z(R) | − 2.

(ii) y ∈ Z(R) but y /∈ ann(Z(R)), then deg(y) = | ann(Z(R)) | − 1.
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Proof.

(i) Clearly |ann(Z(R))| = ph+1. Now since x is adjacent to all the other vertices

except 0 and itself, we have deg(x) = |Z(R)| − 2.

(ii) Let y ∈ Z(R) but y /∈ ann(Z(R)). Suppose z /∈ ann(Z(R)), we claim that

z is not adjacent to y. Suppose it is, then zy = 0. Now z is of the form

(1 + pn−1r0, r̄1, . . . , r̄h) and y is of the form (ps0, s̄1, . . . , s̄h) so that (1 +

pn−1r0, r̄1, . . . , r̄h)(ps0, s̄1, . . . , s̄h) = (ps0, s̄1, . . . , s̄h) 6= (0, 0̄, . . . , 0̄), a contra-

diction and we are done.

�

Proposition 4.4.3 Let R be a ring in Construction I. If k ≥ 3, then R is in the

class of completely primary finite rings of characteristic pk satisfying;

(i) Z(R) = pR0 ⊕ U.

(ii) (Z(R))k−1 = pk−1R0.

(iii) (Z(R))k = (0).

Proof.

It is well known that R0 is a coefficient subring of R with same identity element and

of same characteristic. To show that Z(R) = pR0 ⊕ U, we prove that all elements

which lie outside Z(R) are invertible. Consider b ∈ R0 such that b /∈ pR0 and

t ∈ Z(R). Then, (b+ t)p
r

= bp
r

+ t1, where t1 ∈ Z(R). But bp
r

+ t1 = b+ t2, where

t2 ∈ Z(R). Now, (b+ t2)p
r−1 = 1 + t3, where t3 ∈ Z(R), and (1 + t3)p

k−1

= 1.

So

((
(b+ t)p

r
)pr−1

)pk−1

= 1, which shows that b + t has an inverse. Further,
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|Z(R)| = p(h+k−1)r and | (R0/pR0)? + Z(R)| = (pr − 1)
(
p(h+k−1)r

)
, so that

(R0/pR0)? +Z(R) = R−Z(R), which shows that all the elements which lie outside

Z(R) are invertible. The multiplication on R yields that (Z(R))k−1 = pk−1R0 and

Z(R)
(
pk−1R0

)
=
(
pk−1R0

)
Z(R) = (0). Thus (Z(R))k = (0).

Since RZ(R) = Z(R) ⊆ Z(R), the set Z(R) is an ideal. Its uniqueness and maxi-

mality follows from the fact that any other ideal distinct from Z(R) contains a unit

and is therefore the whole ring R. �

Proposition 4.4.4 Let R0 be a Galois ring of the form GR(pk, pk), k ≥ 3 and

U = Σh
i=1⊕(R0/pR0)i considered as an h−dimensional R0−module. On the additive

group R = R0 ⊕ U, define multiplication by

(r0, r1, . . . , rh)(s0, s1, . . . , sh) = (r0s0, r0s1 + r1s0, . . . , r0sh + rhs0).

Then Γ(R) =


p

k
2

+h − partite, k is even ;

p
k−1
2

+h − partite, k is odd.

Proof.

Case I: k is an even integer. Partition Z(R)? into the following subsets.

V(1,r1,...,rh) = Z(R)?\
{

(j(p
k
2 ), r1, . . . , rh) where 1 ≤ j ≤ p

k
2 − 1

}
.

V(j,r1,...,rh) =
{

(j(p
k
2 ), r1, . . . , rh)

}
where 1 ≤ j ≤ p

k
2 − 1.

V(0,r1,...,rh) = {(0, r1, . . . , rh)} for at least one ri 6= 0 and for 1 ≤ i ≤ h.

Clearly all the above defined sets are nonempty and each set contains nonadjacent

vertices. Thus, V(1,r1,...,rh) ∩ V(j,r1,...,rh) = ∅; V(1,r1,...,rh) ∩ V(0,r1,...,rh) = ∅

and V(j,r1,...,rh) ∩ V(l,r1,...,rh) = ∅ for all j 6= l, 1 ≤ j, l ≤ p
k
2 − 1.

Finally observe that Z(R)? = V(1,r1,...,rh) ∪
(
∪p

k
2−1

j=1 {V(j,r1,...,rh)}
)
∪ V(0,r1,...,rh). Now,

V(1,r1,...,rh) = 1; ∪p
k
2−1

j=1 {V(j,r1,...,rh)} =
(
p

k
2 − 1

)
ph and |V(0,r1,...,rh)| = ph−1. Then,
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V(1,r1,...,rh) ∪
(
∪p

k
2−1

j=1 {V(j,r1,...,rh)}
)
∪ V(0,r1,...,rh) = 1 +

(
p

k
2 − 1

)
ph + ph − 1 = p

k
2

+h.

Thus Γ(R) is p
k
2

+h − partite if k is even.

Case II: k is an odd integer.

Partition Z(R)? into the following subsets.

V(1,r1,...,rh) = Z(R)?\
{

((j − 1)(p
k+1
2 ), r1, . . . , rh) where 2 ≤ j ≤ p

k−1
2

}
.

V(j,r1,...,rh) =
{(

(j − 1)(p
k+1
2 ), r1, . . . , rh

)}
where 2 ≤ j ≤ p

k−1
2 .

V(0,r1,...,rh) = {(0, r1, . . . , rh)} for at least one ri 6= 0 and for 1 ≤ i ≤ h.

These sets are nonempty and each set contains nonadjacent vertices.

That is, V(1,r1,...,rh) ∩ V(j,r1,...,rh) = ∅; V(1,r1,...,rh) ∩ V(0,r1,...,rh) = ∅, and

V(j,r1,...,rh) ∩ V(l,r1,...,rh) = ∅ for all j 6= l, 2 ≤ j, l ≤ p
k−1
2 . Moreover,

Z(R)? = V(1,r1,...,rh) ∪
(
∪p

k−1
2

j=2 {V(j,r1,...,rh)}
)
∪ V(0,r1,...,rh). Now, V(1,r1,...,rh) = 1;

∪p
k−1
2

j=2 {V(j,r1,...,rh)} = ph
(
p

k−1
2 − 1

)
and V(0,r1,...,rh) = ph − 1. Thus,

V(1,r1,...,rh)∪
(
∪p

k−1
2

j=2 {V(j,r1,...,rh)}
)
∪V(0,r1,...,rh) = 1+ph

(
p

k−1
2 − 1

)
+ph−1 = p

k−1+2h
2 .

Therefore Γ(R) is p
k−1+2h

2 − partite if k is odd. �

Example 4.4.5 Let R0 be a Galois ring of the form GR(pk, pk), k ≥ 3 and U =

Σh
i=1 ⊕ (R0/pR0)i considered as an h− dimensional R0 −module

On the additive group R = R0 ⊕ U, define multiplication by

(r0, r1, . . . , rh)(s0, s1, . . . , sh) = (r0s0, r0s1 + r1s0, . . . , r0sh + rhs0).

Then Γ(R) =


p

k
2

+h − partite, k is even ;

p
k−1
2

+h − partite, k is odd.

Choose R0 = Z16, h = 1, p = 2, k = 4. Then R = Z16 ⊕ Z16/2Z16 and Z(R)? =

{(0, 1̄), (2, 0̄), (2, 1̄), (4, 0̄), (4, 1̄), (6, 0̄), (6, 1̄), (8, 0̄), (8, 1̄), (10, 0̄), (10, 1̄), (12, 0̄), (12, 1̄), (14, 0̄), (14, 1̄)} .
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Now V(0,1) = {(0, 1̄)}, V(1,r1) = {(2, 0̄), (2, 1̄), (6, 0̄), (6, 1̄), (10, 0̄), (10, 1̄), (14, 0̄), (14, 1̄)},

V(1,0) = {(4, 0̄)}, V(1,1) = {(4, 1̄)}, V(2,0) = {(8, 0̄)}, V(2,1) = {(8, 1̄)},

V(3,0) = {(12, 0̄)} and V(3,1) = {(12, 1̄)}.

Clearly, each pair of sets is disjoint and each set contains nonadjacent vertices.

Then V(1,r1) ∪ V(1,0) ∪ V(1,1) ∪ V(2,0) ∪ V(2,1) ∪ V(3,0) ∪ V(3,1) ∪ V(0,1) = Z(R)?. So

Γ(R) is 8 − partite (See Figure 4.1), with diam(Γ(R)) = 2,

gr(Γ(R)) = 3 and b(Γ(R)) = 7
8

(8,1̄)

(12,0̄)

(12,1̄)

(0,1̄)

(2,0̄)
(2,1̄)
(6,0̄)
(6,1̄)

(10,0̄)
(10,1̄)
(14,0̄)
(14,1̄)

(8,0̄)

(4,0̄)

(4,1̄)

Figure 4.1: The zero divisor graph of Z16 ⊕ Z16/2Z16

Example 4.4.6 Choose R0 = Z8; h = 1, p = 2, k = 3. Then,

R = Z8⊕Z8/2Z8 and Z(R)? = {(2, 0̄), (2, 1̄), (4, 0̄), (4, 1̄), (6, 0̄), (6, 1̄), (0, 1̄)} . Now

V(1,r1) = {(2, 0̄), (2, 1̄), (6, 0̄), (6, 1̄)} , V(2,0) = {(4, 0̄)}, V(2,1) = {(4, 1̄)} and V(0,1) =

{(0, 1̄)}.

Notice that each pair of sets is disjoint , and each set contains nonadjacent vertices.

V(1,r1) ∪ V(2,0) ∪ V(2,1) ∪ V(0,1) = Z(R)?.

Thus Γ(R) is 4 − partite (See Figure 4.2), with diam(Γ(R)) = 2,
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gr(Γ(R)) = 3 and b(Γ(R)) = 3
4
.

(4,0̄)

(0,1̄)

(4,1̄)

(2,0̄)

(2,1̄)

(6,0̄)

(6,1̄)

Figure 4.2: The zero divisor graph of Z8 ⊕ Z8/2Z8

Proposition 4.4.7 Let R0 be the Galois ring of the form GR(pkr, pk), where p is a

prime integer and k and r are positive integers. For each i = 1, . . . h, let ui ∈ Z(R)

such that U is an h-dimensional R0-module generated by {ui, . . . , uh} so that

R = R0⊕U is an additive group. On this group, define multiplication by the following

relations;

(i) If k = 1, 2, then pui = uiuj = ujui = 0; uir0 = r0ui.

(ii) If k ≥ 3, then pk−1ui = 0, uiuj = p2γij, u
k
i = uk−1

i uj = uiu
k−1
j = 0, uir0 = r0ui

where r0, γij ∈ R0, 1 ≤ i, j ≤ h. In addition, if u is restricted to U then the

order of u is p.

Then Γ(R) =


p( k

2
+h)r − partite, if k is even;

p( k−1+2h
2

)r − partite, if k is odd.

Proof.

Let λ1, . . . , λr ∈ R0 with λ1 = 1 such that λ̄1, . . . , λ̄r ∈ R0/pR0 form a basis for

R0/pR0 regarded as a vector space over its prime subfield Fp. Since the two cases

do not overlap, we treat them in turn.
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CaseI: k is an even integer:

Let Xi,s = {Σr
i=1aiλi + Σh

s=1λsus} where ai ∈ {0, j(p
k
2 )} and 1 ≤ j ≤ p

k
2 − 1. Then

Z(R)? is partitioned into the following mutually disjoint subsets

VΣaiλi+Σλsus = Xi,s\{0}, V1 = Z(R)?\
⋃
i,s{VΣaiλi+Σλsus}.

These subsets are clearly nonempty and each contains nonadjacent vertices.

Moreover, Z(R)∗ = V1

⋃{⋃
i,s{VΣaiλi+Σλsus}

}
.

Now |
⋃
i,s{VΣaiλi+Σλsus} | = p( k

2
+h)r − 1 and | V1 | = 1. So Z(R)? = p( k

2
+h)r which

implies that Γ(R) is p( k
2

+h)r − partite if k is even.

Case II: k is an odd integer.

Let Xi,s = {Σr
i=1aiλi + Σh

s=1λsus} where ai ∈ {0, (j − 1)p
k+1
2 } and 2 ≤ j ≤ p

k−1
2 .

Then Z(R)? is partitioned into the following mutually disjoint subsets,

VΣaiλi+Σλsus = Xi,s\{0}, V1 = Z(R)?\
⋃
i,s {VΣaiλi+Σλsus}.

The subsets are nonempty and each contains nonadjacent vertices. So

Z(R)? = V1

⋃{⋃
i,s{VΣaiλi+Σλsus}

}
. Now |

⋃
i,s{VΣaiλi+Σλsus}| = p( k−1

2
+h)r − 1,

|V1| = 1. So |Z(R)?| = |V1| + |
⋃
i,s{VΣaiλi+Σλsus} | = p( k−1+2h

2
)r showing that Γ(R)

is p( k−1+2h
2

)r − partite if k is odd. �

Corollary 4.4.8 Let R be the ring in Construction I described in Proposition 4.4.7

and let k ≥ 3 then;

(i) diam(Γ(R)) = 2.

(ii) gr(Γ(R)) = 3.

(iii) b(Γ(R)) =


p(

k
2 +h)r−1

p(k−1+h)r−p(
k
2 +h)r

, if k is even;

p(
k−1
2 +h)r−1

p(k−1+h)r−p(
k−1
2 +h)r

, if k is odd.
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Proof.

(i) The annihilator, annR0/pR0(Z(R)) = Z(R)k−1 ⊕ U. So the zero divisor of the

form pk−1r0 + Σλiui is adjacent to every other nonzero zero divisor. Mean-

while, when l + t 6= 0(mod k), r0, s0 ∈ R0, then zero divisors of the form

plr0 +Σh
i=1λiui and pts0 +Σh

i=1λ
′
iu
′
i are non adjacent. Thus diam(Γ(R)) = 2.

(ii) The order of annR0/pR0(Z(R)) = p(h+1)r. So every zero divisor graph of R

contains a complete subgraph, Kp(h+1)r . The in variants reveal that the least

polygon in Γ(R) is K3 and so the result follows.

(iii) Let k be an even integer and partition of Z(R)? be as in proof of

Proposition 4.4.7. Then V1 = Z(R)?\
⋃
i,s{VΣaiλi+Σλsus}, and

N(V1) =
⋃
i,s{VΣaiλi + Σλsus} leading to |N(V1)| = p( k

2
+h)r − 1.

Since |V1| = |Z(R)?| − |
⋃
i,s{VΣaiλi+Σλsus}| = p(k−1+h)r − 1−

(
p( k

2
+h)r − 1

)
= p(k−1+h)r − p( k

2
+h)r, the result follows immediately.

If k is odd, then |N(V1)| = |
⋃
i,s{VΣaiλi+Σλsus}| = p( k−1

2
+h)r − 1, and

|V1| = |Z(R)? −Xi,s| = |Z(R)?| − |Xi,s| = p(k−1+h)r − 1−
(
p( k−1

2
+h)r − 1

)
= p(k−1+h)r − p( k−1

2
+h)r. Hence N(V1)

V1
= p(

k−1
2 +h)r−1

p(k−1+h)r−p(
k−1
2 +h)r

.

�

Proposition 4.4.9 Let R be a ring in the Construction I. Then

ΓE (R) =


k
2
− partite, if k is even;

k+1
2
− partite, if k is odd.

Proof.

If k = 1 or 2, then ΓE (R) is 1 - partite, so the result trivially holds. For k ≥ 3,
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we consider the following cases.

Case I: k is even.

Let J̃ i = J i⊕U, i ∈ N. Then the vertex set of ΓE(R) is partitioned into the following

subsets; V1 = {J̃ l} for 1 ≤ l ≤ k
2

and Vj = {J̃ j} where k
2
< j ≤ k − 1. For each

j, V1 ∩ Vj = ∅ and Vj are mutually disjoint. Moreover V1

⋃
{∪k−1

j= k
2

+1
Vj} = ΓE(R).

The result follows by counting the disjoint subsets.

Case II: k is odd.

The set of vertices of ΓE(R) are partitioned into the following subsets; V1 = {J̃ l}

for 1 ≤ l ≤ k−1
2

and Vj = {J̃ j} for k−1
2
< j < k− 1. Then clearly as in Case I above,

for each j, V1∩Vj = ∅ and Vj are mutually disjoint. Moreover, V1

⋃
{∪k−1

j= k−1
2

+1
Vj} =

ΓE(R). The result follows by counting the disjoint subsets. �

Chapter Summary

In the sequel, the remarks and subsequent propositions summarize the character-

ization of the zero divisor graphs of completely primary finite rings given in the

Construction I.

Remark 4.4.10 Our results show that if R is a commutative ring in the

Construction I, then its Jacobson radical J(R) is equal to its subset of zero divi-

sors, Z(R). Thus Z(R) is a nilpotent ideal implies that if R is not a field, then

ann(Z(R)) 6= (0). Moreover, element of ann(Z(R)?) are adjacent vertices in the

graph Γ(R).

Remark 4.4.11 Let R1 and R2 be commutative rings in Construction I, then
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Γ(R1) ∼= Γ(R2) does not imply that R1
∼= R2. For instance, if R1 = Z2 ⊕ Z2 ⊕ Z2

and R2 = Z4 ⊕ Z2, then Γ(R1) and Γ(R2) are triangular, while R1 � R2.

Proposition 4.4.12 There exist three non-isomorphic commutative rings in Con-

struction I whose zero divisor graphs are triangular.

Proof.

See Corollary 4.3.2 �

Proposition 4.4.13 There exists no ring in Construction I whose zero divisor

graph, Γ(R) is an n− gon, n > 3.

Proof.

Suppose R is not a field and the cardinality of the vertices of nonzero zero divisors,

|V (Γ(R))| > 3. Since Z(R) is a nilpotent ideal, ann(Z(R)) 6= (0). Consider

0 6= a ∈ ann(Z(R)), then a is adjacent to every other b ∈ V (Γ(R)). This completes

the proof. �

Proposition 4.4.14 Let R be a commutative ring in Construction I. Then

diam (Γ(R)) = 0, 1 or 2.

Proof.

If R = Z2 ⊕ Z2, then |Z(R)?| = 1; So diam (Γ(R)) = 0.

Let charR = p or p2, then Γ(R) is complete so that diam(Γ(R)) = 1 (with the

exception of the case when p = 2 and h = 1).

For all the other commutative rings considered under this construction,

diam (Γ(R)) = 2 because 0 6= a ∈ ann (Z(R)) is adjacent to every other element in

Z(R)? and the proof is similar to part (i) of Corollary 4.4.8. �
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Proposition 4.4.15 Let R be a commutative ring in Construction I. Then the girth

gr (Γ(R)) =∞ if R is one of the following rings.

(i) R = Z2 ⊕ Z2.

(ii) R = Z3 ⊕ Z3.

Proof.

In case (i), there exists only one non zero divisor, that is (0, 1).

In case (ii), there exists two nonzero zero divisors, (0, 1) and (0, 2). �

Theorem 4.4.16 Let R be a commutative ring that is not a field, described by

Construction I. Then,

(i) Γ(R) =



Kprh−1, if k = 1;

Kp(h+1)r−1, if k = 2;

p( k
2

+h)r − partite, if k ≥ 4 is even;

p( k−1+2h
2

)r − partite, if k ≥ 3 is odd.

(ii) diam (Γ(R)) =



0, if p = 2, h = 1;

1, if k = 1, 2;

2, elsewhere.

(iii) gr (Γ(R)) =


∞, if r = 1, h = 1, and p = 2, 3;

3, elsewhere.
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(iv) b (Γ(R)) =



p(
k
2 +h)r−1

p(k−1+h)r−p(
k
2 +h)r

, k ≥ 4 and even;

p(
k−1
2 +h)r−1

p(k−1+h)r−p(
k−1
2 +h)r

, k ≥ 3 and odd;

∞, k = 1, 2.

Proof.

Follows from Propositions 4.2.1, 4.3.1, 4.4.4, 4.4.7 and Corollary 4.4.8. �

Theorem 4.4.17 Let R be a ring in the Construction I. Then

ΓE (R) =


k
2
− partite, if k is even;

k+1
2
− partite, if k is odd.

Proof.

Follows from Proposition 4.4.9 .

�
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Chapter 5

A class of finite rings II

Let r be a positive integer and 2 ≤ k ∈ Z.. Let GR(pkr, pk) be a Galois ring

of order pkr and characteristic pk. Consider R = GR(pkr, pk) ⊕ U where U is a

finitely generated GR(pkr, pk)- module. The structure of unit groups of R have

been extensively studied ( See [24] ). The set, Z(R) of zero divisors of R satisfy the

condition (Z(R))2 ⊆ GR(pkr, pk) and R is well known ( See [16] )to be completely

primary finite ring. In this chapter, the structure of zero divisors graphs of R have

been investigated.

5.1 Construction II

Let r and k be a positive integers with k ≥ 2. Let R0 = GR(pkr, pk) be a Galois

ring. For each i = 1, . . . , h, let ui ∈ Z(R) such that U is an h− dimensional R0

module so that R = R0⊕U is an additive Abelian group. On R define multiplication

as follows;

For r0, s0 ∈ R0, αi, ωi, λij ∈ R0/pR0 and σi ∈ Aut(R0),
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let
(
r0 + Σh

i=1αiui
) (
s0 + Σh

i=1ωiui
)

= r0s0 + pk−1Σh
i,j=1λij (αi(ωj)

σi + pR0) + Σh
i=1 [(r0 + pR0)ωi + αi(s0 + pR0)σi ]ui. We

verify that this multiplication turns R into a ring with identity (1, 0, 0, . . . , 0). Since

R0 ⊕ U is an additive Abelian group, we show that it is a multiplicative semigroup

in which multiplication distributes over addition.

Now, (r0 + Σλiui) ((s0 + Σγiui) (t0 + Σκiui))

= (r0 + Σλiui)
(
s0t0 + pk−1Σβij (γi (κj)

σi + pR0) + Σ [(s0 + pR0)κi + γi (t0 + pR0)σi ]ui
)

= r0s0t0+r0p
k−1Σβij (γi (κj)

σi + pR0)+Σ (r0 + pR0) ((s0 + pR0)κi + γi (t0 + pR0)σi)+

λi
(
s0t0 + pk−1Σβij (γi (κj)

σi) + pR0

)σi ui
= r0s0t0 + r0p

k−1Σβij (γi (κj)
σi + pR0) +

(Σ (r0s0 + pR0)κi + ((r0 + pR0) γi + λi (s0 + pR0)) + pn−1Σβij (γi (κj)
σi + pR0)

σi (t0 + pR0)σi)ui

=
((
r0s0 + pk−1Σφijλi (γj)

σi + pR0

)
+ ((r0 + pR0) γi + λi (s0 + pR0)σi)

)
ui (t0 + Σκi)

( where φij = r0t0βij)

= ((r0 + Σλiui) (s0 + Σγiui)) (t0 + Σκiui) .

Next,

(r0 + Σλiui) ((s0 + Σγiui) + (t0 + Σκiui)) = (r0 + Σλiui) ((s0 + t0) + Σ (γi + κi)ui)

= r0 (s0 + t0)+pk−1Σβij (λi (γj + κj)
σi + Σ ((r0 + pR0) (γi + κi) + λi (s0 + t0) + pR0)σi)ui

= r0s0 + pk−1Σβij (λi (γj)
σi + Σ (r0 + pR0) γi + λi (s0 + pR0)σi)ui + r0t0

+ pk−1Σβij (λi (κj)
σi + Σ (r0 + pR0)κi + λi (t0 + pR0)σi)ui

= (r0 + Σλiui) (s0 + Σγiui) + (r0 + Σλiui) (t0 + Σκiui) .

Similarly it can be shown that

((r0 + Σλiui) + (s0 + Σγiui)) (t0 + Σκiui) = (r0 + Σλiui) (t0 + Σκiui)+(s0 + Σγiui) (t0 + Σκiui) .

Now, suppose ((r0 + Σαiui) (s0 + Σλiui)) = r0 + Σαiui. Then
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r0s0 + pk−1Σβij (α (λj)
σi + pR0) = r0 and (r0 + pR0)λi + αi (s0 + pR0)σi = αi. So

(r0 + pR0)λi = 0 implies that λi = 0 and (s0 + pR0)σi = 1. Since σi is an auto-

morphism s0 + pR0 = 1 + pR0 which means that s−1
0 ∈ pR0 so that s0 is a unit in

R0. Clearly r0s0 = r0 means that s0 = 1.

Lemma 5.1.1 Let R be a ring in Construction II. R is commutative if and only if

σi = idR0 , (the identity automorphism) for every i = 1, . . . , h.

Proof.

If σi = idR0 , then commutativity of R follows from the definition of multiplication.

Conversely, let R be commutative. Then for each a0, b0 ∈ R,αi, βi ∈ R0/pR0,

(a0 + Σαiui) (b0 + Σβiui) = (b0 + Σβiui) (a0 + Σαiui) . This implies that a0b0 +

pk−1Σβij (ai (bj)
σi + pR0) + Σ ((a0 + pR0) βi + αi (b0 + pR0)σi)ui

= b0a0 + pk−1Σβij (bi (aj)
σi + pR0) + Σ ((b0 + pR0)αi + βi (a0 + pR0)σi)ui which

impies that σi = idR0 . �

Proposition 5.1.2 Let k = 2, then R is a completely primary finite ring of char-

acteristic p2 satisfying:

(i) Z(R) = pR0 ⊕ U.

(ii) (Z (R))2 = pR0.

(iii) (Z (R))3 = (0).

Proof.

Similar to the proof of Proposition 4.4.3 with some slight modification.

�
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Proposition 5.1.3 Let R0 = GR (p2r, p2) be a Galois ring. For each i = 1, . . . , h,

let ui ∈ Z(R) such that U is an h− dimensional R0 module so that R = R0 ⊕ U is

an additive Abelian group. On R, define multiplication as follows:

(r0 + Σαiui) (s0 + Σωiui) = r0s0+pΣλij (αi (ωj)
σi + pR0)+Σh

i [(r0 + pR0)ωi + αi (s0 + pR0)σi ]ui

where r0, s0 ∈ GR (p2r, p2) , αi, ωi, λij ∈ R0/pR0 and σi ∈ Aut (R0) . The graph of

R, Γ (R) , satisfies the following:

(i) (Γ (R)) = p(h+1)r − 1.

(ii) diam (Γ (R)) = 2.

(iii) gr (Γ (R)) =


∞, r = 1, h = 1, p = 2;

3, elsewhere.

(iv) The binding number, b (Γ (R)) = pr−1
p(h+1)r−pr .

Proof.

(i) Clearly Z (R) = pR0 ⊕ U. Since Z (R) is a maximal ideal of R, the quotient

R/Z (R) is a field of order pr.Now consider 0 6= a ∈ R/Z (R) then, (R/Z(R))? =

< a > and o(a) = pr− 1. This shows that each element which does not belong

to Z (R) has an inverse. Thus Z (R) = p(h+1)r and Z (R)? = p(h+1)r − 1.

(ii) The annihilator, ann (Z (R)) = pR0. Now, let x /∈ pR0, then there exists

y ∈ Z (R)? such that xy ∈ pR0. But xyz = 0, where z ∈ ann (Z (R)) = pR0.

So diam (Γ (R)) = 2.

(iii) If r = 1, p = 2, h = 1, then Z (R)? = {(0, 1), (2, 0), (2, 1)}. In this case Γ (R) is

a bipartite graph, since (2, 0) is adjacent to the other two vertices while (0, 1)

and (2, 1) are non adjacent. Elsewhere, (ann (Z (R)))? = pr ≥ 2.
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Now, let x, y ∈ (ann (Z (R)))? , then x and y are adjacent. Moreover, any

z ∈ Z (R)? is adjacent to x and y. This completes the proof.

(iv) Consider N(S) = ann (Z(R))? = pR0\{0}. So N(S) = pr − 1. Now, S =

V (Γ (R)) \N (S) , so that S = p(h+1)r − 1 − (pr − 1) . Thus b (Γ(R)) =

N(S)
S

= pr−1
p(h+1)r−pr .

�

Proposition 5.1.4 Let R be a ring in Construction II with h = 1, then

Γ (R) =


p(

k
2 )r − partite, if k is even ;

p(
k−1
2 )r − partite, if k is odd .

Proof.

Consider λ1, . . . , λr ∈ R0 with λ1 = 1 such that λ1, . . . , λr ∈ R0/pR0 form a basis

for R0/pR0 regarded as a vector space over its prime subfield Fp. Since the two cases

do not overlap, we treat them in turn.

Case I: k is an even integer.

Let X =

{
Σr
i=1aiλi

}
, ai ∈

{
0, j
(
p

k
2

)}
, 1 ≤ j ≤ p

k
2 −1. Then, Z(R)? is partitioned

into the following subsets;⋃
VΣiaiλi = X\{0}, V1 = Z(R)?\

⋃
VΣiaiλi and Z(R)? = V1

⋃
(
⋃
VΣiaiλi).

The subsets are nonempty, mutually disjoint and contain nonadjacent vertices.

Moreover,
⋃
VΣiaiλi = p(

k
2 )r − 1 so that Γ (R) is p(

k
2 )r- partite.

Case II: k is an odd integer.

Let X =

{
Σr
iaiλi

}
, ai ∈

{
0, (j − 1) p

k+1
2

}
, 2 ≤ j ≤ p

k−1
2 . Partition Z (R)? into

the following mutually disjoint subsets;
⋃
VΣiaiλi = X\{0}, V1 = Z(R)?\

⋃
VΣiaiλi .
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Then subsets are nonempty and each contains nonadjacent vertices. In addition,⋃
VΣiaiλi = p( k−1

2
)r − 1 so that Γ(R) is p( k−1

2
)r- partite.

�

Example 5.1.5 Consider the ring R = Z4 ⊕ Z4/2Z4 with respect to multiplication

in Construction II. The set Z(R)? of nonzero zero divisors of R is

Z(R)? = {(0, 1), (2, 0), (2, 1)} and the corresponding zero divisor graph is illustrated

in Figure 5.1 below. This is a bipartite graph with deg((0, 1)) = deg((2, 1)) = 1 while

deg((2, 0)) = 2. Moreover, diam(Γ(R)) = 2, gr(Γ(R)) =∞ and b(Γ(R)) = 1
2
.

(2,0)

(0,1) (2,1)

Figure 5.1: The zero divisor graph of Z4 ⊕ Z4/2Z4

Proposition 5.1.6 Let k ≥ 3, then R is a completely primary finite ring of char-

acteristic pk, satisfying;

(i) Z(R) = pR0 ⊕ U.

(ii) (Z(R))k−1 = pk−1R0.

(iii) (Z(R))k = (0).

Proof.

Similar to the proof of Proposition 4.4.3. �
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Proposition 5.1.7 Let k ≥ 3 and R be a ring in Construction II, then the graph

Γ(R) satisfies the following;

(i) (Γ(R)) = p(h+k−1)r − 1.

(ii) diam (Γ(R)) = 2.

(iii) gr (Γ(R)) = 3.

(iv) b (Γ(R)) =


p(

k
2 )r−1

p(k−1+h)r−p(
k
2 )r
, if k is even ;

p(
k−1
2 )r−1

p(k−1+h)r−p(
k−1
2 )r

, if k is odd.

Proof.

For part (i), line of proof is similar to part (i) of Proposition 5.1.3 except that now

Z(R) = p(h+k−1)r and hence Z(R)? = p(h+k−1)r − 1.

For parts (ii) and (iii)the proofs are similar to Proposition 5.1.3.

For part (iv), we consider the two cases separately.

Case I: k is even.

Let X = {Σr
i=1aiλi} , ai ∈

{
0, j
(
p

k
2

)}
, 1 ≤ j ≤ p

k
2 −1, then define VΣiaiλi = X\{0}

and V1 = Z(R)?\
⋃
VΣiaiλi . From the definition of V1,

N(V1) =
⋃
VΣiaiλi . So N(V1) = p( k

2
)r − 1. Also V1 = Z(R)? −N(V1)

= Z(R)? −
⋃
VΣiaiλi = p(k−1+h)r − 1− (p( k

2
)r − 1) = p(k−1+h)r − p( k

2
)r. The binding

number is then established by the ratio N(V1)
V1

= p(
k
2 )r−1

p(k−1+h)r−p(
k
2 )r
.

Case II: k is odd.

Let X = {Σr
i=1aiλi} , ai ∈

{
0, (j − 1) p

k+1
2

}
, 2 ≤ j ≤ p

k−1
2 . Then define VΣiaiλi =

X\{0} and V1 = Z(R)?\
⋃
i VΣiaiλi . From the definition of V1,

N(V1) =
⋃
VΣiaiλi , so that N(V1) = p( k−1

2
)r − 1. Also, V1 = Z(R)? −N(V1)
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= Z(R)? −
⋃
VΣiaiλi = p(k−1+h)r − 1 − (p( k−1

2
)r − 1) = p(k−1+h)r − p( k−1

2
)r. The

result follows from the ratio N(V1)
V1

= p(
k−1
2 )r−1

p(k−1+h)r−p(
k−1
2 )r

. �

Example 5.1.8 Let R0 = GR(24, 22) ∼= Z4[x]/(x2 + 1), so that k = 2 and r = 2.

Let R = R0 ⊕ R0/pR0 and let α be the root of x2 + 1 in Z4. Then with respect to

multiplication in Construction II, the set of nonzero zero divisors is

Z(R)? = {(0, 1), (2, 0), (2, 1), (2α, 0), (2α, 1), (2α+2, 0), (0, α), (0, α+1), (2, α), (2, α+

1), (2α + 2, α), (2α + 2, α + 1), (2α + 2, 1)}

X = {Σr
iaiλi} So i = 1or 2 and ai ∈ {0, j(p

k
2 )} and 1 ≤ j ≤ p

k
2 − 1.Thus

j = 1 so ai ∈ {0, 2}. Moreover, λi ∈ {1, α}. Hence X = {0, 2, 2α, 2α + 2}.

giving V0 = (0, 0), V2 = (2, 0), V2α = (2α, 0) and V2α+2 = (2α + 2, 0) so that⋃
VΣr

i aiλi
= X\{0} = {V2 = (2, 0), V2α = (2α, 0), V2α+2 = (2α + 2, 0)}

The zero divisor graph of R is given in Figure 5.2 below.

(2α + 2, 0)

(2α, 0)

(2,0)

(0,1)
(0, α)
(0, α + 1)
(2,1)
(2, α)
(2, α + 1)

(2α, 1)
(2α, α)
(2α, α + 1)
(2α + 2, 1)
(2α + 2, α)
(2α + 2, α + 1)

Figure 5.2: The zero divisor graph of R = R0 ⊕R0/pR0 where R0 = GR(16, 4)

The graph is 4-partite in which all the vertices are of degree 3 except for the
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vertices (2, 0), (2α, 0) and (2α + 2, 0) which are each of degree 12. The diameter of

the graph is 2 while its binding number is 1
4

and the girth is 3.

Corollary 5.1.9 Let R be a ring in Construction II. Then the clique number of

Γ(R) is given by

ω(Γ(R)) =


p( k

2
)r, if k is even;

p( k−1
2

)r, if k is odd .

Proof.

The clique number coincides with the number of partite subsets since each subset

of vertices has at least a vertex which is adjacent to another vertex in a distinct

subset.

�

Proposition 5.1.10 Let R be a ring in Construction II. Then

ΓE (R) =


k
2
− partite, if k is even;

k+1
2
− partite, if k is odd.

Proof.

Case I: k is even. ΓE(R) is partitioned into the following subsets:

V1 = {(Z(R))i}, 1 ≤ i ≤ k
2
.

Vj = {(Z(R))j} such that k
2
< j ≤ k − 1.

For each j, we have V1 ∩ Vj = ∅ and Vj are mutually disjoint for all j.

Moreover, V1

⋃
{
⋃k−1

j= k
2

+1
Vj} = V (ΓE(R)).

The result follows by counting the disjoint subsets.

Case II: k is odd.
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We partition ΓE(R) in to the following subsets:

V1 = {(Z(R))i}, 1 ≤ i ≤ k−1
2
,

Vj = {(Z(R))j}, k−1
2

< j ≤ k − 1. For each j, V1 ∩ Vj = ∅ and Vj are mutually

disjoint. Furthermore V1

⋃
{
⋃k−1

j= k−1
2

Vj} = ΓE(R). By counting the disjoint subsets,

we obtain the result.

�

As a consequence to the immediate proposition, we have the following result.

Corollary 5.1.11 Let ΓE(R), be the graph determined by the equivalence classes

of the zero divisors of a commutative ring given by Construction II. Then, the clique

number of the graph is given by

ω(ΓE(R)) =


k
2
, if k is even ;

k+1
2
, if k is odd.

Proposition 5.1.12 Let R be a ring in the Construction II. Then

(i) diam(ΓE(R)) =



0, when k = 2;

1, when k = 3;

2, elsewhere.

(ii) gr(ΓE(R)) =


∞, if k = 2, 3;

3, if k > 3.
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(iii) b(ΓE(R)) =



0, if k = 2;

1, if k = 3;

k−4
k
, if k ≥ 4 and is even ;

k−5
k−1

, if k ≥ 4 and is odd .

Proof.

(i) If k = 2, then ΓE(R)) has a single vertex. If k = 3, ΓE(R)) is a line graph

[(Z(R)] [(Z(R))2]

Now, for k > 3, [(Z(R))k−1] is adjacent to every other vertex in ΓE(R)).

But ΓE(R)) is not complete because, if 0 < i < k
2

where k is even and

0 < i < k−1
2
, where k is odd, there exists j > i > 0 so that [(Z(R))i][(Z(R))k−1−j] =

[(Z(R))k−1+i−j] 6= 0.

(ii) For k = 2 or 3, the result follows from (i). Elsewhere,

[(Z(R))k−1] [(Z(R)i] [(Z(R))k−i] [(Z(R))k−1]

is a cycle, if 0 < i < k
2

when k is even or when 0 < i < k−1
2

and k

is odd. It is important to note that there exists no n − gon, n > 3 because

[(Z(R))k−1] is adjacent to every other vertex in ΓE(R).

(iii) If k = 2, then S = Z(R) and N(S) = ∅. So S = 1 and N(S) = 0. If k = 3

then N(S) = 1. Now, let k > 3. By Corollary 3.2.8, when k is even V1 = k
2

while N(V1) = k−4
2
. When k is odd, then V1 = k−1

2
while N(V1) = k−5

2
. Then

by the ratio N(V1)
V1

for the binding number, we obtain the result.

�

84



Chapter summary

In summary, the characterization of rings in the Construction II is as follows;

Theorem 5.1.13 Let R be a commutative ring described by Construction II. Then

the zero divisor graph of R satisfies the following

(i) (Γ(R)) = p(h+k−1)r − 1.

(ii) diam (Γ(R)) = 2.

(iii) gr (Γ(R)) = 3.

(iv) b (Γ(R)) =


p(

k
2 )r−1

p(k−1+h)r−p(
k
2 )r
, if k is even ;

p(
k−1
2 )r−1

p(k−1+h)r−p(
k−1
2 )r

, if k is odd.

Theorem 5.1.14 Let R be a ring in Construction II with h = 1, then

Γ (R) =


p(

k
2 )r − partite, if k is even ;

p(
k−1
2 )r − partite, if k is odd .

Theorem 5.1.15 Let R be a ring in Construction II. Then the clique number of

Γ(R) is given by

ω(Γ(R)) =


p( k

2
)r, if k is even;

p( k−1
2

)r, if k is odd .

Theorem 5.1.16 Let R be a ring in Construction II. Then

ΓE (R) =


k
2
− partite, if k is even;

k+1
2
− partite, if k is odd.
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Corollary 5.1.17 Let ΓE(R), be the graph determined by the equivalence classes

of the zero divisors of a commutative ring given by Construction II. Then, the clique

number of the graph is given by

ω(ΓE(R)) =


k
2
, if k is even ;

k+1
2
, if k is odd .

Theorem 5.1.18 Let R be a ring in the Construction II. Then

(i) diam(ΓE(R)) =



0, when k = 2;

1, when k = 3;

2, elsewhere.

(ii) gr(ΓE(R)) =


∞, if k = 2, 3;

3, if k > 3.

(iii) b(ΓE(R)) =



0, if k = 2;

1, if k = 3;

k−4
k
, if k ≥ 4 and is even ;

k−5
k−1

, if k ≥ 4 and is odd .
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Chapter 6

Conclusion and Recommendation

In this chapter we conclude the thesis and provide some recommendations for further

research.

Conclusion

In this study we have identified and investigated the zero divisor graphs of the Galois

rings of the form GR
(
pkr, pk

)
. In Proposition 3.1.2 we have not only identified the

zero divisors of the trivial Galois rings, GR
(
pk, pk

)
but have further improved on

the findings of Duane [19], ( See a summary of this in Chapter 2 of this thesis) by

establishing a general characterization of the graph Γ(Zpk) for all k.

In as much as our findings are in agreement with those of Anderson and Livingston

[7] on the diameter and the girth of the graph Γ(Zpk), in Proposition 3.1.3, we have

given a more robust characterization for the binding number of Γ(Zpk) for all p, a

prime number and for all k ≥ 3. Sankeether, Sankar, Vasanthakumari and Meena

[26] only generalized this for Γ(Z2k).
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What now follows is a summary of our results on both the Galois rings as well as

on the classes of rings encountered in the the two ring constructions studied. For

a commutative ring R which is not a field discussed in this thesis, the range of its

diameter is 0 ≤ diam(Γ(R)) ≤ 2, while its girth is either 3 or ∞. If S is another

ring considered in the thesis, then Γ(R) ∼= Γ(S) does not imply that R ∼= S. We

also observed that there is no ring R considered in this thesis whose zero divisor

graph Γ(R), is an n− gon where n > 3. Moreover, diam (R0) = diam (R0 ⊕ U) = 2

if R0 = GR
(
pkr, pk

)
, k ≥ 3. If 1 ≤ k ≤ 2, the diameter of R0 is not preserved

in the idealization. The thesis has provided partial answers to the following open

questions.

• For any commutative finite ring R, it is known that 0 ≤ diamΓ (R) ≤ 3.

Which rings have zero divisor graphs of a specific diameter in this range?

• It is known that in any commutative finite ring R, either 3 < gr (Γ (R)) < 7

or gr (Γ (R)) =∞. It has been conjectured that there exists no ring R in which

5 ≤ gr (Γ (R)) <∞. So, which rings have zero divisor graphs in which

gr (Γ (R)) = 3, 4, or ∞?

• LetR be a commutative ring with 1 and U be anR−module. If diam (Γ (R)) >

1, then diam (Γ (R⊕ U)) > 1. Then, which classes of rings preserve the diam-

eter?
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Recommendations

An obvious general algebraic structure on the set of zero divisors in a ring does not

exist. In a commutative ring, the set of zero divisors is a multiplicative semigroup.

It is for this reason that nonalgebraic methods including the zero divisor graphs have

been used to study sets of zero divisors. In order to establish the relationship between

a finite ring R and the graph Γ(R), the isomorphism and classification problems arise

naturally. This thesis has provided partial solutions to these two problems on the

classes of rings described by Construction I and II. We recommend that further

research should address the two problems on other classes of commutative finite

rings. We in particular recommend that further studies be done to answer the

following:

• Let R be a ring described by Construction I, what is the possible Construction

S such that Γ(R) ∼= Γ(S)?

• LetR′ be a ring described by Construction II, what is the possible Construction

S ′ such that Γ(R′) ∼= Γ(S ′)?
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